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Abstract. This paper presents model-based forecasting of the Lithuanian education system in the
period of 2001–2010. In order to obtain satisfactory forecasting results, development of models
used for these aims should be grounded on some interactive data mining. The process of the devel-
opment is usually accompanied by the formulation of some assumptions to background methods or
models. The accessibility and reliability of data sources should be verified. Special data mining of
data sources may verify the assumptions. Interactive data mining of the data, stored in the system
of the Lithuanian teachers’ database, and that of other sources representing the state of the edu-
cation system and demographic changes in Lithuania was used. The models cover the estimation
of data quality in the databases, analysis of the flow of teachers and pupils, clustering of schools,
the model of dynamics of the pedagogical staff and pupils, and the quality analysis of teachers.
The main results of forecasting and integrated analysis of the Lithuanian teachers’ database with
other data reflecting the state of the education system and demographic changes in Lithuania are
presented.
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1. Introduction

Forecasting models of complex social or state systems are usually based on the analysis
of a great amount of information by using suitably adjusted methods. Selection of the
methods and parameters of models is usually accompanied by the formulation of some
hypotheses. Another origin of hypotheses is a limited possibility of accessing the neces-
sary data as well as insufficient reliability of data.

Usually data mining tasks involve forecasting of some variables (Han and Kamber,
2000). In this paper, we discuss a general scheme of interactive data mining in the data
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sources that may verify the assumptions and ensure the construction of well-founded
forecasting models. Moreover, we apply the general scheme of special data mining of
the data stored in the system of the Lithuanian teachers’ database, pupils’ database, and
that of other data sources representing the state of the education system. The data on
demographic changes in Lithuania were also used.

The models developed cover the estimation of data quality in the databases, analysis
of the flow of teachers and pupils, clustering of schools, the model of dynamics of the
pedagogical staff and pupils, and the quality analysis of teachers. The paper presents the
items of forecasting and quality analysis more in detail.

As a result, model-based forecasting of the Lithuanian education system in the period
of 2001–2010 has been performed. The results of the investigation discovered significant
problems that may be faced in the future by the state education system: redundancy of the
pedagogical staff for some subjects and for some regions (especially, in primary schools).

This paper is organised in the following way. In Section 2, the quantitative forecasting
and assessment models of education system are presented. In Section 3, a general scheme
of the interactive data mining from different sources is discussed. In Section 4, some
results are presented for the case of the Lithuanian education system.

2. Models of the Education System

Let us consider the process of model constructing by the example of the Lithuanian edu-
cation system, a schematic model of which is presented in Fig. 1.

The model is complicated, therefore we will expose only a small part of its features
in this paper.

The aim of forecasting models was to evaluate the evolution of the state education
system in Lithuania in the nearest future. A continuous reduction of birth rate in the state
requires to be ready for future problems.

The main parts of forecasting models are as follows:
• pupils’ number forecasting models;
• teachers’ number forecasting models;
• models for clustering of schools;
• models that evaluate the teachers’ qualification and pupil’s progress.
All these models are interrelated: e.g., the teachers’ number depends on the pupils’

number on the types of schools; the pupils’ progress depends on the quality of teachers
and so on.

Fig. 1 illustrates the pupils’ flow. The majority of children from the birth flow comes
to the 1-st forms. During the school year a part of them drops out of the school.

The flow of teachers comes to a school from universities and colleges. They may leave
a school temporarily or permanently.

Schools, teachers, and pupils are characterised by some quality indices (see Fig. 1),
therefore their values may be included in the forecasting models.
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Fig. 1. The flows of pupils, teachers, indices of teachers’ qualification and pupils’ progress, and school charac-
teristics.

2.1. Modelling of Pupils’ Number

The pupils’ number models include:
• forecasting of pupils’ input flows into the first forms on the base of analysis of birth

rate data;

• forecasting of dropped out pupils’ flows;

• forecasting of the distribution of these flows in various administrative regions.
Let us introduce the notation:
yik is the number of pupils in the i-th region (i = 1, ..., m) and in the k-th form

(k = 1, . . . , 12), where m is the number of regions;
y+

ik is the number of pupils that replenished the corresponding form;
y−

ik is the number of pupils that left the corresponding form.
The values yik, y+

ik and y−
ik are time dependent, therefore they are denoted as the

functions of time t(t = t1, ..., tp), where p is the number of years in the model.
Then the balance equations for the i-th region and the k-th form are:

∆yik(t) = yik(t) − yi,k−1(t − 1) = y+
ik(t) − y−

ik(t),

where ∆yik(t) is the change of the pupils’ number in the t-th year.
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Fig. 2. The number of pupils coming to the 1-st forms, and the number of children born 7 years ago.

