
INFORMATICA, 1991, Vo1.2, No.2, 255-277·

APPLICATION OF LOGICAL

PROGRAMMING FOR THE

ANALYSIS OF AGGREGATIVE

SPECIFICATIONS

Henrikas PRANEVITCHUS and Regina CEPONYTE

Control Systems Department,
University of Technology,
233000, Kaunas, V.Juro St. 50, Lithuania.

Abstract. The paper considers the analysis technique of the
general and individual properties of aggregative specifications. The
method is based on constructing a set of axioms describing both
the aggregate specifications and the properties of the model under
investigation. The resolution method using logical programming
language PROLOG is applied in creating the axiom system. An
example of aggregative specification analysis for the alternating bit
protocol is presented.

Key words: specification, aggregative approach, alternating
bit protocol.

Introduction. Application of the aggregative approach
and the method of control sequences for complex systems
formaliz·ation and simulation is considered in (Pranevitchus,
1982). With the given approach the system under investiga­
tion is presented as a set of interacting piece-linear aggregates
and the method of control sequences is used in the aggregative
specification. The given method is used in creating systems of
automation of aggregative simulation model building (Gorelik

256 Application of logical programming

and Pranevitchus, 1985; Pranevitchus and Janilionis, 1985).
It is shown in (Pranevitchus and Chmieliauskas, 1983)

that aggregative models can by used not only for building ag­
gregative symulation models but for their correctness analysis
as well. The method of reachable states is used for analy­
sis. The given method is widely applied in analyzing com­
puter network protocol correctness (Bochmann, 1987). In the
given case the reachability graph is generated and later ana­
lyzed. Having completed the analysis one can determine such
general properties as 1) deadlock freeness, 2) completeness,
3) termination or cyclic behavior, 4) boundednes, etc. The
invariant approach has been created for the investigation of
the individual properties of aggregative models (Pranevitchus
and Panevezys, 1988). An invariant is an assertion describ­
ing correct system functioning 'and remaining true in spite of
the eve,nts taking place and of the transition from one state
to another. The trueness of the invariant should be proved
for every fragment related to the event. The c~rrespondence
between the aggregative model and the conceptual one can be
checked by this method.

Special programs must usually by written for the analysis
of the general and individual properties of aggregative mod­
els, for instance (Pranevitchus, Chmieliauskas and Pilkaus~s,
1985). The given paper will present an aggregative model
specification analysis approach based on constructing a set Qf
axioms consisting of two parts. One of part of the axioms cor­
responds to the aggregative specifications, and the second part
describes general and individual properties of the aggregative
model under investigation. The consistency of the set of ax­
ioms created is checked by the resolution method using the
logical programming language PROLOG.

1. Representing aggregative specifications by
means of logical expressions. The given paragraph will
deal with the predicates describing the aggregate state and

H.Pranevitchus and R.Ceponyte 257

the logical formulae, describing the operators of transitions
and outputs resulting from internal and external events.

The piece-linear aggregate stat~ at given moment is de­
termined by continuous and discrete coordinates:

state=(WI, ... ,Wf, dI, ... ,dn),

where WI, ... , W f - continuous coordinates, and d I , • .• , dn -

discrete coordinates.
The changes of the aggregate state result from occur­

rence of external and internal events. An output signal can
by generated simultaneously with the event.

Therefore the following situations are possible:
1) an external event can by followed by a change of coordinates
and an output signal can be generated;
2) an external event can by followed by a change of state
without generating an output signal;
3) an internal event can by followed by a change of coordinates
and an output signal is generated;
4) an internal event can by followed by a change of coordinates
without generating an output signal.

Onset of an external event is linked with the arrival of an
input signal at the corresponding input pole of the aggregate.
Additional variables are introduced to describe the occurrence
of external events: "input_p" - input pole and "input_v" -
the value of the input signal.

Arrival of the input signal at the ·k-th pole of the aggre­
gate Ag having. the input signal value" sig" when the aggregate
is in state" state_ Ag= (WI, ... , W f, dI , ••• , dn)" is described
by a logical expression:

inpuLp = k A. inpuL v = sig

A. state_Ag = (WI, ..• , W f, d I ,.··, dn).

Let us determine the predicate QX_name(input_p,
JnpuL v, WI, ... , W" dI , ..• , d f) which indicates that with

258 Application of logical programming

the signal arrival at the input pole the variables "inpuLp",
"inpuL v" of the aggregate marked "name" are in the state
"state=('WI, ... , 'WI, d I ,···, dn)".

