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Abstract. The paper considers the analysis technique of the 
general and individual properties of aggregative specifications. The 
method is based on constructing a set of axioms describing both 
the aggregate specifications and the properties of the model under 
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Introduction. Application of the aggregative approach 
and the method of control sequences for complex systems 
formaliz·ation and simulation is considered in (Pranevitchus, 
1982). With the given approach the system under investiga­
tion is presented as a set of interacting piece-linear aggregates 
and the method of control sequences is used in the aggregative 
specification. The given method is used in creating systems of 
automation of aggregative simulation model building (Gorelik 
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and Pranevitchus, 1985; Pranevitchus and Janilionis, 1985). 
It is shown in (Pranevitchus and Chmieliauskas, 1983) 

that aggregative models can by used not only for building ag­
gregative symulation models but for their correctness analysis 
as well. The method of reachable states is used for analy­
sis. The given method is widely applied in analyzing com­
puter network protocol correctness (Bochmann, 1987). In the 
given case the reachability graph is generated and later ana­
lyzed. Having completed the analysis one can determine such 
general properties as 1) deadlock freeness, 2) completeness, 
3) termination or cyclic behavior, 4) boundednes, etc. The 
invariant approach has been created for the investigation of 
the individual properties of aggregative models (Pranevitchus 
and Panevezys, 1988). An invariant is an assertion describ­
ing correct system functioning 'and remaining true in spite of 
the eve,nts taking place and of the transition from one state 
to another. The trueness of the invariant should be proved 
for every fragment related to the event. The c~rrespondence 
between the aggregative model and the conceptual one can be 
checked by this method. 

Special programs must usually by written for the analysis 
of the general and individual properties of aggregative mod­
els, for instance (Pranevitchus, Chmieliauskas and Pilkaus~s, 
1985). The given paper will present an aggregative model 
specification analysis approach based on constructing a set Qf 
axioms consisting of two parts. One of part of the axioms cor­
responds to the aggregative specifications, and the second part 
describes general and individual properties of the aggregative 
model under investigation. The consistency of the set of ax­
ioms created is checked by the resolution method using the 
logical programming language PROLOG. 

1. Representing aggregative specifications by 
means of logical expressions. The given paragraph will 
deal with the predicates describing the aggregate state and 
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the logical formulae, describing the operators of transitions 
and outputs resulting from internal and external events. 

The piece-linear aggregate stat~ at given moment is de­
termined by continuous and discrete coordinates: 

state=(WI, ... ,Wf, dI, ... ,dn ), 

where WI, ... , W f - continuous coordinates, and d I , • .• , dn -

discrete coordinates. 
The changes of the aggregate state result from occur­

rence of external and internal events. An output signal can 
by generated simultaneously with the event. 

Therefore the following situations are possible: 
1) an external event can by followed by a change of coordinates 
and an output signal can be generated; 
2) an external event can by followed by a change of state 
without generating an output signal; 
3) an internal event can by followed by a change of coordinates 
and an output signal is generated; 
4) an internal event can by followed by a change of coordinates 
without generating an output signal. 

Onset of an external event is linked with the arrival of an 
input signal at the corresponding input pole of the aggregate. 
Additional variables are introduced to describe the occurrence 
of external events: "input_p" - input pole and "input_v" -
the value of the input signal. 

Arrival of the input signal at the ·k-th pole of the aggre­
gate Ag having. the input signal value" sig" when the aggregate 
is in state" state_ Ag= (WI, ... , W f, dI , ••• , dn )" is described 
by a logical expression: 

inpuLp = k A. inpuL v = sig 

A. state_Ag = (WI, ..• , W f, d I ,.··, dn). 

Let us determine the predicate QX_name(input_p, 
JnpuL v, WI, ... , W" dI , ..• , d f) which indicates that with 



258 Application of logical programming 

the signal arrival at the input pole the variables "inpuLp", 
"inpuL v" of the aggregate marked "name" are in the state 
"state=( 'WI, ... , 'WI, d I ,···, dn )". 

Then the above given logical expression is described by 
the following predicate: 

QX_Ag(k, sig, 'WI, ... , 'W I, d I ,···, d I)· 

Similarly let the QY _name( output_p, output_ v, 'Wll ... , 
'W I, dI , ... , d I) represent the predicate describing the condi­
tion on which a signal of the value "output_v" is generated 
on the "output_p" pole of the aggregate marked "name". 

