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Abstract. In this paper, we study the fault diagnosis problem for distributed discrete event systems.
The model assumes that the system is composed of distributed components that are modeled in
labeled Petri nets and interact with each other via sets of common resources (places). Further, a
component’s own access to a common resource is an observable event. Based on thediagnoser
approach proposed by Sampath et al, a distributed fault diagnosis algorithm with communication
is presented. The distributed algorithm assumes that the local diagnosis process can exchange mes-
sages upon the occurrence of observable events. We prove the distribute diagnosis algorithm is
correct in the sense that it recovers the same diagnostic information as the centralized diagnosis
algorithm. And then, the OBDD (Ordered Binary Decision Diagrams) is introduced to manage the
state explosion problem in state estimation of the system.
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1. Introduction

Fault detection and isolation is an important task in the automatic control of large complex
systems, due to its importance in terms of safety and efficiency of operation. A variety of
complementary approaches have been proposed, based on the level of detail chosen for
the model of the system and the kinds of faults that need to be diagnosed. In this paper,
we consider the technological systems that can be modeled at some level of abstraction as
discrete event dynamic systems. We follow an event-based approach proposed by Sam-
path in (Sampathet al., 1995; Sampathet al., 1994), namelydiagnoser approach, and
extend it to deal with distributed discrete event systems.

* This work was supported by NSFC of China under Grant 60074012 and by the National Fundamental
Research Funds of China under Grant G1998020310.
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In diagnoser approach, faults are modeled as unobservable events, namely, events
whose execution can not directly detected by the sensors. A failure is said to have oc-
curred in system if these special events, fault events, execute. Fault diagnostic is to detect
the execution of fault events and identify their type or origin. Thediagnoseris constructed
based on the system model to infer the execution of fault events from the system model
and future observations of the evolution of the system (Sampathet al., 1995; Sampath
et al., 1994). However, for the large-scale distributed complex discrete event systems,
such as communication networks and power systems (Benvenisteet al., 2003; Pencoleet
al., 2002; Genc and Lafortune, 2003), the diagnosis is often made more complex by the
need to construct a global model of system behavior and estimate global state of system
on-line.

The discrete event systems considered in this paper are assumed to be composed of
distributed components that are modeled in labeled Petri nets. One aspect of these systems
is the presence of common resource. The different components of systems interact with
each other via sets of common resources, i.e., the tokens in common places for the Petri
net model. Each component’s overall behavior is expressed in terms of its own behavior
and its interactions with other components (Benvenisteet al., 2003; Ricker and Fabre,
2000). Our purpose is to propose an effectively distributed fault diagnosis algorithm for
these systems.

Previously, the diagnoser approach is extended to Petri net model and a distributed
diagnosis algorithm is proposed. However, the communication protocol in (Genc and
Lafortune, 2003) is complex and the length of message exchanged between different lo-
cal diagnosis processes is unbounded. In this paper, we improve the algorithm proposed
in (Genc and Lafortune, 2003) and present a new algorithm of distributed diagnosis with
communication. The communication protocol of our algorithm is much simpler and the
length of exchange message is bounded. We also prove our algorithm is correct in the
sense that it recovers the same diagnostic information as the centralized diagnosis algo-
rithm.

Furthermore, diagnosing complex discrete event systems implies finding a set of be-
haviors that could explain the observation of system in a very complex state space. There-
fore, the diagnosis problem is strongly linked with the well-known state explosion prob-
lem, which essentially comes from the fact that the system evolves in a concurrent way.
Then, computing the diagnosis can be a very complex task, and the solution can be very
big and can not be easily analyzed. In order to manage the state-explosion problem, the
Ordered Binary Decision Diagram (OBDD) is introduced in this paper to apply for fault
diagnosis. OBDDs have the capability of representing large sets of encoded data with
small date structures and enable the efficient manipulation of those sets. OBDDs pro-
vide a symbolic representation for Boolean functions in the form of directed acyclic
graphs (Bryant, 1986). Bryant described a set of algorithms that implement operations
on Boolean functions as graph algorithms on OBDDs. Taking advantage of the efficient
symbolic manipulations, researchers have solved a wide range of problems in hardware
verifications, testing, and real-time systems. It is also used to analysis the properties of
bounded Petri nets (Pastoret al., 2001). In this paper, we firstly present the model and dy-
namic behavior of system using OBDD. And then, distributed fault diagnosis algorithm
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based OBDD is proposed to manage the state-explosion problem for state estimation in
diagnosis process.

2. System Model and Centralized Diagnosis Algorithm

In this section, we define the system model for distributed discrete event systems and
briefly present the centralized diagnosis algorithm by extending thediagnoserapproach.

2.1. System Model

A Petri net graph is a weighted bipartite graph, defined as a 4-tuple (Murata, 1989; Cas-
sandras and Lafortune, 1999; Genc and Lafortune, 2003)

N = (P, T, I, O),

whereP andT are finite sets respectively for places and transitions;P ∩ T = φ and
P ∪ T �= φ; I: P × T → Z and O: T × P → Z are the input and output maps
respectively;Z is the set of non-negative integers.

The state of Petri net graph is a mappingx: P → Z. A state is represented byx =
[x(p1), x(p2), . . . , x(pn)], wherep1, p2, . . . , pn is an arbitrary fixed enumeration ofP

andn is the number of elements inP . A Petri net is a pair(N, x0), whereN is Petri
net graph andx0 is the initial state. The state space of(N, x0) is given byX = Zn and
x0 ∈ X. We denote the state transition function asf : X × T → X. The state transition
function is defined for statex and transitiont ∈ T if (∀p ∈ P )[x(p) � I(p, t)], where
I(p, t) is the input map fromp to t. If f(x, t) is defined, then we setx′ = f(x, t), where

x′(p) = x(p) − I(p, t) + O(t, p), for all p ∈ P.