Then the above given logical expression is described by
the following predicate:

QX_Ag(k, sig, 'WI, ... , 'W I, d I ,···, d I)·

Similarly let the QY _name(output_p, output_ v, 'Wll ... ,
'W I, dI , ... , d I) represent the predicate describing the condi­
tion on which a signal of the value "output_v" is generated
on the "output_p" pole of the aggregate marked "name".

The above situation will be represented by logical for-
mula:

QX_name(in'puLp, input_v, 'WI, ... ,wI, dI, ... ,dn)A

P('WI, ... , 'WI, dI , ... , dn) ~

QY_name(outpuLp, outpuLv, next_wI, ... , nexL'WI,

next_d l , ... ,next-dn),

here next_ 'WI, ... ,next_ 'W I, next_dI , ... , next_dn are new
values of the state coordinates and P('WI, ... , 'W I, d I , ... , dn)

the transition condition to be discused later.
The corresponding continuous coordinate having the va­

lue 1 is the condition for an internal event occurrence:

Wi = 1 A state = (WI, ... , 'WI, dI , ... , dn).

Let this expression be represented by the predicate:

Similarly 'the situations 2, 3, 4 will by represented by
means of logical formula respectively:

QX_name(input_p, input_v, 'WI, ... ,'Wf, dI, ... ,dn)A

P('WI, ... , wf, dI , ... , dn) ~

QW _name(next_ WI, ... ,next_ 'W I, next_dI , ... , next_dn),

H.Pranevitchu8 and R. Ceponyte

QW -name(Wb ... ' Wi-I, 1, Wi+b ... , Wj, d l , ... ,dn)/\

P(WI, ... ,Wj, dlj ... ,dn) ~

259

QY _name(output_p, output_v, next-:-WI, ... ,next_Wj,

next_dl , ... , next_dn),

QW_name(Wl, ... ,Wi_l, 1, Wi+I, ... ,Wj, dl, ... ,dn)/\

P(WI, ... ,Wj; dl, ... ,dn) ~

QW _name(next_wI, ... ,next_wj, next_dl , ... ,next_dn),

here input_p = p, pEP, output_p = 0, 0 EO, P and 0 a set
of input and out'put poles of the aggregate marked " name" .

In the aggregate system the aggregates are connected by
communication channels. The communication of the channels
and the aggregates system is described as ,the following form:
1) channel number; 2) an aggregate's name which generates
an output signal on the "output_p" pole of the aggregate

, marked "name_l", 3) an aggregate's name on which arrives
an input signal on the "input_p" pole of the aggregate marked
"name_2" .

The logical formula for every channel representing the
interface of two aggregates marked "name_l" and "name_2"
acquire the following form:

QY _name_l(output_p, output_ v, w~, ... ,W}l ' d~, ... , d~l) ~
QX_name_2(input_p, input_v, w~, ... , WJ2' d~, ... , d!2)'

h I I dl dl 2 2 d2 _12 ere WI' ... , W j , l' ... , n ; WI'· .. , Wf' I' ... , an are con-1 1 . 2

tinuous ,and discrete coordinates of the aggregate states
"name_l" and "name_2" respeCtively;.

The change of the state coordinates in the aggregate spec­
ification is described by the transition and output operators.

Let us consider transition and output operators in detail.
The description of these operators can comprise the following
operations with the state coordinates:

260 Application of logical programming

1) dummy operator, skip, witch does not change the state
coordinates. If the ratio Q describes the aggregate state, and
(WI, ... , W j, dI , ••• , dn) is the state coordinates vector, the
logical formula describing the transition is represented as:

2) assignment operator:

where f(d I , ... , dn) represents the change of the coordinate di .

Next continuous coordinate next_wi E [0,1], j = 1, f. The
logical formula describing the assignment operator follows:

Q(WI,"" wI, d I , ... , dn) ~

Q(next_wl,'" ,next_wj, next_dI , ... ,next_dn).

3) access operator has the following form:
if Rl then if R2 then SI,

else S2,
else if R3 then S3,

else S4,
here SI, ... , S4 an assignment or a dummy operator Rl, ... ,
R3 - logical expressions. The above given access statement
can be transformed into the following form: .

if Rl 1\ R2 then SI,
if Rl 1\ -,R2 then S2,
if -,Rl 1\ R3 then S3,
if oRl 1\ oR3 then S4.