The above situation will be represented by logical for-
mula: 

QX_name(in'puLp, input_v, 'WI, ... ,wI, dI, ... ,dn)A 

P('WI, ... , 'WI, dI , ... , dn) ~ 

QY_name(outpuLp, outpuLv, next_wI, ... , nexL'WI, 

next_d l , ... ,next-dn), 

here next_ 'WI, ... ,next_ 'W I, next_dI , ... , next_dn are new 
values of the state coordinates and P( 'WI, ... , 'W I, d I , ... , dn ) 

the transition condition to be discused later. 
The corresponding continuous coordinate having the va­

lue 1 is the condition for an internal event occurrence: 

Wi = 1 A state = (WI, ... , 'WI, dI , ... , dn). 

Let this expression be represented by the predicate: 

Similarly 'the situations 2, 3, 4 will by represented by 
means of logical formula respectively: 

QX_name(input_p, input_v, 'WI, ... ,'Wf, dI, ... ,dn)A 

P('WI, ... , wf, dI , ... , dn) ~ 

QW _name(next_ WI, ... ,next_ 'W I, next_dI , ... , next_dn), 
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QW -name(Wb ... ' Wi-I, 1, Wi+b ... , Wj, d l , ... ,dn )/\ 

P(WI, ... ,Wj, dlj ... ,dn ) ~ 
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QY _name(output_p, output_v, next-:-WI, ... ,next_Wj, 

next_dl , ... , next_dn ), 

QW_name(Wl, ... ,Wi_l, 1, Wi+I, ... ,Wj, dl, ... ,dn )/\ 

P(WI, ... ,Wj; dl, ... ,dn ) ~ 

QW _name(next_wI, ... ,next_wj, next_dl , ... ,next_dn ), 

here input_p = p, pEP, output_p = 0, 0 EO, P and 0 a set 
of input and out'put poles of the aggregate marked " name" . 

In the aggregate system the aggregates are connected by 
communication channels. The communication of the channels 
and the aggregates system is described as ,the following form: 
1) channel number; 2) an aggregate's name which generates 
an output signal on the "output_p" pole of the aggregate 

, marked "name_l", 3) an aggregate's name on which arrives 
an input signal on the "input_p" pole of the aggregate marked 
"name_2" . 

The logical formula for every channel representing the 
interface of two aggregates marked "name_l" and "name_2" 
acquire the following form: 

QY _name_l( output_p, output_ v, w~, ... ,W}l ' d~, ... , d~l) ~ 
QX_name_2(input_p, input_v, w~, ... , WJ2' d~, ... , d!2)' 

h I I dl dl 2 2 d2 _12 ere WI' ... , W j , l' ... , n ; WI'· .. , Wf' I' ... , an are con-1 1 . 2 

tinuous ,and discrete coordinates of the aggregate states 
"name_l" and "name_2" respeCtively;. 

The change of the state coordinates in the aggregate spec­
ification is described by the transition and output operators. 

Let us consider transition and output operators in detail. 
The description of these operators can comprise the following 
operations with the state coordinates: 
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1) dummy operator, skip, witch does not change the state 
coordinates. If the ratio Q describes the aggregate state, and 
( WI, ... , W j, dI , ••• , dn ) is the state coordinates vector, the 
logical formula describing the transition is represented as: 

2) assignment operator: 

where f( d I , ... , dn ) represents the change of the coordinate di . 

Next continuous coordinate next_wi E [0,1], j = 1, f. The 
logical formula describing the assignment operator follows: 

Q(WI,"" wI, d I , ... , dn ) ~ 

Q(next_wl,'" ,next_wj, next_dI , ... ,next_dn ). 

3) access operator has the following form: 
if Rl then if R2 then SI, 

else S2, 
else if R3 then S3, 

else S4, 
here SI, ... , S4 an assignment or a dummy operator Rl, ... , 
R3 - logical expressions. The above given access statement 
can be transformed into the following form: . 

if Rl 1\ R2 then SI, 
if Rl 1\ -,R2 then S2, 
if -,Rl 1\ R3 then S3, 
if oRl 1\ oR3 then S4. 