Here,O(t, p) is the output map fromt to p. Extend the state transition functionf from
domainX × T to domainX × T ∗:

f(x, ε) := x,

f(x, st) := f(f(x, s), t) for s ∈ T ∗ andt ∈ T,

whereε is to be interpreted as the absence of transition firing andT ∗ denotes the Kleene-
closure ofT . The set of reachable state for Petri net(N, x0) is denoted byR(N, x0).

A labeled Petri net is defined as

G = (N, Σ, l, x0),

whereN = (P, T, I, O) is the Petri net graph andx0 is the initial state.Σ is the finite set
(alphabet) of events andλ ∈ Σ is the empty word.l: T → Σ is the labeling function that
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assigns an event to each transition and can be extended to mappingT ∗ → Σ∗ in the usual
way, whereΣ∗ is the Kleene-closure ofΣ.

The discrete event systems considered in this paper are modeled in labeled net
G = (N, Σ, l, x0), whereN = (P, T, I, O) is the Petri net graph of the system and
x0 is the initial state of the system. We assume the discrete event system to be com-
posed ofk distributed components that interact with each other via sets of common
resources. Each componenti = 1, 2, . . . , k is formally modeled as a labeled Petri net
Gi = (Ni, Σi, li, x0i), whereNi = (Pi, Ti, Ii, Oi) is the Petri net graph for component
i andx0i = x0(Pi) is the initial state. It is assumed that the following conditions are
satisfied:

1. T = ∪
i
Ti, Σ = ∪

i
Σi and for anyi �= j, Ti ∩ Tj = φ andΣi ∩ Σj = {λ};

2. Pi = ∪t∈Ti(
∗t ∪ t∗) for any componenti = 1, 2, . . . , k;

where∗t := {p ∈ P : I(p, t) > 0} andt∗ := {p ∈ P : O(t, p) > 0} are the predecessors
set and successor set of transitiont respectively.Ii, Oi andli are the restrictions ofI, O

andl to Pi × Ti, Ti × Pi andTi, respectively.x0i is the initial state of componenti and
it is hold that for anyp ∈ Pi ∩ Pj , x0i(p) = x0j(p), ∀i, j = 1, 2, . . . , k.

The corresponding Petri net graphNi andNj have disjoint sets of transitions. How-
ever, the sets of places are not disjoint, i.e., there are common resources (places) for
different components of the system. For the common places, each component has the
same initial state. Furthermore, for each component of the system, the transition set is
partitioned asTi = Toi ∪ Tuoi andToi ∩ Tuoi = φ, whereToi andTuoi denote the set of
observable transitions and the set of unobservable transitions of componenti respectively.
Let Tfi ⊆ Ti be the set of failure transitions of componenti, which should be diagnosed.
Without loss of generality, we assume thatTfi ⊆ Tuoi. A transitiont is labeled withλ
if and only if t ∈ Tuoi. Similarly to (Genc and Lafortune, 2003), we assume that for any
componenti of the system, it satisfies the following condition:

Assumption C. ∀t ∈ Ti, if ∃j = 1, 2, . . . , k andi �= j, (∗t ∪ t∗) ∩ (Pi ∩ Pj) �= ∅,
then the transition is observable, i.e.,t ∈ Toi.

The condition says that transitions putting tokens in or removing tokens from common
places are observable, i.e., any transition generating or consuming common resources is
observable.

Fig. 1 illustrates a simple example of distributed discrete event system (Benveniste
et al., 2003). The distributed system is composed by two components, component 1 and
component 2. The components are modeled in labeled Petri netsGi = (Ni, Σi, li, x0i),
i = 1, 2, and interact with each other via the common places, placep3 and placep7. Here,
Ni = (Pi, Ti, Ii, Oi) is the Petri net model for components andT1 = {t1, t2, t3}, T2 =
{t4, t5, t6}, P1 = {p1, p2, p3, p7}, P2 = {p4, p5, p6, p3, p7} are the sets for transitions
and places of each component respectively. For component 1, the set of eventsΣ1 =
{β, λ} and l1(t1) = l1(t2) = β, l1(t3) = λ, i.e., transitiont1, t2 is observable and
transitiont3 is unobservable. Similarly,Σ2 = {α, λ} andl2(t4) = l2(t5) = α, l2(t6) =
λ. Transitiont3 andt6 are the failure transitions for each component to be diagnosed.
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Fig. 1. Example of distributed discrete event system.

2.2. Centralized Diagnosis Algorithm

We briefly present the centralized diagnosis algorithm for discrete event systems modeled
in labeled Petri nets. The detail for the algorithm is referred to (Genc and Lafortune,
2003).

Firstly, we define the statexd of fault diagnosis by labeled each state of system with
diagnostic information as follows

xd = (x, lf ),

wherex = [x(p1), x(p2), . . . , x(pn)] ∈ X is the state of system modeled in labeled Petri
net and fault labellf ∈ ∆ = {0, 1}m is the diagnostic information labeled with each state
of system. The fault label is a vector of lengthm (the number of failure transitions) which
has entries of “0” or “1”. When the fault label is the “zero” vector, we say that the fault
label is “normal”. The initial state has the “normal” fault label by definition. Letx ∈ X,
lf ∈ ∆ ands ∈ T ∗. Then, the propagation function of fault labelL: X × ∆ × T ∗ → ∆
is defined as

L(x, lf , s) = lf +
( m∑

i=1

bs
i

)
,

wherebs
i ∈ ∆ and

bs
i =

{
[0, . . . , 0, 1, 0, . . . . . . . . .