The number of pupils in the first forms yi1(t) mainly depends on the birth number
bi(t − tb) before tb years, therefore:

yi1(t) = kb
i bi(t − tb),

where the coefficient kb
i describes the part of new-borns that come to school after tb years.

The corresponding equations for all state numbers may be obtained if we use the
summary values:

yk(t) =
m∑

i=1

yik(t), b(t) =
m∑

i=1

bi(t). (1)

Fig. 2 illustrates the main idea of the pupils’ forecasting model: the input flow of
pupils may be evaluated using demographic birth-rate data sources.

Data mining discovered that, in the whole state the values of coefficients may be
evaluated as equal to kb = 0.971 and tb = 7.3. In other words, 97.1% of all new-borns,
that were born 7.3 years ago, attend the first forms (in average). According to the analysis
of corresponding data these characteristics are stable during a long time period.

In an analogous way, changes in the pupils’ number in the t-th year ∆yik(t) were
evaluated.

2.2. Modelling of the Teachers’ Number

The forecast is usually mined by two contrasting general approaches: the formal extra-
polating trends or the functional modelling and simulation based on the nature of data
(Brauer and Castillo-Chavez, 2001). The first one treats data formally as statistical num-
bers, so it is impossible to take into account the known, evolving in time, factors that
impact on the data. On the other hand, the trends may be simply implemented.
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The second approach is based on the analytic model, which usually uses differential
equations or statistical simulation, and the data are used to mine parameters of the model
or to verify assumptions on the model. However, sometimes it is difficult to construct a
complex model, to evaluate a great number of parameters, or to verify assumptions due
to the insufficiency of data. In such cases, we have introduced a mixed approach in which
functional models involve factor trends as parameters. Let x(t) be the vector-function of
forecasted values at the moment t, k−0 be the previously known values of parameters
whose forthcoming values will be forecasted as trends k(t, k−0), c be the vector of stable
parameters and y(t) be the vector of factors to be forecasted by another separate model.
Then the model is as follows:

x(t)=F
(
t, X(t−1), k(t, k−0), c, y(t)

)
, where X(t−1)=

(
x(t−1), . . . , x(0), x−0

)
.

Therefore we have three types of parameters:
• k(t, k−0) are forecasted by trends;
• y(t) are evaluated by modelling or simulation;
• c values are supposed to be stable.
The examples of such an approach in the construction of teachers’ job market forecast

are presented in the subsection below.

The necessary teachers’ number forecast
The simple model (2) presented in this sub-subsection is built on the basis of teachers’

job market. It is suitable to forecast the number of necessary employees in some other job
markets.

It is important for education officials to forecast the amount of teachers P (t) necessary
to serve pupils. The trends of P (t) are not suitable for forecasting because the amount
of teachers obviously depends on the number of pupils as well as on many other edu-
cation policy factors and social circumstances. The number of pupils y(t) may undergo
essential changes and it is impossible to forecast y(t) by trends. Therefore the number
y(t) is forecasted by model (1) described in Section 2.1. The education policy factors and
social circumstances are hardly to be described and evaluated. Therefore we have applied
the assumption that the number of teachers is proportional to the number of pupils, and
the ratio pupils/teachers k(t) that slowly changes for most education subjects. The ratio
accumulates all the social and educational policy factors and may be often forecasted by
the trends.

So we have proposed a simple model:

P (t) = y(t)/k(t), (2)

where P (t) is the necessary number of teachers for some education subject, y(t) is the
number of pupils in the forms, in which the subject is taught, k(t) is the ratio y/P for the
subject. The ratio k(t) is forecasted by the regression trends based on former data.

Model (2) lies between two traditional approaches: the forecast by trends and by
modelling. Some trends of the ratio pupils/teachers, mined from the Lithuanian teach-
ers’ database, are presented in Fig. 3.
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Fig. 3. The mined and forecasted ratio pupils/teachers for some education subjects.

The trends in Fig. 3 are smooth except for the ratio pupils/(teachers of informatics).
So, the proposed assumption of the simple model does not apply to the informatics subject
due to a fast development of teaching this subject. The ratios found were used to forecast
the necessary number of teachers.