The access operator is represented by a logical formula as fol­
lows: 

Q( WI , ... , W j, dI , ••• , dn) 1\ Rl 1\ R2 --+ 

Q(next_wI"" ,next_wj, next_db'" ,next_dn ), 
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Q(WI,"" Wj, d l , ... , dn ) I\. Rll\. ,R2 -+ 

Q(next_wI,'" ,ne:id_wj, nexLd l , ... ,nexLdn), 

Q( wI, .. . , Wj, d l , ... , dn) I\. ,RII\. R3 -+ 

Q(next_wI,'" ,next_wf, next_dl , ... ,next_dn), 

Q(WI, ... , Wj, d l , .•. , dn ) I\. ,Rll\. ,R3 -+ 

Q(next_wI, ... , next_wj, next_dl , ... , next_dn), 
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As the above given access operators are used in every 
transition and output operator the transition condition P( WI, 

..• ,W j~ dl , •.. , dn ) represents logical expressions of the fol­
lowing type: . 

here n - is a number of logical expressions representing limi­
tations. of one or several coordinates. 

2. A set of axioms for validation problem solution. 
In the previous chapter a form of logical formula, describing an 
aggregative specification is discussed. For validation problem 
solution additional formulae for the description of the proper­
ties under investigation must be introduced. 

Investigation of general and individual properties is car­
ried out at the global state of the set of aggregates. The 
global state includes the states of all the aggrega.tes and is 
represented by the predicate: 

I I I I . 
Q_glob( WI' ..• , Wit' dl ,···, dni ' ... , 

m m dm dm ) 
WI , ••• , W 1m' I,·· ., nm ' 

here 'ni, ii, i = 1, m the number of discrete and continuous 
coordinates of the i-th aggregate respectively. 
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Specification properties are investigated on a set of states 
limited by the initial and final states, of the form: 

Q I b( 10 10 dIO dIO 
-g 0 WI'··· , Wit ' 1, ... , nl'···' 

mO mO dmO dmO) 
WI , ••. , W 1m' 1 , ... , 'nm ' 

Q I b( It It dlt dlt -g 0 WI,··· , Wit' l' ... , nl'···' 
mt mt dmt dmt ) 

WI , •.. , W 1m' 1 , ... , nm ' 

here the values of the initial and final states are denoted by 
indexes 0 and t respectively. 

The general properties under investigation are: 
1) Statistical dedlock freeness means that the system does not 
get into a state without output. In a dedlock state all the con­
tinuous coordinates equal zero. Dedlock state is determined 
by the predicate: 

Q_glob(O, ... ,0, dL ... , d~l ' ... ,0, ... ,0, dj, ... , d~m)' 

2) Termination means that reaching a presetfinal state is guar­
anteed. The final state has been defined above. 
3) Boundedness"means that with the functioning of the system 
the values of the discrete coordinates do not exceed the present 
intervals. The limitations for every coordinate are represented 
by the following logical expressions: 

ni' .. __ 

j~I dj E raj, bjl, i = 1, m, 

here a~, b~"- are the limits of the variations of the j-th discrete 
coordinate of the i-th aggregate. 
4) Completeness means that reception of all the possible mes­
sages is provided for in the specification. Non-feasibility of 
the completeness is represented by logical formula for every 
aggregate: 

QX_name_i(inpuLp, inpuLv, wL ... , wj;, di, ... , d~J/\ 
input_ v (j. X, 
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here ~ indicates that the message accepted does not belong to 
the set X; X is the set of the possible input messages. 
5) Absence of redundancy means that all the logical formulae 
of the specification are used in the specification analysis. 

The invariant approach is used in the investigation of the 
individual properties of the system (Pranevitchus and Pane­
V€zys, 1988). The invariant I represents the limitations of the 
global state coordinates and is of the form: 

I 
1= V p. 

i=l z, 

here Pi is the i-th disjunct representing limitations of one or 
several state coordinates, 1 is the number of disjuncts. 

3. Example of representing aggregative specifi­
cation by logical formulae. The alternating bit protocol 
specification including aggregative mathematical description 
and specification in the predicate logics langu~ge is presented 
below as an example of the use of logical representation of 
aggregative specification. 

The structural scheme of aggregative model is presented 
in Fig. 1. 