↑ithcolumn

, 0] if s containsfi ∈ Tf ,

[0, . . . , 0, 0, 0 . . . . . . . . . , 0] otherwise.

Now we present the centralized diagnosis algorithm as follows (Genc and Lafortune,
2003).

Centralized Diagnosis Algorithm. Given the observable event sequences =
σ0σ1σ2 . . . σn, where|s| = n + 1 andσi ∈ Σ − {λ},
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1. Initialize the algorithmi := 0, (x0, l0f = 0m). Estimate the initial possible state
of system as follows

e0 =
{
(x, lf )|∃s ∈ T ∗ ∧ l(s) = λ, x = f(x0, s), lf = L(x0, l0f , s)

}
. (1)

Heres can be empty.
2. Upon observation ofσi, do

2.1. Compute the estimation as follows

êi =
{
x′

d = (x′, lf ) | ∃t ∈ T ∧ l(t) = σi,

∃(x, lf ) ∈ ei ∧ x′ = f(x, t) is defined
}
. (2)

2.2. Compute the possible state of system as follows

ei+1 =
{
xd = (x′, l′f )|∃s ∈ T ∗ ∧ l(s) = λ,

∃(x, lf ) ∈ ê, x′ = f(x, s), l′f = L(x, lf , s)
}
. (3)

Heres can be empty. Failure transitionfi ∈ Tf is said that has occurred if
and only iflf (i) = 1 for anyxd ∈ ei+1.

2.3. Incrementi.

3. Distributed Diagnosis with Communication

In this section, we study the problem of distributed fault diagnosis for discrete event sys-
tems. We define the distributed diagnosis algorithm with communication between each
component of the system. We assume that the message is transferred between the com-
ponents correctly and without delaying and prove the distribute diagnosis algorithm is
correct in the sense that it recovers the same diagnostic information as the centralized
diagnosis algorithm. A simple example is given in this section to illustrate how our al-
gorithm running. The example is also used to demonstrate the improvements over the
previous algorithm in (Genc and Lafortune, 2003).

3.1. Algorithm of Distributed Diagnosis with Communication

For any componentGi = (Ni, Σi, li, x0i) of the system, we can define the local diagnosis
process using the centralized diagnosis algorithm defined in the previous section. How-
ever, if the local diagnosis processes work in isolation, the individual estimates of local
process cannot provide enough information for diagnosis because the common resources
(places) of any componentGi are influenced not only by its own transition, but also by
the transitions of other components. Therefore, we overcome this problem by defining a
communication protocol between local diagnosis processes. This protocol recovers the
centralized diagnosis information by allowing the local diagnosis processed to send each
other the change of tokens in the common places.
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Here we consider the case whenk = 2, i.e., the system has two componentG1 and
G2. Assuming that the two components have common placesPc = P1∩P2 and|Pc| = r,
we define the state of local diagnosis process by extending the state of diagnosis, which
defined in the previous section, with the message exchange with the other local diagnosis
processes. For a given componentGi = (Ni, Σi, li, x0i), i = 1, 2, the statexi

d of local
diagnosis process is defined as follows:

xi
d =

(
xi, l

i
f , (lim)p, (lim)n, ljm

)
, j �= i

wherexi is the local state of the component andlif is the fault label. Message label(lim)p,
(lim)n andljm ∈ Zr represent the influence of common places between two components.
The fault label and message label of the initial state are defined to be “zero” vectors. And
then we define the algorithm of distributed diagnosis with communication as follows.

Distributed Diagnosis with Communication.Given the observable event sequence
s = σ0σ1σ2 . . . σn, where|s| = n + 1 andσi ∈ Σ − {λ},

1. Initialize the algorithmi := 0. Estimate the initial possible state of each component
as follows:

e0
1 =

{(
x1, l

1
f , (l10m)p, (l10m)n, l20m

)
|∃s ∈ T ∗

1 ∧ l1(s) = λ,

x1 = f(x01, s), l1f = L(x01, l
1
0f , s)

}
, (4)

e0
2 =

{(
x2, l

2
f , (l20m)p, (l20m)n, l10m

)
|∃s ∈ T ∗

2 ∧ l2(s) = λ,

x2 = f(x02, s), l2f = L(x02, l
2
0f , s)

}
. (5)

Heres can be empty.
2. Upon observation ofσi, do {if σi ∈ Σ1, then go to 3, else go to 4}.
3. {Master is the diagnosis process of component 1}.

3.1. Compute the estimation of component 1 as follows

êi
1 =

{(
x′

1, l
1
f , (l1m)′p, (l

1
m)′n, l2m

)
|∃t ∈ T1 ∧ l1(t) = σi,

∃
(
x1, l

1
f , (l1m)p, (l1m)n, l2m

)
∈ ei ∧ x′

1 = f(x1, t) is defined.