The unsatisfied teachers’ demand/surplus forecast
Like model (2), model (3), presented in this subsection, is built on the basis of teach-

ers’ job market. It is universal, too.
The future supply and demand in the teachers’ job market depends on teachers’ flows,

presented in Fig. 1, as well as on the necessary teachers’ numbers evaluated in the pre-
vious subsection. An assumption has been made that the main factor to leave a teacher’s
job is age. The incoming flow into the market consists of mainly young teachers, and we
have supposed to forecast this flow by the trend.

Let us describe a model of number D of teachers working in schools or looking for
a teacher’s job. In order to average variations of different year numbers, the teachers of
contiguous age are grouped: x0 is the number of teachers under 24; x1 is the number of
teachers of age 24 to 27 inclusive; x2 − x11 is the numbers of teachers in the successive
groups, spanning age ranges of four years; x12 is the number of teachers above 67. The
data show that the ratio xi(t)/xi−1(t − 4) is relatively stable, with an exception of two
first groups x0 and x1 because their size is determined by the income flow and may be
forecasted by extrapolating trends.

So we have such a model:

xj(t) = f(t, x−0j), j = 0, 1;

xi(t) = cixi−1(t − 4), i = 2, 12; (3)

D(t) =
12∑

i=0

xi(t).

Here t is the year, f is the function that extrapolates the size of two youngest groups on
the basis of known former data x−0, ci is the coefficient of teachers’ transition from the
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(i − 1)-th group to the i-th group. The coefficient ci is evaluated from the previous sizes
of teachers’ groups. It depends on incoming and outgoing teachers’ flows and may be
slightly more than 1 for some groups. So, the recurrent equations (3) evaluate the number
D(t) of teachers, working or looking for a job, under the assumption that tendencies of
teachers’ training and flows will remain.

The number of active teachers of some speciality or qualification may be forecasted
by model (3), depending on the nature of x−0 data used.

If the difference between the necessary and active teachers’ number d(t) = P (t) −
D(t) is positive, then there is an unsatisfied demand, otherwise, there is a surplus in
teachers of the considered speciality or qualification.

2.3. Models of School Quality Evaluation

The goal of this section is to develop a method that allows us to qualitatively compare
the schools from the standpoint of “city – rural district” or “gymnasium – secondary
school”. In most cases, education in gymnasia is of a higher quality as compared with
that in usual secondary schools. This may often be concluded when comparing education
in city schools with the rural district ones. However, how great are these differences? In
addition, it would be useful to get some knowledge of the influence of dynamics of the
qualification, age, and number of teachers on the state of school. Such an analysis, taking
into account the time factor, gives a possibility to observe the changes of differences of
schools and to look for the reasons of such a change.

The research is based on 19 schools from the Panevėžys city and 9 schools from the
Panevėžys district. In the tables and figures of this section, the schools from the city are
labelled by numbers from 1 to 19, and that of the district are labelled by the numbers
from 20 to 28. There are two gymnasia (numbers 1 and 2). The remaining schools are the
secondary ones.

The analysis covers teachers that work with pupils of 5–12 forms. 1997/1998 and
1999/2000 school year data were analysed. Here the school year is defined by two num-
bers of years: the school year begins on September 1 of the first year, and ends in June of
the second year.

The following indicators were selected to describe a school:
• x1 – percent of teachers of the highest qualification (degree of a methodologist or

expert);

• x2 – percent of teachers that have not a desired qualification (i.e., who don’t do the
job they were trained for);

• x3 – percent of teachers whose age is over 55 years;

• x4 – percent of teachers who are younger than 35 years;

• x5 – percent of the annual increase in the number of teachers.
In fact, the indicators describe a school from three points of view: x1 and x2 show the

qualification of teachers, x3 and x4 indicate their age, and x5 characterises the dynamics
of the number of teachers.
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For each school, the values of the n-dimensional vector Xi = (xi1, xi2, . . . , xin),
i = 1, v, may be computed from the databases. In our case, v = 28 and n = 5, because
each school among 28 is described by five indicators. The actual scales of indicators are
different. Therefore, it is necessary to normalise them before a further analysis: eval-
uation of the mean value xj and variation σ2

j of each indicator xj using v its values;
normalisation of the values xij of an indicator using the formula (xij − xj)/σj .

