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Abstract. In this paper the problem of optimization of mul
tivariate multimodal functions observed with random error is con
sidered. Using the random function for a statistical model of the 
objective function the minimization procedure is suggested. This 
algorithm is convergent on a: discrete set. To avoid computational 
difficulties, the modified algorithm is defined by substituting the 
parameters of minimization procedure by their estimates. 
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1. Introduction. Formulation of problem. The ne
cessity of global optimization in the presence of noise is very 
common in different applications (identification, adaptation 
etc.). To solve such problems, amultimodal generalization of 
the stochastic optimization algorithm was proposed. However, 
its efficiency depends very much on a heuristic choice of many. 
parameters. To avoid this, the axiomatic approach for the 
construction of rational statistical models and optimization 
algorithms, suggested by Zilinskas (1986), seems prospective. 
The main idea of the proposed approach is to formulate some 
simple rational assumptions on available information, imply-



60 Minimization algoTithm, 

ing the structure of statistical model and optimization algo
rithm. In the papers of Zilinskas, Katkauskaite (1987) and 
Zilinskas et a1. (1987) this idea was applied to soln' the more 
complicated problem of global minimization ill the presence of 
noise. It, may be described as fo11O\vs below. 

Let the unknown continuous function f(:r} • . r E A C Rn 
be minimized, when the only objective information on this 
function is noisy observations Zi = f(xd + Cj. i = 1, l..', where 
€ i-independent Gaussian randorh variables, .ilJ E i = 0, DE i = 
= u 2 , i = 1, l..~, The objective and subjective information on 
the objective function f(· ) may be formalized by simple ra
tional axioms similar to the axioms of Zilinskas (1986) for the 
case of exact observations. It may be supposed that the min
imal considerable a priori information on f(' ) mntains the 
possibility to compare any two intervals of the values f(.T), ac
cording to their likelihood. So a certain binary rdation may 
be defined \ which implies the existence of a family of random 
variables ~(;T), ;T E A, compatible with this relation, Conse
quently, e(;r) may be accepted for a statistical model of f(' ), 
Finally, a minimization procedure may be defined as a ratio
nal choice of the current evaluation of f(' ) or. according to 
the suggested modeL as a choice of a certain random variable 
from the family e(.r), ;1' E A. It is shown ill Zilinskas (1986). 
that the rationality is ('ompatihle with a. certa.in utility fUll(,

tion and. in partinllar. the minimization algorithm lllay 1)(' 
des('l'ibed by the following relations: 

i = IT}, ( 1 ) 

Yak = lllillJ!{((,r)/~(,l'il-t-=-i 
,rE ,\ ' 

'~'I' i = i',7} , 
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The computational realization of the suggested algorithm 
is rather complicated from the computational point of view, be
cause of a matrix inversion procedure appearing in the evalu
ations of parameters of the algorithm (1 )-a conditionaJ mean 
value and a conditional variance. The computational difficul
ties may be reduced by substituting the parameters by their 
estimates. The minimization procedure may also be simpli
fied by solving the problem on a discrete set, i.e., finding 
mi!!J(x), where A = {ai, i = 1, L}, ai = (aL ... , an-a site of 
xEA 

n-dimensionallattice AeA. In this paper the convergence of 
algorithm (1) on a set A is proved and the estimates of param
eters are suggested to construct the modified algorithm. Note 
that a particular one-dimensional version of the algorithm (1) 
is considered by Zilinskas (1986), using the Wiener process as 
a statistical model of the objective function. 

2. Convergence of the mininlization algorithm. 
First of all, consider the asympthotic properties of the pa
rameters of the algorithm (1 )-a conditional mean value and a 
conditional variance: 

mk(:-c, Xi, Zi, i = 1, k) = M {~(X)/~(Xi) +ci = Zi, i = 1, k}, 

- { - 2 Sk(X,Xi,Zi,i = l,k) = M (~(x) - mk(:T,xi,Zi,i = l,k» / 

/~(Xi)+ci· Zi, i=l,k}. 

Let a continuous Gaussian function ~(;-c), ;r E Rn for a 
statistical model of f (. ) be chosen. Denote TJ ( Xi) = ~ ( x d + 
+ci, i = 1, k, Mk-a deteri:ninant of the covariance matrix of 
the vector (~(X),17(Xl), ... ,TJ(Xk))' rOO = M~(x)~(x), rOi = 
= l\d'~(x)~(:r,d, rij = M~(Xi)~(Xj), Mtj-the cofactor of 
the element rOj of Mk. Let Mk be positively definite. It is 
well known that for Gaussian variables 

k 

. mk(X, Xi, Zi, i = 1, k) = L w~(x, Xj,j = 1, k)zi, (2) 
i=l 
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Sk(X,Xj,Zi,i = I,k) = sk(x,xj,i = 1,k) = 
k 