Aggregates and coordinates of aggregative model of the 
protocol are described below. 
Aggregate Al (sender). PSK (tm) is the number of the 
reserved asknowledgements, Bitl (tm) is the value of the al­
ternating bit in the last frame, that has already been sent out 
or formed, w( e~l' tm ) is the moment of the time at which the 
formation of the current frame is completed, w(e~2' t m ) is the 
moment of the time at which time-out over. 
Aggregate A2 (transmission media). Bit2 (t m ) is the 
value of the alternating of the frame/acknowledgement being 
transmitted, w( e~l' tm ) is the moment of the time at which 
the acknowledgement will be transmitted (i:e., it will arrive at 
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the sender), w( e~2' tm ) is the moment of the time at which the 
frame will be transmitted (i.e., it· wil~ arrive at the receiver). 
Aggregate A3 (receiver). Bit3 (t m ) is the value of the 
alternating bit in the last acknowledgement, KSK (t m ) is the 
number of the received frames, w( e~l' t m ) is the moment of 
time by which the acknowledgement will have been formed 
and sent out. 

1 I 12 
I 

~: I A1 
1 I A2 2-1 ~.:.::. .. ...; 

t 1 1 I I I 
! I -1 

Fig. l. Protocol aggregative scheme. 

Description of transition and output operators are de­
scribed below. 

Aggregate AI: 
1. A set of input signals : X = {x}, where x - input signal 
x = (B), in which B is the value of the alternating bit in the 
acknowledgement. 
2. A set of output signals: Y = {y}, where y - output signal 
y = (B), in which B is the value of the alternating bit in the 
frame being transmitted. 
3. A set of external events: E' = {e~}. 

4. A set of internal events : E" = {e~ l' e~ 2 }. 

5. Continuous component coordinate: 
W(t m ) = {w(e~l' t m ), w(e~2' tm )}. 

6. Discrete.component coordinate: 
v(tm) = {PSK(tm), Bit1(tm)}. 
7. Initial state: PSK(tm) = 0, Bit1(tm) 1, w(e~l,tm) 

1, w( e~2' t m ) = O. 
8. Transition and output operators: 
H(eD: 
if (x = Bit1(tm)) then Bit1(tm) = Bit1(tm); 

PSK(tm) = PSK(tm ) + 1; 
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H(e~l) : 
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w(e~l,tm) = 1; 
w(e~'2' tm) = 0; 

else w(e~l,tm)=I; 
w(e~2,tm) = 0; 

w(e~l,tm) = 1; 
w(e~2,tm) = 0; 

Y = Bit1(tm); 

w( e~l' tm ) = 1; 
w(e~2,tm) = 0; 

Aggregate A2: 
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1. A set of input signals: X = {Xl, X2}, where Xl - input 
signal Xl = (B), in which B is the value of the alternating 
bit in the frame being transmitted, X2 input signal X2 = (B), 
in which B is tlie value of the alternating bit in the acknowl­
edgement being transmitted. 
2. A set of output signals: Y = {YI, Y2}, where YI - output 
signal Yl = (B), in which B is the value of the alternating bit 
in the acknowledgement being transmitted, Y2 - output signal 
Y2 = (B), in which B is the value of the alternating bit in the 
frame being transmitted, 
3. A set of external events: E' = {e~, e~}. 

4. A set of internal events : E" = {e~l' e~2}. 
5. Continuous cQmponent coordinate: 
W(t m) = {w( e~l' tm), w( e~2' tm)}. 
6. Discrete component coordinate: v(tm) = {Bit2(tm)}. 
7. Initial state: Bit2(tm) = 0, w(e~l' tm) = 0, 
w(e~2' tm) = O. 
8. Transition and output operators: 
H(ei) : 
if w(e~2' tm) = 0; then Bit2(tm) = X2; 
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fl. 
H(e~) : 

if P21 > P 
then w( e~l' t m ) = 0; 
else w( e~l' tm ) = 1; 

if w(e~l' tm ) = 0; then Bit2(tm) = Xl; 

if P22 > P 

Aggregate A3: 

then w( e~2' t m ) = 0; 
else w( e~2' t m ) = 1; 

YI = Bit2(tm ); 

Y2 = Bit2(tm ); 

1. A set of input signals: X = {x}, where X - input signal 
X = (B), in which B is the value of the alternating bit in the 
frame being received. 
2. A set of output signals: Y = {y}, where y - output signal 
y = (B), in which B is the value of the alternating bit in the 
acknowledgement being transmitted. 
3. A set of external events : E' = {ei}. 
4. A set of internal events : E" = {e~l}. 