We suggest analysing visually the normalised vectors X1, . . . , Xv by means of the
mapping methods and artificial neural networks. It is necessary to make some compres-
sion of data dimension from n to two. We apply below the self-organising map (SOM),
proposed by Kohonen (2001), and its combination with Sammon’s (1969) mapping. Ad-
ditional details on the SOM, Sammon’s mapping and their combination are presented in
the papers by Dzemyda (2001) and Dzemyda and Kurasova (2002).

Any neurone in the rectangular SOM is entirely defined by its location on the grid
(number of row i and column j) and by the codebook vector mij = (m1

ij , m
2
ij , . . . ,

mn
ij) ∈ Rn. After the learning process, the SOM is self-organised and n-dimensional

input vectors X1, . . . , Xv are mapped – each input vector is related to the nearest neuron
(so-called neuron-winner), i.e., the vectors are distributed among the elements of the map.
Some elements of the map may remain unrelated with any vector from X1, . . . , Xv , but
there may occur an element related with some input vectors. In fact, using the SOM-
based approach, we can draw a two-dimensional table with cells corresponding to the
neurons. The cells corresponding to the neurons-winners are filled with the order numbers
of vectors X1, . . . , Xv. Some cells may remain empty. One can visually evaluate the
distribution of vectors X1, . . . , Xv in the n-dimensional space Rn in accordance with
their distribution among the cells of the table.

The table, filled according to the distribution of vectors X1, . . . , Xv among the cells
of the SOM, does not answer the question, how much the vectors of the neighbouring
cells are close in the n-dimensional space. Therefore, the next stage is to analyse the
codebook vectors corresponding to non-empty cells of the table (SOM) by using Sam-
mon’s mapping, i.e., to visualize the relative distances between the codebook vectors
corresponding to the neurons-winners. In the case of such combined mapping, the neural
network performs some sorting (clustering) of data, and Sammon’s algorithm presents
the results visually to gain an additional insight.

The results of analysis are presented in Tables 1 and 2 and Figs. 4 and 5: Table 1 and
Fig. 4 provide the results of the 1997/1998 school year, and Table 2 and Fig. 5 provide
those of the 1999/2000 school year. Tables 1 and 2 contain the results of application of the
SOM. In both cases there are square tables (four rows and four columns) containing order
numbers of schools. The schools in the nearer cells of tables are more similar, and those
in the farther ones are more different. The results in Tables 1 and 2 are easier perceived
if we analyse them jointly with those in Figures 4 and 5 where Sammon’s mapping is
applied to the results of the SOM.

Let us note (see Figs. 4 and 5) that the schools of the Panevėžys city and district form
several clusters in both school years.

1997/1998 school year. The upper side of Fig. 4 reveals the cluster of city schools with
an exception of one district school (23) falling into this cluster: (1, 2, 4–8, 10–12, 14–17,
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Table 1

Distribution of the Panevėžys city and district schools on the 4×4 SOM: 1997/1998 school year

3, 27 20, 24, 26 21, 25

18, 28 9, 13, 22

19, 23 14 10, 12

2, 4, 8, 15, 16, 17 6, 11 1, 5, 7

Fig. 4. Results of the combined mapping: distribution of the Panevėžys city and district schools in 1997/1998
school year.

Table 2

Distribution of the Panevėžys city and district schools on the 4×4 SOM: 1999/2000 school year

20 3, 28 18 21, 25, 27

22, 24 13 23 19

7, 10 4, 9, 26 8, 14

1 5, 12 6, 11, 15 2, 16, 17

Fig. 5. Results of the combined mapping: distribution of the Panevėžys city and district schools in 1999/2000
school year.
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19, 23). This cluster may be visually divided into two subclusters (2, 4, 8, 14–17, 19, 23)
and (1, 5, 7, 10, 12): secondary schools of the first subcluster belong to the “attraction
zone” of the first gymnasium (1) and the secondary schools of the second one are related
with the second gymnasium (2). Two city schools (6, 11) here are in the junction of these
two subclusters. In the second and third clusters (3, 18, 20, 24, 26–28) and (9, 13, 21, 22,
25), district schools dominate, however these clusters contain city schools, too.

1999/2000 school year. In Fig. 5 we observe two clusters of schools. In the upper
side of Fig. 5 we observe a cluster of city schools where there are both gymnasia. This
cluster contains only one district school (26). In comparison with the 1997/1998 school
year, relations of the first gymnasium (1) with other schools became weak: in Table 2
as compared with Table 1, the first gymnasium is located in a separate cell. Like in the
1997/1998 school year, this cluster may be divided into two subclusters that are zones of
attraction of two gymnasia: (1, 4, 5, 7, 9, 10,12, 26) and (2, 6, 8, 11, 14–17).