(l1m)′p = (l1m)n, (l1m)′n = (l1m)n − I(Pc, t) + O(t, Pc)
}

. (6)

3.2. Compute the possible state of component 1 as follows

ei+1
1 =

{(
x′

1, (l
1
f )′, (l1m)p, (l1m)n, l2m

)
|∃s ∈ T ∗

1 ∧ l1(s) = λ,

∃
(
x1, l

1
f , (l1m)p, (l1m)n, l2m

)
∈ ê1, x′

1 = f(x1, s),

(l1f )′ = L(x1, l
1
f , s)

}
. (7)
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Heres can be empty. Failure transitionfi ∈ T 1
f is said that has occurred if

and only ifl1f (i) = 1 for anyx1
d ∈ ei+1

1 .
3.3. Send amessageto the diagnosis process of component 2:

message :=
{(

(l1m)p, (l1m)n, l2m
)
|∃

(
x1, l

1
f , (l1m)p, (l1m)n, l2m

)
∈ei+1

1

}
. (8)

3.4. Upon reception of this message, set of possible state of component 2 update
as follows:

ei+1
2 =

{(
x′

2, l
2
f , (l2m)p, (l2m)n, (l1m)′

)
|∃

(
(l1m)p, (l1m)n, l2m

)
∈ message,

∃
(
x2, l

2
f , (l2m)p, (l2m)n = l2m, l1m = (l1m)p

)
∈ ei

2, (l1m)′ = (l1m)n,

x′
2(P2−Pc)=x2(P2−Pc), x′

2(Pc)=x2(Pc)−(l1m)p+(l1m)n

}
. (9)

3.5. Incrementi.

4. {Master is the diagnosis process of component 2} Same as 3 but change 1 and 2 in
every expression.

REMARK. For the previous distributed algorithm in (Genc and Lafortune, 2003), mes-
sage labellm of statexi

d = (xi, l
i
f , lm) is defined as the change sequence on common

places, i.e., ift ∈ T is defined atxi, the message label propagates as follows:

x′
i = f(xi, t) (lif )′ = L(xi, l

i
f , t) and(lm)′ =

[
lm, O(t, Pc) − I(Pc, t)

]
.

Hence, the size ofmessagelabel lm will grow up unbounded along with observable
events sequence. We will compare it with our algorithm detailed in Subection 3.3 using a
simple example.

3.2. Recovering the Diagnostic Information of Centralized Algorithm

We show how the distributed diagnosis process with communication represented in the
previous section can recover the state of centralized diagnosis process and prove the cor-
rectness of the algorithm of distributed diagnosis with communication by showing that it
reconstructs the state of centralized diagnosis process after each observable event in the
given observed sequence.

At the end of completion of the distributed diagnosis process for an observable event
in sequence, letei

1 andei
2 be the possible states sets in the diagnosis process of component

1 and 2, respectively. We define the setMerge(ei
1, e

i
2) as follows:

Merge(ei
1, e

i
2) =

{(
x1(P1)x2(P2 − Pc), l1f l2f

)
|∃

(
x1, l

1
f , (l1m)p, (l1m)n, l2m

)
∈ ei

1,(
x2, l

2
f , (l2m)p, (l2m)n, l1m

)
∈ ei

2 and l1m = (l1m)n, l2m = (l2m)n

}
.
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Lemma 1. For algorithm of distributed diagnosis with communication, if there exist
(x1, l

1
f , (l1m)p, (l1m)n, l2m) ∈ ei

1, (x2, l
2
f , (l2m)p, (l2m)n, l1m) ∈ ei

2 that it is satisfied that
l1m = (l1m)n, l2m = (l2m)n, then it is hold thatx1(Pc) = x2(Pc).

Proof. It is easy to prove by induction using Eqs. 7 and 9. Thus, the detailed proof is
omitted here.

Hence, the setMerge(ei
1, e

i
2) can equivalently be defined as follows:

Merge(ei
1, e

i
2) =

{(
x1(P1 − Pc)x2(P2), l1f l2f

)
|∃

(
x1, l

1
f , (l1m)p, (l1m)n, l2m

)
∈ ei

1,(
x2, l

2
f , (l2m)p, (l2m)n, l1m

)
∈ei

2 andl1m = (l1m)n, l2m = (l2m)n

}
.(10)

We prove the possible states set of centralized diagnosis processei can be recovered
by the setMerge(ei

1, e
i
2).

Theorem 1. Given the distributed systemG andG1, G2. Given an observable sequence
s = σ0σ1σ2 . . . σn and the possible statesei, ei

1 and ei
2 are defined as above. Then,

ei = Merge(ei
1, e

i
2).

Proof. We prove the theorem by induction.
Induction Base: e0 = Merge(e0

1, e
0
2).

Proof (of Induction Base): The initial state of centralized diagnosis process is
(x0, l0f = 0m). From Eq. 1, we know that(x, lf ) ∈ e0 and

x = f(x0, s) =
{
x0 + W (s), lf = L(x0, l0f , s)

}
. (11)

s = t1t2 . . . t|s| ∈ T ∗
uo andf(x0, s) is defined.W (s) =

∑|s|
i=1 O(ti, P )− I(P, ti). Since

addition is component-wise, Eq. 11 can be separated into two equations as

x(P1) = x0(P1) + WP1(s), x(P2) = x0(P2) + WP2(s). (12)

Based on the definition of distributed systems,x01 = x0(P1) andx02 = x0(P2).
Thus, from the definition of distributed systems and assumptionC that unobservable

transition dose not influence the common place, we have

(
x1 = x(P1), l1f = (lf )Tf1 , (l

1
0m)p, (l10m)n, l20m

)
∈ e0

1 and(
x2 = x(P2), l2f = (lf )Tf2 , (l

2
0m)p, (l20m)p, l

1
0m)

)
∈ e0

2. (13)

Here,(l10m)n = l10m = (l20m)n = l20m = 0r, r = |Pc|. Conversely, ifx1
d ∈ e0

1 and
x2

d ∈ e0
2, then we have thatMerge(x1

d, x
2
d) ∈ e0.