5. Continuous component coordinate: 
W(tm) = {w(e~l' tm)}. 
6. Discrete component coordinate: v(tm ) = {KSK(t m ), 

Bit3(tm )}. 

7. Initial state: KSK(tm) = 0, Bit3(tm) = 0, w( e~l' tm) = o. 
8. Transition and output operators: 
H(ei) : 
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if (x =I- Bit3(tm )) then Bit3(tm ) = x; 
KSK(tm) = KSK(tm) + 1; 
w(e~l' tm )=l; 

else w(e~l' tm ) = 1; 
w(e~2' tm ) = 0; 

fl. 
H(e~l): 

w( e~l' tm ) = 0; 
G(e~l): 

y = Bit3( tm ); 

Table. Table of aggregate interfacing 

Channel Aggregate Output Aggregate 
name name 

l. Al Y A2 
2. A2 Y2 A3 
3. A2 YI Al 
4. A3 Y3 A2 
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Input 

X2 

x 
x 

Xl 

Transition and output operators for every aggregate will 
be represented by logical formulae .. The notations follow: 

w( e~2' tm) = W12, 
w( e~l' tm) = W21, 

w( e~2' tm) -: W22, 

w(e~l' tm)=W31, 
Bitl(tm) = Bitl, 

Bit2(tm) = Bit2, 

Bit3( t m ) = Bit3, 

PSK(tm) = PSK, 

KSK(tm) = KSK. 
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Representation of the transition operator H( e~) by logi­
cal formulae will be shown in detail. The operators described 
in the transition can be represented as follows: 
1. inpuLp = 1 A inpuLv = Bitl -+ 
Bitl = Bitl A PSK = PSK + 1 A Wll = 1 A lV12 = 0. 
2. inpuLp = 1 A inpuLv =I- Bitl -+ Wll = 1 A W12 = 0. 
This means that at the signal arrival at the pole input_p = 1 
when the inpuL v =Bitl the aggregate coordinates change ac­
cording to the first description; if a signal of inpuL v =l-Bitl 
arrives at the pole input_p = 1, the coordinates change ac­
cording to the second description. 

The transition description, using the predicates intro-
duced in Chapter 1, follow: . 

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v = 

Bitl -+ QW _Al(l, 0, Bitl, PSK + 1), 

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =I­

Bitl -+ QW _Al(l, 0, Bitl, PSK). 

Similarly the other transition operators are described. 
The set of logical formulae of the whole aggregative specifi­
cation is given below. 
Aggregate AI. 

, QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v = 

Bitl -+ QW _Al(l, 0, Bitl, PSK + 1), (1) 

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =I-

Bitl -+ QW _Al(l, 0, Bitl, PSK), (2) 

QW _Al(l, W12, Bitl, PSK)-+ 

QY _Al(l, Bitl, 0, 1, Bitl, PSK), (3) 
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QW _Al(Wll, 1, Bitl, PSK)-+ 

QW _Al{l, 0, Bitl, PSK). (4) 

Aggregate A2. 

QX_A2(1, input_v, W21, W22, Bit2) /\ W22 = 0/\ 

P21 < P -+ QW _A2(1, W22, Bit2), (5) 

QX_A2(1, input_v, W21, W22, Bit2) /\ W22 = 0/\ 

P21 > P -+" QW _A2(0, W22, Bit2), (6) 

QX_A2(2, input_v, W21, W22, Bit2) /\ W21 = 0/\ 

P22 < P -+ QW _A2(0, W21, 1, Bit2), (7) 

QX_A2(2, input_v, W21, W22, Bit2) /\ W21 = 0/\ 

P22 > P -+ .QW _A2(0, W21, 1, Bit2), (8) 

QW _A2(1, W22, Bit2) -+ 

QY _A2(1, Bit2, 0, W22, Bit2), (9) 

QW _A2(W21, 1, Bit2) -+ 

QY _A2(2, Bit2, W21, 0, Bit2). (10) 

Aggregate A3. 