The second cluster (lower side of Fig. 5) contains both city and district schools, but
district schools dominate here. It also may be visually divided into two subclusters: (3,
13, 20, 22, 24, 28) and (18, 19, 21, 23, 25, 27). However, these clusters are closer as
compared with the second and third clusters in the 1997/1998 school year.

When comparing 1997/1998 and 1999/2000 school years, we observe that the conclu-
sions on the differentiation of schools according to their location (city or rural district) or
to their status (gymnasium or secondary school) remain. However, if we consider a sep-
arate school, we notice changes in its situation among other schools, and these changes
are sometimes essential.

The results above allow suggest a conclusion that the analysis of schools by using
artificial neural networks gives a possibility to get quantitative estimates of differences
among schools, characterised by the set of five indicators. The experiments on the basis
of data about Panevėžys schools proved the possibility of a qualitative comparison of
schools from the standpoint “city – rural district” or “gymnasium – secondary school”.
Moreover, bearing in mind the results of such an analysis, it is expedient to solve an
inverse problem: to determine a preferable set of indicator values that may try to reach a
not leading school.

The method, proposed in this section, is universal. It is independent of the selected set
of indicators. This opens wide possibilities for improving the existing system of indicators
or developing a new one.

2.4. Model of Staff Quality Evaluation

We present here an example of data mining from the database in order to gain knowl-
edge on a related phenomenon. The approach is often used in statistics, e.g., the level of
purchase of consumer goods is an informative indicator of income.

It is common to evaluate the staff quality by formal indicators, such as educational
qualifications, professional ranks, and the previous experience. Such data are in the teach-
ers’ database. However, objective indicators of the staff quality (e.g., examination results
of their pupils) seem to be more informative.
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In the model of staff quality evaluation, the results of state school-leaving exams were
used as the base of objective indices. The object of evaluation was the staff that teaches
some subject in the last two forms. Integral results of the exams of each municipality have
been analysed.

The municipality was regarded as an independent statistical variable, and the results
of exams in a considered subject as well as professional ranks of corresponding staff were
regarded as dependent random values.

The results of the state exam in mathematics (Zabulionis, 2000) are presented in Fig. 6
and Fig. 7. The axis y represents the percent of pupils that score more than 74. In Fig. 6,
the axis x represents the percent of teachers that have the highest professional ranks
(methodologists and experts). In Fig. 7, the axis x represents the percent of mathemati-
cians above 45 in two senior forms. A marker in the chart corresponds to one municipality.
The statistical regression trendlines are created by MS Excel. Here the interactive actions
may be useful because the formal automatic criteria of the best fitness of trendlines some-
times fail in the choice of the trend type.

In the case of the reasonable teachers’ assessment, the professional ranks should be
correlated with the objective indicator used (integral exam results in different municipal-
ities). However, a confusing result was obtained: the weak relation between the formal
teachers’ indicators and the objective indicator. R2 is the coefficient of determination. In
Fig. 6 and Fig. 7, the coefficient R2 is rather low to conclude that the trends are statisti-
cally reliable.

Two conclusions may be done:
• the assessment system of teachers is not proper; the significant increase of the

higher professional ranks in recent years (Dzemyda, Gudynas et al., 2001) may
indicate the adaptation of teachers to formal requirements;

• the pupils’ exam results is not a proper measure of teachers’ quality.
The phenomenon (see Fig. 6 and Fig. 7) needs an intense study.

Fig. 6. The impact of professional ranks. Fig. 7. The impact of age.
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Fig. 8. The flow-chart of the interactive data mining for constructing the forecasting models of the state
education system.

3. Interactive Data Mining for Constructing the Models

The interactive data mining scheme for the forecasting models of the Lithuanian state
education system is illustrated in Fig. 8. The data sources here consist of a teachers’
database, a pupils’ database, and some additional data sources containing information
about the demographic situation, university graduates, etc.

During the construction of models, the researcher forms models interactively, suggests
assumptions, and finally decides on the data mining results.

The main assumptions used in the interactive data mining may be divided into the
following groups:

• adequacy of the model to the data structure;
• accessibility, quality and reliability of the data used;
• stability of some values or ratios of values (for example, see Section 2.1).