It should be noted thatx1(P1)x2(P2−Pc) = x1(P1−Pc)x2(P2), since unobservable
transition dose not influence the common places.
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Induction Hypothesis: ei = Merge(ei
1, e

i
2).

Induction Step: ei+1 = Merge(ei+1
1 , ei+1

2 ).
Proof (of Induction Step): Without loss of generality, we assume thatσi ∈ Σ1 −{λ}.

The proof will be done by showing inclusion in both directions for these two sets.
(⇐) If (x, lf ) ∈ ei+1, then from Eq. 2 and 3 we know that there exist(x′, l′f ) ∈

ei, t ∈ T1 ⊆ T, l1(t) = l(t) = σi ands = t1t2 . . . t|s| ∈ T ∗
uo, it holds that

x = f(x′, ts) = x′ + W (ts) is defined andlf = L
(
f(x′, t), l′f , s

)
. (14)

Heres can be empty. Since addition is component-wise, Eq. 14 can be separated into two
equations as

x(P1) = x′(P1) + WP1(ts), x(P2) = x′(P2) + WP2(ts). (15)

From the induction hypothesis, we have

(
x′

1 = x′(P1), (l1f )′ = (l′f )Tf1 , (l
1
m)′p, (l

1
m)′n, (l2m)′

)
∈ ei

1 and(
x′

2 = x′(P2), (l2f )′ = (l′f )Tf2 , (l
2
m)′p, (l

2
m)′n, (l1m)′

)
∈ ei

2. (16)

Here, (l1m)′n = (l1m)′ and (l2m)′n = (l2m)′ ∈ Zr, r = |Pc|. Based on Eqs. 5, 6 and
assumptionC that unobservable transitions dose not influence the common places, we
have

(
x1, l

1
f , (l1m)p = (l1m)′n, (l1m)n = (l1m)′n − I(Pc, t) + O(t, Pc), (l2m)′

)
∈ ei+1

1 . (17)

Here,x1 = x(P1) andl1f = (lf )Tf1 .
By removing all transitionti ∈ T1 from the unobservable sequences = t1t2 . . . t|s| ∈

T ∗
uo, we have a transition sequences′ = t21, t

2
2 . . . t2|s′| ∈ T ∗

uo2. With assumptionC that
unobservable transitions do not influence the common places,f(x′

2, s
′) is defined. From

Eqs. 16 and 7, we have

(
x′′

2 , (l2f )′′, (l2m)′p, (l
2
m)′n, (l1m)′

)
∈ ei

2. (18)

Here,x′′
2 = f(x′

2, s
′) and(l2f )′′ = L(x′

2, (l
2
f )′, s′) = (lf )Tf2 .

When the message is sent from the diagnosis process of component 1 to the diagnosis
process of component 2,((l1m)p, (l1m)n, (l2m)′ ∈ message from Eqs. 17 and 8. Since
(l1m)p = (l1m)′n = (l1m)′ and(l2m)′ = (l2m)′n, from Eq. 9, we have

(
x2, (lf )Tf2 , (l

2
m)′p, (l

2
m)′n, (l1m)n

)
∈ ei+1

2 . (19)

Here,x2 = x′′
2 − (l1m)p + (l1m)n = x′′

2 − I(Pc, t) + O(t, Pc) = x(P2).
(⇒) It is similar to the proof of the converse statement proved in detail above, but the

steps are followed in reverse order. Thus, the details of the proof are omitted.
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3.3. A Simple Example

Consider the distributed discrete event system given in Fig. 1. In this section, we will
use it to illustrate how the algorithm in above section running. We will also compare the
algorithm given in Subsection 3.2 with the previous distributed fault diagnosis algorithm
in (Genc and Lafortune, 2003).

Assuming the initial state for system is

x0(p1, p2, p3,p4, p5, p6, p7) = (1, 0, 0, 1, 0, 0, 1).

Assume the sequence of observable events isβαβ. t3, t6 are the failure transitions to be
diagnosed. Using the centralized diagnosis algorithm, the estimation set of possible states
is given as following:

e0 =
{
(1, 0, 01, 0, 0, 1

...0, 0)
}
,

e1 =
{
(0, 1, 1, 1, 0, 0, 0

...0, 0); (1, 0, 1, 1, 0, 0, 0
...1, 0);

(0, 1, 0, 1, 0, 0, 1
...0, 0); (1, 0, 0, 1, 0, 0, 1

...1, 0)
}
,

e2 =
{
(0, 1, 0, 0, 1, 0, 1

...0, 0); (1, 0, 0, 0, 1, 0, 1
...1, 0);

(0, 1, 0, 1, 0, 0, 1
...0, 1); (1, 0, 0, 1, 0, 0, 1

...1, 1);

(0, 1, 1, 0, 0, 1, 0
...0, 0); (1, 0, 1, 0, 0, 1, 0

...1, 0);

(0, 1, 0, 0, 0, 1, 1
...0, 0); (1, 0, 0, 0, 0, 1, 1

...1, 0)
}
,

e3 =
{
(1, 0, 0, 0, 1, 0, 1

...1, 0); (0, 1, 1, 0, 1, 0, 0
...1, 0);

(1, 0, 1, 0, 1, 0, 0
...1, 0); (0, 1, 0, 0, 1, 0, 1

...1, 0);

(1, 0, 0, 0, 1, 0, 1
...1, 0); (1, 0, 0, 1, 0, 0, 1

...1, 1);

(0, 1, 1, 1, 0, 0, 0
...1, 1); (1, 0, 1, 1, 0, 0, 0

...1, 1);

(0, 1, 0, 1, 0, 0, 1
...1, 1); (1, 0, 0, 1, 0, 0, 1

...1, 1);

(1, 0, 1, 0, 0, 1, 0
...1, 0); (0, 1, 1, 0, 0, 1, 0

...1, 0);

(1, 0, 0, 0, 0, 1, 1
...1, 0); (0, 1, 0, 0, 0, 1, 1

...1, 0)}.