QX_A3(1, input_v, W31, Bit3, KSK) /\ input_v =I-

Bit3 -+ QW -A3(1, input_v, KSK), (11) 
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QW _A3(1, Bit3, KSK)-

QY _A3(1, Bit3, 0, Bit3, KSK). (12) 

Table of aggregate interfacing: 

QY _A1(1, output_v, Wll, W12, Bitl, PSK)-

QX_A2(2, output_v, W21, W22, Bit2), (13) 

QY _A2(1, output_v, W21, W22, Bit2) -

QX_A1(1, output_v, Wll, W12, Bitl, PSK), (14) 

QY _A2(2, output_v, W21, W22, Bit2)­

QX_A3(1, output_v, W31, Bit3), 

QY _A3(1, output_v, W31, Bit3) -

(15) 

QX_A2(1, output_v, W21, W22, Bit2). (16) 

Global initial state: 

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 0, 0). (17) 

Global final state: 

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 2, 2). (18) 

General properties: 
Deadlo~k state: 

Q_glob(O, 0, 0, 0, 0, Bitl, Bit2, Bit3, PSK, KSK). (19) 
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Unfeasible property boundedness: 

Q_glob(Wll, W12, W21, W22, W31, 

Bitl, Bit2, Bit3, PSK, KSK)" 
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Bitl ¢ [0,1] " Bit2 ¢ [0,1] " Bit3 ¢ [0,1]. (20) 

Unfeasible property of completeness: 

QX_Al(input_p, input_v, Wll, W12, Bitl, PSK)" 

input_v ¢ [0,1] (21) 

QX_A2(input_p, inpuLv, W21, W22, Bit2)" 

input_ v ¢ [0,1] (22) 

QX_A(input_p, input_v, W31, Bit3, KSK)" 

inpuLv ¢ [0,1] (23) 

Invariant unfeasibility: 

Q_glob(Wll, W12, W21, W22, W31, 

Bitl, Bit2, Bit3, PSK, KSK) " -,J. (24) 

The invariant I for a alternating bit is given in (Pranevit­
chus and Panevezys, 1988). 
If the logical formulae describing aggregative specifications 
and interfacing table are denoted Ap , initial state description 
-AI, final state one -Ao, and the properties under investiga­
tion -As, then, having the set of axioms Ap " AI " Ao " As, 
conclusions can be drawn about the problems formulated. 

Considering the above alternating bit example we see 
that the set Ap includes logical formulae 1-16, AI - repre­
sents 17, Ao - 18, As - 19-24. 
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The following problem can be formulated : will a final 
state be reached from the initial one and simultaneously will 
the logical formulae determining general and individual prop­
erties be valid? 

4. Use of the language PROLOG for solving the 
validation problem. The problem formulated in the previ­
ous chapter can by solved by the method of resolution using 
the predicate logics language PROLOG based on logical pro­
gramming. The language allows to use formal specifications in 
the predicate logics by means of PROLOG (Sidhu and Cral, 
1988). 

To epresent logical expressions in the language PROLOG 
the following parts of the program must be determined: 
1. The part of descriptions: 

1.1. The part determining constants (CONSTANTS). 
1.2. The part determining date base (DATEBASE). 
1.3. The part determining the predicates (PREDICA­

TES). 
2. The part describing aggregates. 

2.1. The part describing transitions. 
2.1.1. Transitions of external events, e;g.: 

QX_A1(1, Input_v, Wll, W12, Bitl, PSK): -

Input_v = Bitl, PSKn = PSK + 1, Bitln = MOD(Bit1), 

QW _A1(1, 0, Bitln, PSKn) . 

• 
This means that at the signal arrival at the pole 1 when 
Input_ v =Bitl, the state coordinates change, i.e., the discrete 
coordinates acquire new values PSK=PSK+1 and Bit1n= 
MOD (Bitl), the continuous coordinates Wll= 1. W12= 0, 
MOD predicate determines the variation according to the mo­
dulus 2. 
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2.1.2. Transition of internal events, e.g.: 

QW -:-A1(1, W12, Bit1, PSK) : -

QY _A1(1, Bitl, 0, 1, Bitl, PSK). 
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This means that on occurrence of an internal event (condition 
Wll=l) a signal of the value Bitl is delivered to the out­
put, and the continuous coordinates obtain the value Wll= 0, 
W12= 1. 
3. The part describing aggregate interfacing, e.g.: 

QY _A1(1, Output_v, WI1, W12, Bit1, PSK) : -

CurrenLstate(Wll,. W12, W21, W22, VV31, 

Bitl, Bit2, Bit3, PSK, KSK), 

QX_A2(2, Output~v, W21, W22, Bit2). 