4. Performance Results: the Case of the Lithuanian Education System

The forecasting scheme used for the Lithuanian education system is presented in Fig. 9.
The total pupils’ number forecast is presented in Fig. 10. Here we see that the number

of pupils in primary schools (1–4 forms) dramatically decreases. As we can see from the
figure the wave of low birth rate will influence the pupils’ number of higher forms in the
near future.

The forecast of necessary teachers’ numbers P (t) is gained, using the discovered
pupils’ numbers y(t) and mined pupils/teachers ratios k(t) (see model (2)). Obviously,
the forecast of model parameters is not exact. Thus, we use two forecasting scenarios:
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Fig. 9. The forecasting scheme used for the Lithuanian education system.

Fig. 10. Pupils’ number forecast.

the first one uses the forecasted parameters (see Fig. 3), the second one assumes that the
parameters remain constant after the 2002/2003 school year. In Fig. 11, the first forecast
is presented by marked continuous lines, and the second one is presented by dashed lines.

Model (3) was used for the forecast number D(t) of working and looking for a job
(active) teachers. The transition coefficients cj , j = 2, 12 and trends of size for two
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Fig. 11. Forecast of the necessary numbers of teachers.

Fig. 12. Forecast of the number and demand for mathematicians.

youngest teachers’ groups xj(t) = f(t, x−0j), j = 0, 1 were mined from the Lithuanian
teachers’ database. The unsatisfied demand/surplus of teachers d(t) = P (t) − D(t) is
also important in education policy. The number Ds(t) of professional specialists was
forecasted by the same procedure (3). The corresponding unsatisfied demand/surplus of
specialists ds(t) = P (t) − Ds(t) was also forecasted.

E.g., in Fig. 12, the forecast number of mathematicians and their demand is presented
for instance. It is interesting to note that only professional mathematicians may be en-
gaged as teachers in 2010. The forecast for all the rest subjects is presented in (Dzemyda,
Gudynas et al., 2001).
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5. Conclusions

The paper proposes an approach of data mining in the construction of quantitative fore-
casting and assessment models in the state education system.

In order to obtain satisfactory forecasting results, the models used for these aims
should be grounded on some interactive data mining. Process of constructing is usu-
ally accompanied by the formulation of some assumptions to background the methods or
models.

The main quantitative models developed are as follows: pupils’ and teachers’ number
forecast, teachers’ demand forecast, school and its staff quality evaluation.

The models are applied to analyse the Lithuanian teachers’ database and data from
other sources representing the state of the education system and demographic changes.
The analysis enables us to forecast a significant reduction in the teachers’ demand. The
main reason for this phenomenon is that the number of pupils dramatically decreases in
primary schools at present. The wave of low birth rate will influence the pupils’ number
of higher forms in the near future. The method allowed us to get quantitative estimates of
teachers’ demand or surplus for various subjects. The discovered knowledge serves as a
basis for evidence-based policy of the Lithuanian education system.
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Kiekybiniai prognozavimo ir vertinimo modeliai švietimo sistemoje

Vydūnas ŠALTENIS, Gintautas DZEMYDA, Vytautas TIEŠIS

Straipsnyje pasiūlyti kiekybiniai prognozavimo bei kokybės vertinimo modeliai švietimo sis-
temoje. Modeliai panaudoti Lietuvos švietimo sistemos analizei ir prognozavimui iki 2010 met ↪u.
Konstruojant modelius formuluojamos prielaidos apie ši ↪u modeli ↪u savybes bei parametrus. Šios
prielaidos patikrinamos interaktyviu būdu analizuojant žinias, išskirtas iš Lietuvos mokytoj ↪u bei
mokini ↪u duomen ↪u bazi ↪u ir kit ↪u šaltini ↪u, turinči ↪u duomen ↪u apie švietimo sistem ↪a bei demografinius
reiškinius. Modeliai apima mokytoj ↪u bei mokini ↪u sraut ↪u analiz ↪e ir prognoz ↪e, mokytoj ↪u persona-
lo kokybės ↪iverčius ir mokykl ↪u klasifikavim ↪a. Pateikiami minėt ↪u duomen ↪u šaltini ↪u integruotos
analizės bei prognozės duomenys, atspindintys švietimo sistemos būkl ↪e bei demografini ↪u pokyči ↪u

↪itak ↪a.