Using the distributed diagnosis algorithm, the initial states for each component are

x01(p1, p2, p3,p7) = (1, 0, 0, 1) and x02(p4, p5, p6, p3,p7) = (1, 0, 0, 0, 1).
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The estimation set of possible states is given as following:

e0
1 =

{
(1, 0, 0, 1,

...0,
...0, 0,

...0, 0,
...0, 0)

}
and

e0
2 =

{
(1, 0, 0, 0, 1,

...0,
...0, 0,

...0, 0,
...0, 0)

}
.

While observe the eventβ,

e1
1 =

{
(0, 1, 1, 0,

...0,
...0, 0,

...1,−1,
...0, 0); (1, 0, 1, 0,

...1,
...0, 0,

...1,−1,
...0, 0);

(0, 1, 0, 1,
...0,

...0, 0,
...0, 0

...0, 0); (1, 0, 0, 1,
...1,

...0, 0,
...0, 0

...0, 0)
}
.

Send amessageto the diagnosis process of component 2,

message(1) =
{
(0, 0,

...0, 0,
...0, 0); (0, 0,

...1,−1,
...0, 0)

}
.

The estimation set of possible states of component 2 is updated as following,

e1
2 =

{
(1, 0, 0, 0, 1,

...0,
...0, 0,

...0, 0,
...0, 0); (1, 0, 0, 1, 0,

...0,
...0, 0,

...0, 0,
...1,−1)

}
.

Similarly, the second observed event isα, hence

e2
2 =

{
(0, 0, 1, 0, 1,

...0,
...0, 0,

...0, 0,
...0, 0); (0, 0, 1, 1, 0,

...0,
...0, 0,

...0, 0,
...1,−1);

(0, 1, 0, 0, 1,
...0,

...0, 0,
... − 1, 1,

...1,−1); (1, 0, 0, 0, 1,
...1,

...0, 0,
... − 1, 1,

...1,−1)
}
,

message(2) =
{
(0, 0,

...0, 0,
...0, 0); (0, 0,

...0, 0
...1,−1, ); (0, 0,

... − 1, 1,
...1,−1)

}
,

e2
1 =

{
(0, 1, 1, 0,

...0,
...0, 0,

...1,−1,
...0, 0); (1, 0, 1, 0,

...1,
...0, 0,

...1,−1,
...0, 0);

(0, 1, 0, 1,
...0,

...0, 0,
...1,−1,

... − 1, 1); (1, 0, 0, 1,
...1,

...0, 0,
...1,−1,

... − 1, 1);

(0, 1, 0, 1,
...0,

...0, 0,
...0, 0

...0, 0); (1, 0, 0, 1,
...1,

...0, 0,
...0, 0

...0, 0)
}
.

The third observed event isβ, hence

e3
1 =

{
(0, 1, 1, 0,

...1,
...1,−1,

...1,−1,
...0, 0); (1, 0, 1, 0,

...1,
...1,−1,

...1,−1,
...0, 0);

(0, 1, 1, 0,
...1,

...1,−1,
...2,−2,

... − 1, 1); (1, 0, 1, 0,
...1,

...1,−1,
...2,−2,

... − 1, 1);

(0, 1, 0, 1,
...1,

...1,−1,
...1,−1,

... − 1, 1); (1, 0, 0, 1,
...1,

...1,−1,
...1,−1,

... − 1, 1);

(0, 1, 1, 0,
...1,

...0, 0,
...1,−1

...0, 0); (1, 0, 1, 0,
...1,

...0, 0,
...1,−1

...0, 0);

(0, 1, 0, 1,
...1,

...0, 0,
...0, 0

...0, 0); (1, 0, 0, 1,
...1,

...0, 0,
...0, 0

...0, 0)
}
,
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message(3) =
{
(0, 0,

...0, 0,
...0, 0); (0, 0,

...1,−1
...0, 0, ); (1,−1,

...1,−1,
...0, 0);

(1,−1,
...1,−1,

... − 1, 1); (1,−1,
...2,−2,

... − 1, 1)
}
,

e3
2 =

{
(0, 0, 1, 0, 1,

...0,
...0, 0,

...0, 0,
...0, 0); (0, 0, 1, 1, 0,

...0,
...0, 0,

...0, 0,
...1,−1);

(0, 1, 0, 0, 1,
...0,

...0, 0,
... − 1, 1,

...1,−1); (1, 0, 0, 0, 1,
...1,

...0, 0,
... − 1, 1,

...1,−1)

(0, 1, 0, 1, 0,
...0,

...0, 0,
... − 1, 1,

...2,−2); (1, 0, 0, 1, 0,
...1,

...0, 0,
... − 1, 1,

...2,−2)
}
.

It can be determined that the failure transitiont3 has occurred, because ofl1f (3) = 1
for any x1

d ∈ e3
1. Meanwhile, the occurrence of failure transitiont6 is undetermined.