= rOO - L w~(;1:, Xj,j = 1, 1.~)roi' (3) 
i=l 

where 
k . - JvI;i 

Wj (x, Xj,) = 1, k) = --k-' . 
Aloo 

Denote X k = {x i, i = 1, k}, Ij - a set of indices of 

the observations performed at the point a j , n j - a number of 

indices belonging to Ij. It is easy to check that under the 

assumptions min n~ > 0, x, X,i E A, the following relations 
i=l,L 

are true: 

L --:-L 
( . -k) ...... ( '-) ...... ""'Aloi ...... Sk x, ;fi, Z = 1, , = Sk x, ai, Z = 1, L = roo + L :;:::::::-rOi, 

i=l Alto 

where Zi = ~ l: =j, TOj = M~(x)~( aj), Tij = ~\1~( ad~( aj), n, 
• jE!: 

--L ...... . --L 
JvIOi - the cofactor of the element rOi 111 Al , 

...... 
rOL 

rLO 

It is easy to prove 

Lenuua. If 11.7 -+ 00, 1.: -+ 00, then mk(aj, aj, Zj,j 
= I,L) -+ f(aj) in probability, sk(aj,aj,j = 1,L) -+ O. 
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Further we'11 consider the convergence of the minimiza
tion algorithm taking a more general form than (1): 

Xk+l = argma~M {Uk.(~(x»/ll(Xi) = Zi, i = 1, k}, 
xEA 

YOk = mi!!.1\1 {~(X)/ll(Xi) = Zi, i = 1, k}, 
(4) 

xEA 

where the utility function Uk(Y) is continuous and nonincreas
ing in the neighbourhood of YOk and equal to zero for 
Y > YOk; Uk(Y) is finitely integrable with respect to a stan
dard Gaussian distribution. 

Theorem 1. Let the function f(· ) be minimized by the 
algorithm (4) under the assumptions presented above. Then 
YOk converges to mi~f(x) in probability as J..~ --+ 00. 

xEA 

Proof. Denote Jk = {j : aj E Xk} (i.e., Jk_-a set of 

indices of the points belonging to A at which at least on~ 
observation is performed), Lk = card Jk • Then for any x E A 

and, consequently, 

I in k (x, . ) I ~ L I iDf ( x, . ) I { ~~f If ( a j ) I + 
iElk J. 

+ m~f I n\ L Cjl}. 
pE P jEI; 

(5) 

Note, that the random value ( = max I ~ ~ € j I is 
iElk n i jElf 

bounded in probability by a certain constant independent of 
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k,i.e., for all k large enough and for any ~ > 0 there exists a 
nUffiQer CA > 0, such that 

p{ ~ax ~I '" Cjl < CA} > 1 -~. (6) 
'Elk n· ~ 

, jE1t 

It may be shown that the inequality ( <- CA yields 
min nf --+- 00 as k --+- 00. Indeed, let it be just the con
iEl le 

trary: ( < CA and there exists the point ar E A, such that 
lim n~ < 00. Let us consider two cases: n~ > 0 and n~ = O. 

k-+oo 

Since for Gaussian variables e (x), C i, i = 1, k 

Sk(~r,') = M {e(ar ) - L wj(ar ,· )r/j} 2 = 

j=!;k 

= M {~(ar) - L wj(ar ,· )~(aj) r + (7) 
jElk 

+ AI { L :~ wj (ar, . ) L C i r ' 
jEl k J iEl k 

) 

for n~ > 0 (i.e. r E Ik) 

(8) 

Considering that jJLk is of a finite dimension (Lk ~ L) 
for ~~ --+- 00 and is positively definite, it is easy to show that 

""Lk 

w~ (a r , . ) = - ~'i\ ~ C w > 0 , C w being a certain constant 
Moo 

independent of k. Consequently, by (8) for n~ > 0 

(9) 
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Let n: = 0 (i,e., at the point ar no observation is per
formed), Taking into account (7), we get 

2 
sk(an ,) ~ M{eCar ) - L wj(an ' )eCaj)} ~ 

jEI" 

It is known that for Gaussian variables e( ai), i E [k, 
-L,. 
Mo' -L,. , , h bj - - t,., where MOj IS a cofactor of the element m t e 

. Moo 
zeroth row and the j-th column of the covariance matrix of the 

vector CeCar),eCaj),j E [k), Denote by M L ,. the determinant 
of this matrix. Then 

-Lie 
It may be shown that M L,. is bounded from the below by 

Moo 
a constant C2 > 0 independent of k. Hence, 

(10) 

Further, according to the procedure C 4), we have 

+00 

. 2~ J Uk(ty'sk(an ·) + fih(a n ·)) exp{ _;2} dt. 
-00 
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Consequently, Ukr is a nondecreasing function of sk(ar , . ) 

and a nonincreasing function of mk(a r ,')' By tilis and (9), 
(10),we get 

(11) 

-00 

where Cs = min {Cl, C2}, D ~ is a certain constant for which 
Imk(an·)1 ~ ma~ If(x)1 + c~ = D~ with probability exceed

xEA 
ing (1 - ~). 