The access operator is represented by a logical formula as fol­
lows:

Q(WI , ... , W j, dI , ••• , dn) 1\ Rl 1\ R2 --+

Q(next_wI"" ,next_wj, next_db'" ,next_dn),

H.Pranevitchus and R. Ceponyte

Q(WI,"" Wj, d l , ... , dn) I\. Rll\. ,R2 -+

Q(next_wI,'" ,ne:id_wj, nexLd l , ... ,nexLdn),

Q(wI, .. . , Wj, d l , ... , dn) I\. ,RII\. R3 -+

Q(next_wI,'" ,next_wf, next_dl , ... ,next_dn),

Q(WI, ... , Wj, d l , .•. , dn) I\. ,Rll\. ,R3 -+

Q(next_wI, ... , next_wj, next_dl , ... , next_dn),

261

As the above given access operators are used in every
transition and output operator the transition condition P(WI,

..• ,W j~ dl , •.. , dn) represents logical expressions of the fol­
lowing type: .

here n - is a number of logical expressions representing limi­
tations. of one or several coordinates.

2. A set of axioms for validation problem solution.
In the previous chapter a form of logical formula, describing an
aggregative specification is discussed. For validation problem
solution additional formulae for the description of the proper­
ties under investigation must be introduced.

Investigation of general and individual properties is car­
ried out at the global state of the set of aggregates. The
global state includes the states of all the aggrega.tes and is
represented by the predicate:

I I I I .
Q_glob(WI' ..• , Wit' dl ,···, dni ' ... ,

m m dm dm)
WI , ••• , W 1m' I,·· ., nm '

here 'ni, ii, i = 1, m the number of discrete and continuous
coordinates of the i-th aggregate respectively.

262 Application of logical programming

Specification properties are investigated on a set of states
limited by the initial and final states, of the form:

Q I b(10 10 dIO dIO
-g 0 WI'··· , Wit ' 1, ... , nl'···'

mO mO dmO dmO)
WI , ••. , W 1m' 1 , ... , 'nm '

Q I b(It It dlt dlt -g 0 WI,··· , Wit' l' ... , nl'···'
mt mt dmt dmt)

WI , •.. , W 1m' 1 , ... , nm '

here the values of the initial and final states are denoted by
indexes 0 and t respectively.

The general properties under investigation are:
1) Statistical dedlock freeness means that the system does not
get into a state without output. In a dedlock state all the con­
tinuous coordinates equal zero. Dedlock state is determined
by the predicate:

Q_glob(O, ... ,0, dL ... , d~l ' ... ,0, ... ,0, dj, ... , d~m)'

2) Termination means that reaching a presetfinal state is guar­
anteed. The final state has been defined above.
3) Boundedness"means that with the functioning of the system
the values of the discrete coordinates do not exceed the present
intervals. The limitations for every coordinate are represented
by the following logical expressions:

ni' .. __

j~I dj E raj, bjl, i = 1, m,

here a~, b~"- are the limits of the variations of the j-th discrete
coordinate of the i-th aggregate.
4) Completeness means that reception of all the possible mes­
sages is provided for in the specification. Non-feasibility of
the completeness is represented by logical formula for every
aggregate:

QX_name_i(inpuLp, inpuLv, wL ... , wj;, di, ... , d~J/\
input_ v (j. X,

H.Pranevitchus and R.Geponyte 263

here ~ indicates that the message accepted does not belong to
the set X; X is the set of the possible input messages.
5) Absence of redundancy means that all the logical formulae
of the specification are used in the specification analysis.

The invariant approach is used in the investigation of the
individual properties of the system (Pranevitchus and Pane­
V€zys, 1988). The invariant I represents the limitations of the
global state coordinates and is of the form:

I
1= V p.

i=l z,

here Pi is the i-th disjunct representing limitations of one or
several state coordinates, 1 is the number of disjuncts.

3. Example of representing aggregative specifi­
cation by logical formulae. The alternating bit protocol
specification including aggregative mathematical description
and specification in the predicate logics langu~ge is presented
below as an example of the use of logical representation of
aggregative specification.

The structural scheme of aggregative model is presented
in Fig. 1.