Comparing the above diagnosis results of centralized algorithm and distributed algorithm,
it can be verified thatei = Merge(ei

1, e
i
2), i = 0, 1, 2, 3, i.e., the distributed algorithm

recovers the same diagnostic information as the centralized diagnosis algorithm.
For the previous distributed diagnosis algorithm proposed in (Genc and Lafortune,

2003), themessagelabel for statexi
d of each local diagnosis process is defined as the

sequence of change for common places, i.e., themessagesfor above example should be

message(1) =
{
(0, 0); (1,−1)

}
,

message(2) =
{
(0, 0,

...0, 0); (1,−1,
...0, 0); (1,−1,

... − 1, 1)
}
,

message(3) =
{
(0, 0,

...0, 0,
...0, 0); (1,−1,

...0, 0,
...0, 0);

(1,−1,
... − 1, 1,

...1,−1); (1,−1,
... − 1, 1,

...0, 0)
}
.

Hence, for anymessagelabel inmessage(k) and statexi
d, its size will grow up un-

bounded along with observable events sequence. Although it is claimed in (Genc and
Lafortune, 2003) that themessagelabels can be truncated and the upper bounds on the
size ofmessagelabels can be determined based on the structure of the Petri net, the up-
per bound on the size of message label is not given and the truncation process is very
complex.

Different with the algorithm in (Genc and Lafortune, 2003), we defined themessage
label as Eq. 8. For local diagnosis process of componenti, (lim)p is the totally influence
for componenti on common places before the observable event and(lim)n is the totally
influence for componenti on common places after the observable event.ljm is the total
influence for componentj andi �= j. Our results show that the state estimation of local
diagnosis process is independent of the sequence of change for common places, but only
depend on the totally influence for each component on the common places. The size of
messagelabel and statesxi

d are bounded and will not grow up along with the observable
events sequence. Consequently, the complex truncation process also needn’t in the on-line
fault diagnosis processes.
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4. Distributed Fault Diagnosis Using OBDD

As shown in above, no matter the centralized or the distributed algorithm, it is required
to estimating the possible state of system on-line. In large scale and complex systems,
this will result bring forth the state explosion problem. In this section, we introduce the
OBDD method to manage the state explosion problem in diagnosis process.

For a given weighted and bounded Petri net, the set of system states can be encoded
as Boolean functions and be represented using OBDD. Then, the dynamic behaviors of
system can be represented as the operation of Boolean functions using OBDD. A Petri net
(N = (P, T, I, O), x0) is said to be a safe net ifI: P ×T → {1, 0}, O: T ×P → {1, 0},
and it is holds thatx(p) � 1 for any reachable statex of the system∀p ∈ P . Here,
we consider case that the Petri net model of the system is safe and briefly represent the
symbolic analysis of Petri net using OBDD. For the bounded Petri net, it is similar to the
safe case studied here. More details for of symbolic analysis of bounded Petri net using
OBDD are referred to (Pastoret al., 2001).

Encode State: For a given safe Petri net(N = (P, T, I, O), x0), the state space is
X = {0, 1}n. And the fault label with system state islf ∈ ∆ = {0, 1}m. Hence, the
state of the diagnosis processxd = (x, lf ) can be encoded as a Boolean function

F (xd) =
m∏

i=1

pi

|P |−m∏
j=1

p̄j

l∏
k=1

lk

|Tf |−l∏
r=1

l̄r, (20)

wherex(pi) = 1, x(pj) = 0, lf (k) = 1 andlf (r) = 0. A set of statesM can be encoded
asFM = ∨

xd∈M
Fxd

.

Encode Transition: Given a transitiont ∈ T , the enable function is defined as follows

Et =
∏
p∈∗t

p. (21)

And the transition functionδt = (δt
1, . . . δ

t
|P |δ

t
|P |+1, . . . δ

t
|P |+|Tf |) defines how the

content of each place is transformed as a result of firing at marking in which it is enabled.
The function is defined as follows

δt
i(p1 . . . p|P |l1 . . . l|Tf |) =




1 if (pi ∈ t∗),
0 if (pi ∈ ∗t) ∧ (pi /∈ t∗),
pi otherwise,

i = 1, . . . , |P |. (22)

And

δt
i(p1 . . . p|P |l1 . . . l|Tf |) =

{
1 if t=fi∈Tf ,
li otherwise,

i= |P | + 1, . . . , |P | + |Tf |. (23)

Dynamic Behavior of System: For a given state setM and a given transitiont, the set
resulted after the firing oft is

δt(FM • Et). (24)
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By iteratively using Eq. 24 in bounded steps, we can compute the reachable states set for
the entire system, denoted asδT (FM ).

An ordered binary decision diagram (OBDD) (Pastoret al., 2001; Bryant, 1986) is
a directed acyclic graph (DAG) representation of a Boolean expression. Generally, it is
exponentially more compact than its corresponding truth table representation. There are
many efficient algorithms to perform all kinds of logic operations on OBDD’s. It is well-
known that the problemsatisfiability of Boolean expressionsis NP-complete, but for the
OBDD of a Boolean functionf(x1, x2, . . . , xn), denotedD(f), the time complexity of
checking itssatisfiabilityis O(n), wheren is the number of variables. So once the OBDD
of a Boolean function is built, itssatisfiabilitywill be verified in polynomial time. In ad-
dition, the choice of variable ordering ofx1, x2, . . . , xn can have a significant impact on
the size of its OBDD. A person with some understanding of the problem domain can
generally choose an appropriate variable ordering without difficulty to build an OBDD
in acceptable size (generally, in polynomial size). Furthermore, if binary encoding is ap-
plied, an arbitrary integer variable can be expressed by an OBDD vector, whose each
OBDD element represents one binary bit of that integer variable. Consequently, any al-
gebraic expression only including integers and integer variables can be represented by
OBDD’s.