On the other hand, if k -+ 00, then there exists at least 
one point a, for which nf -+ 00. Therefore, as it follows by 
Lemma, Sk( al,' ) -+ 0 as k -+ 00 and, consequently, Ukl < 8 
for all k large enough. But if (11) is held, then, according to 
the definition of algorithm (4), inequality Ukl < 8 is possible 
only for bourided nf. The obtained contradiction shows that 
the assumption lim n~ < 00, yielding (11), is incorrect. 

k-+oo 

Now it will be shown that if nf -+ oo,then wf(ai,' ) -+ 1, 
while tvj(ai") -+ 0 for j =f. i. Indeed, denoting by Mfok(i) the 
cofactor of the element in the i-th row and the i-th column of 
M-Lk . t M--.Lk - M-Lk 0"2 M-Lk - 1 (.).,C -.. H 

00 , we ge Oi - 00 - k 00 Z .Lor rOD - rzz' ence, n i 

Analogously, it may be shown that wj (ai, .) -+ 0 as 
k -+ 00 for j =f. i. Thus, for all k > ]{~l large enough 
min wf(ai,') > 1 - ~1 with probability exceeding (1-~). 

i=l,Lk 

Following the ideas used to prove the theorem 5.4 in Zilinskas 
(1986), it may be shown that for any ai E A and k > ]{(~, 8d 
l11h(ai,') - !(ai)1 < 81 with probability exceeding (1 - ~). 
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The latter inequality implies P{IYOk - mi£.f(x)1 < 8d -+ 0 as 
xEA 

k -+ 00. The theorem is proved. 

3. Construction. of the modified algorithm. As 
mentioned above, a minimization algorithm (1) is rather com
plicated from the computational point of view because of a 
matrix inversion procedure. To avoid these difficulties, the 
more simple formulae of the parameters mk, Sk may be used. 
A theoretical support for such a substitution follows from the 
axioms, basing the. statistical model, presented in Zilinskas, 
Katkauskaite (1987) and Zilinskas et al. (1987). Some axioms 
imply the formula of a mean value (2). Refusing of them (no
tice, that they are less justified), one can get a more simple 
expression than (2)-the weighted mean extrapolator 

k 

mk(x,xi,zi,i = l,k) = Lvf(x,xj,j = l,k)Zi' (12) 
i=1 

where vt(x,. )-continuous weight functions, satisfying the fol
lowing conditions: 

k ""k .-Cl. L Vi (x, Xj'] = 1, k) = 1, 
i=1 

C2. v f ( x, X 1 , ... , x k) = v; ( x, X 1, ... , x j -1 , xI, x j + 1, ..• , x I-}, 

Xj, Xl+1, ... , Xk),p = i for'j =I i, 1=1 i; p = j for i = 1; 

p = 1 for i = j. 

The additional assumptions imply a more specific form 
of weight functions (see Katkauskaite, 1986): 
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where dk(X, Xi) are the monotonically decreasing functions of 
Ix - xii. Further the extrapolator m~(x,· ) will be considered 
for which 

The extrapolator m Z ( X, .) generalizes the well known 
Shepard's formula applied in the extrapolation under exact 
observations. (see Shepard, 1965; Farwig, 1986; F:rank, 1982). 

For the estimate of a conditional variance Sk ,the following 
formula wiil be used 

k 

sZ(x,xi,i = 1,k) = roo - Lv~(x,xj,j = 1,k)roi , 
i=l 

introduced in Zilinskas, Katkauskaite (1987) and Zilinskas et 
al. (1987). 

Consider the asymptotic properties of mkex, . ), skex,' ) 
on a discrete set A. 

Theorem 2. If Ck --:+ 0, nf -+ 00, i = 1, L when k -+ 00 

then for any ai E A and Xj E A,j = 1, k 

mkCai,Xj,Zj,j = 1,k) -+ I(ai) (mod P), 

sZ(ai,Xj,j = 1, k) ~ O. 

Proof. Really, if Ck -+ O,nf -+ oo,i = 1,L,then by the 
law of large numbers it follows that 

-*( . -k) ~ (la; - xjl + Ck)-' 
m k ai, x j, Z j ,J = 1, = L...J k Zj = 

= [n~ + L 
.,p,hi 

"pEXk 

j=l E (la; - xpl + 'Ck)-l 
p=l 

(la i -:: I +Ck)-']-l LZjt 
jEI~ 
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+L 

Analogously, as TOO = Tii ,then 

sk(ai,Xj,j = l,k) = Tii - L V;Cai,Xj,j = l,k)Tip = 
xpEXk 

= Tii· (1 - nfvf(ai, Xj,j = 1, k)

- L v;(aj, Xj,j = 1, k)Tip. 
xp€Xk 
Xp 'Fai 

69 

Further, since under the assumptions of the theorem 
v7(ai,·) -+ ;~, v;(ai'·) -+ 0 for xp -I ai ,then si;(ai,·) -+ 

• 
-+ 0, k -+ 00. The theorem is proved. 

Substituting the parameters mk, Sk of the algorithm (1) 
by their estimates mi;, si; ,one can get the modified algorithm. 
Due to Lemma and Theorems 1 and 2, the ~tter algorithm is 
convergent in probability on a discrete set A. 
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