Aggregates and coordinates of aggregative model of the
protocol are described below.
Aggregate Al (sender). PSK (tm) is the number of the
reserved asknowledgements, Bitl (tm) is the value of the al­
ternating bit in the last frame, that has already been sent out
or formed, w(e~l' tm) is the moment of the time at which the
formation of the current frame is completed, w(e~2' t m) is the
moment of the time at which time-out over.
Aggregate A2 (transmission media). Bit2 (t m) is the
value of the alternating of the frame/acknowledgement being
transmitted, w(e~l' tm) is the moment of the time at which
the acknowledgement will be transmitted (i:e., it will arrive at

264 Application of logical programming

the sender), w(e~2' tm) is the moment of the time at which the
frame will be transmitted (i.e., it· wil~ arrive at the receiver).
Aggregate A3 (receiver). Bit3 (t m) is the value of the
alternating bit in the last acknowledgement, KSK (t m) is the
number of the received frames, w(e~l' t m) is the moment of
time by which the acknowledgement will have been formed
and sent out.

1 I 12
I

~: I A1
1 I A2 2-1 ~.:.::.;

t 1 1 I I I
! I -1

Fig. l. Protocol aggregative scheme.

Description of transition and output operators are de­
scribed below.

Aggregate AI:
1. A set of input signals : X = {x}, where x - input signal
x = (B), in which B is the value of the alternating bit in the
acknowledgement.
2. A set of output signals: Y = {y}, where y - output signal
y = (B), in which B is the value of the alternating bit in the
frame being transmitted.
3. A set of external events: E' = {e~}.

4. A set of internal events : E" = {e~ l' e~ 2 }.

5. Continuous component coordinate:
W(t m) = {w(e~l' t m), w(e~2' tm)}.

6. Discrete.component coordinate:
v(tm) = {PSK(tm), Bit1(tm)}.
7. Initial state: PSK(tm) = 0, Bit1(tm) 1, w(e~l,tm)

1, w(e~2' t m) = O.
8. Transition and output operators:
H(eD:
if (x = Bit1(tm)) then Bit1(tm) = Bit1(tm);

PSK(tm) = PSK(tm) + 1;

fi.
H(e~l) :

H.Pranevitchus and R.Ceponyte

w(e~l,tm) = 1;
w(e~'2' tm) = 0;

else w(e~l,tm)=I;
w(e~2,tm) = 0;

w(e~l,tm) = 1;
w(e~2,tm) = 0;

Y = Bit1(tm);

w(e~l' tm) = 1;
w(e~2,tm) = 0;

Aggregate A2:

265

1. A set of input signals: X = {Xl, X2}, where Xl - input
signal Xl = (B), in which B is the value of the alternating
bit in the frame being transmitted, X2 input signal X2 = (B),
in which B is tlie value of the alternating bit in the acknowl­
edgement being transmitted.
2. A set of output signals: Y = {YI, Y2}, where YI - output
signal Yl = (B), in which B is the value of the alternating bit
in the acknowledgement being transmitted, Y2 - output signal
Y2 = (B), in which B is the value of the alternating bit in the
frame being transmitted,
3. A set of external events: E' = {e~, e~}.

4. A set of internal events : E" = {e~l' e~2}.
5. Continuous cQmponent coordinate:
W(t m) = {w(e~l' tm), w(e~2' tm)}.
6. Discrete component coordinate: v(tm) = {Bit2(tm)}.
7. Initial state: Bit2(tm) = 0, w(e~l' tm) = 0,
w(e~2' tm) = O.
8. Transition and output operators:
H(ei) :
if w(e~2' tm) = 0; then Bit2(tm) = X2;

266 Application of logical programming

fl.
H(e~) :

if P21 > P
then w(e~l' t m) = 0;
else w(e~l' tm) = 1;

if w(e~l' tm) = 0; then Bit2(tm) = Xl;

if P22 > P

Aggregate A3:

then w(e~2' t m) = 0;
else w(e~2' t m) = 1;

YI = Bit2(tm);

Y2 = Bit2(tm);

1. A set of input signals: X = {x}, where X - input signal
X = (B), in which B is the value of the alternating bit in the
frame being received.
2. A set of output signals: Y = {y}, where y - output signal
y = (B), in which B is the value of the alternating bit in the
acknowledgement being transmitted.
3. A set of external events : E' = {ei}.
4. A set of internal events : E" = {e~l}.

5. Continuous component coordinate:
W(tm) = {w(e~l' tm)}.
6. Discrete component coordinate: v(tm) = {KSK(t m),

Bit3(tm)}.