This means that the pole 1 of the aggregate Al is connected 
by a channel with the pole 2 of the aggregate A2 and a sig­
nal of the value Output_v is transmitted. The predicate 
CurrenL state changes the values of the current state. 
4. The part describing validation axioms. 

4.1. Description of the general properties. 
4.1.1. Dedlock state, e.g.: 

Q_glob(O, 0, 0, 0, 0, _, _, _, _, -): -

wri te(" deadlock state). 
4.1.2. Boundedness property is not implemented, e.g.: 

Q_glob(Wll, W12, W21, W22, W31, 

Bitl, Bit2, Bit3, PSK, KSK) : -

D(Bitl, Bit2, Bit3, PSK, KSK), 

write ("boundedness property is not implemented"). 
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Here the predicate D acquires the TRUE if ,the boundedness 
property is not implemented. 

4.1.3. Unfeasible completeness property, e.g.: 

QX_A1(Input_p, Input_v, Wll, W12, Bit1, PSK): -

P(Input_v), 

write(" completeness property is not implemented"). 
Here is predicate P acquires the meaning TRUE if there is no 
logical formulae for the input signal Input_v. 

4.2. Non-implementing of the invariant, e.g.: 

Q_glob(Wll, W12, W21, W22, W31, 

Bit1, Bit2, Bit3, KSK) : -

I(Wll, W12, W21, W22, W31, Bitl, Bit2, Bit3, KSK), 

write ("the invariant is not implemented"). 
Here, the predicate I acquires the meaning TRUE if the invari­
ant is not implemented. 

4.3. Initial state, e.g.: 

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 0, 0). 

4.4. Final state, e.g.: 

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 2, 2). 

5. Relation of the aggregate local state is the global one, e.g.: 

QW _Al(Wll, Wl2, Bitl, PSK): -

Current_state(Wll, W12, W2l, W22, W31, 

Bitl, Bit2, Bit3, PSK, KSK), 

Q_glob(Wll, W12, W2l, W22, W31 

Bit1, Bit2, Bit3, PSK, KSK). 
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~ 1-r1-0-0-0-0-1-0-0 

Wll 

~ 2-r0-1-0-1-0-1-1-0 

W12 

~ 3+1-0-0-1-0-1-1-0 

Wll 

~ 2+0-1-0-1-0-1-1-0 
~ 4+0-1-0-0-0-1-1-0 

W12 

~ 5+1-0-0-0-0-1-1-0 

Wll 

: ~ 2+0-1-a-1-0-1-1-0 
: ~ 4+0-1-0-0-0-1-1-0 

~ 3+1-0-0-1-0-1-1-0 

W22 

~ 6+1-0-0-0-1-1-1-1 

Wll 

~ 7-r0-1-0-1-1-1-1-1 

W12 

~ 8+1-0-0-1-0-1-1-1 

Wll 

~ 7-r0-1-0-1-1-1-1-1 
~ 9+0-1-0-0-1-1-1-1 

: W12 

: ~ 6+ 1-0-0-0-1-1-1-1 
~ 9+0-1-0-0-1-1-1-1 

: W31 

: ~ 10+0-1-1-0-0-1-1-1 
Fig. 2. A fragment of the set of states. 
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6. Selection of an active aggregate, e.g.: 

Q_glob(Wll, W12, W21, W22, W31, 

Bitl, Bit2, Bit3, PSK, KSK) : -

IS(Wll, W12, W21, W22, W31), 

QW _Al(Wn, W12, Bitl, PSK). 

Here the predicate IS selects the aggregate with a continuous 
coordinate equal to zero. 

5. Validation results. The approach proposed was 
applied in alternating-bit validation. A fragment of the set of 
states obtained in the protocol validation is given in Fig. 2. 
The state has there the following form: 
Number of states +Wll- W12 - W21 - W22 - W31-
Bitl - Bit2 - Bit3. 

Conclusions. The aggregative specifications analysis 
method proposed in the paper does not require use or con­
struction of special programing means, implementing the pro­
cess of the analysis of aggregative models. The problem of ag­
gregative models analysis is reduced to constructing a set 
of axioms and checking their consistency by the resolution 
method using the logical programming language PROLOG. 
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