Based on the OBDD representation of system dynamic behavior, we rewrite the Dis-
tributed Algorithm using OBDD as follows.

Distributed Diagnosis with Communication (Based on OBDD).Given that the ob-
servable event sequences = σ0σ1σ2 . . . σn where|s| = n + 1 andσi ∈ Σ − {λ},

1. Initialize the algorithmi := 0. Estimate the initial possible state of each component
as follows

e0
1 =

{(
δTuo1

[
F (x01, l

1
0f )

]
, (l10m)p, (l10m)n, l20m

)}
, (25)

e0
2 =

{(
δTuo2

[
F (x02, l

2
0f )

]
, l10m, (l20m)p, (l20m)n

)}
. (26)

2. Upon observation ofσi, do {if σi ∈ Σ1, then go to 3, else go to 4}.
3. {Master is the diagnosis process of component 1}.

3.1. Compute the estimation of component 1 as follows:

êi
1 = ∪t∈T1∧l1(t)=σi

{
δt(FM • Et), (l1m)n, (l1m)n − I(Pc, t)

+ O(t, Pc), l2m |∃
(
FM , (l1m)p, (l1m)n, l2m

)
∈ ei

1

}
. (27)

3.2. Compute the possible state of component 1 as follows:

ei+1
1 =

{
δTuo1(FM ), (l1m)p, (l1m)n, l2m |∃

(
FM , (l1m)p, (l1m)n, l2m

)
∈ êi

1

}
. (28)

3.3. Send amessageto the diagnosis process of component 2:

message :=
{(

(l1m)p, (l1m)n, l2m
)
|∃

(
FM , (l1m)p, (l1m)n, l2m

)
∈ ei+1

1

}
. (29)
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3.4. Upon reception of this message, update the set of possible state of component
2 update as follows:

ei+1
2 =

{
δm(FM ), (l1m)′, (l2m)p, (l2m)n |∃

(
(l1m)p, (l1m)n, l2m

)
∈ message,

∃
(
FM , l1m =(l1m)p, (l2m)p, (l2m)n = l2m

)
∈ei

2, (l
1
m)′=(l1m)n

}
. (30)

Hereδm = (δm
1 , . . . δm

|P2|δ
m
|P2|+1, . . . δ

m
|P2|+|Tf2|) is the transition according

to message defined as follows

δm
i (p1 . . . p|P2|l1 . . . l|Tf2|) =




1 if (l1m)p1
n − (l1m)p1

p = 1,
0 (l1m)p1

p − f(l1m)p1
n = 1,

pi otherwise, i = 1, . . . , |P2|,
(31)

and

δm
i (p1 . . . p|P2|l1 . . . l|Tf2|) = li, ∀i = |P | + 1, . . . , |P | + |Tf |. (32)

3.5. Incrementi.

4. {Master is the diagnosis process of component 2}. Same as 3 but change 1 and 2
in every expression.

It should be noted that here the elements ofei
1 andei

2 are state sets with message
label. The transition according to message is defined at Eqs. 31 and 32 to modify the
state corresponding to message.

5. Conclusion

In this paper, we improve the algorithm of distributed diagnosis with communication de-
fined in (Genc and Lafortune, 2003) and apply it to the distributed systems. The new algo-
rithm proposed here has a simpler communication protocol between diagnosis processes
of different components. The size on statexi

d andmessageexchanged between different
local diagnosis processes is bounded. Moreover, the OBDD is introduced to manage the
state explosion problem in state estimation of system. In this paper, we assume that the
diagnosis process of different components can communicate with each other correctly
and without delaying. A necessary future extension of the algorithm is to tackle with
communication delay and message losing.
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Gedim ↪u diagnozavimas išsklaidytoje diskrěci ↪u ↪ivyki ↪u sistemoje
naudojant OBDD

Fei XUE, Lu YAN, Da-zhong ZHENG

Straipsnyje nagriṅejama gedim↪u diagnozavimo išsklaidytoje diskreči ↪u ↪ivyki ↪u sistemoje prob-
lema. Modeliuojant daroma prielaida, kad sistema susideda iš išsklaidyt↪u komponeňci ↪u, modeliuo-
jam ↪u žymėtais Petri tinklais ir tarpusavyje s↪aveikaujaňci ↪u naudojantis bendrais resursais. Kompo-
nenṫes pasinaudojimas bendrais resursais yra stebimas↪ivykis. Straipsnyje pateikiamas išsklaidytos
klaidos diagnozavimo algoritmas, naudojantis pranešimus. Išsklaidytame algoritme skaitoma, kad
lokaliame diagnozavimo procese yra galimybė apsikeisti pranešimais apie tai, kad↪ivyko stebimas

↪ivykis. ↪Irodoma, kad išsklaidytas diagnozavimo algoritmas teikia t↪a pǎci ↪a diagnostin↪e informacij↪a,
kaip ir centralizuotas diagnozavimo algoritmas. Supažindinama su OBDD (sutvarkytomis dveje-
taini ↪u sprendim↪u diagramomis), skirtomis↪ivertinti sistemos b̄ukl ↪e.