7. Initial state: KSK(tm) = 0, Bit3(tm) = 0, w(e~l' tm) = o.
8. Transition and output operators:
H(ei) :

H.Pranevitchus and R. Ceponyte

if (x =I- Bit3(tm)) then Bit3(tm) = x;
KSK(tm) = KSK(tm) + 1;
w(e~l' tm)=l;

else w(e~l' tm) = 1;
w(e~2' tm) = 0;

fl.
H(e~l):

w(e~l' tm) = 0;
G(e~l):

y = Bit3(tm);

Table. Table of aggregate interfacing

Channel Aggregate Output Aggregate
name name

l. Al Y A2
2. A2 Y2 A3
3. A2 YI Al
4. A3 Y3 A2

267

Input

X2

x
x

Xl

Transition and output operators for every aggregate will
be represented by logical formulae .. The notations follow:

w(e~2' tm) = W12,
w(e~l' tm) = W21,

w(e~2' tm) -: W22,

w(e~l' tm)=W31,
Bitl(tm) = Bitl,

Bit2(tm) = Bit2,

Bit3(t m) = Bit3,

PSK(tm) = PSK,

KSK(tm) = KSK.

268 Application of logical programming

Representation of the transition operator H(e~) by logi­
cal formulae will be shown in detail. The operators described
in the transition can be represented as follows:
1. inpuLp = 1 A inpuLv = Bitl -+
Bitl = Bitl A PSK = PSK + 1 A Wll = 1 A lV12 = 0.
2. inpuLp = 1 A inpuLv =I- Bitl -+ Wll = 1 A W12 = 0.
This means that at the signal arrival at the pole input_p = 1
when the inpuL v =Bitl the aggregate coordinates change ac­
cording to the first description; if a signal of inpuL v =l-Bitl
arrives at the pole input_p = 1, the coordinates change ac­
cording to the second description.

The transition description, using the predicates intro-
duced in Chapter 1, follow: .

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =

Bitl -+ QW _Al(l, 0, Bitl, PSK + 1),

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =I­

Bitl -+ QW _Al(l, 0, Bitl, PSK).

Similarly the other transition operators are described.
The set of logical formulae of the whole aggregative specifi­
cation is given below.
Aggregate AI.

, QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =

Bitl -+ QW _Al(l, 0, Bitl, PSK + 1), (1)

QX_Al(l, input_v, Wll, W12, Bitl, PSK) A input_v =I-

Bitl -+ QW _Al(l, 0, Bitl, PSK), (2)

QW _Al(l, W12, Bitl, PSK)-+

QY _Al(l, Bitl, 0, 1, Bitl, PSK), (3)

H.Pranevitchus and R. Ceponyte 269

QW _Al(Wll, 1, Bitl, PSK)-+

QW _Al{l, 0, Bitl, PSK). (4)

Aggregate A2.

QX_A2(1, input_v, W21, W22, Bit2) /\ W22 = 0/\

P21 < P -+ QW _A2(1, W22, Bit2), (5)

QX_A2(1, input_v, W21, W22, Bit2) /\ W22 = 0/\

P21 > P -+" QW _A2(0, W22, Bit2), (6)

QX_A2(2, input_v, W21, W22, Bit2) /\ W21 = 0/\

P22 < P -+ QW _A2(0, W21, 1, Bit2), (7)

QX_A2(2, input_v, W21, W22, Bit2) /\ W21 = 0/\

P22 > P -+ .QW _A2(0, W21, 1, Bit2), (8)

QW _A2(1, W22, Bit2) -+

QY _A2(1, Bit2, 0, W22, Bit2), (9)

QW _A2(W21, 1, Bit2) -+

QY _A2(2, Bit2, W21, 0, Bit2). (10)

Aggregate A3.

QX_A3(1, input_v, W31, Bit3, KSK) /\ input_v =I-

Bit3 -+ QW -A3(1, input_v, KSK), (11)

270 Application 'Of l'Ogical programming

QW _A3(1, Bit3, KSK)-

QY _A3(1, Bit3, 0, Bit3, KSK). (12)

Table of aggregate interfacing:

QY _A1(1, output_v, Wll, W12, Bitl, PSK)-

QX_A2(2, output_v, W21, W22, Bit2), (13)

QY _A2(1, output_v, W21, W22, Bit2) -

QX_A1(1, output_v, Wll, W12, Bitl, PSK), (14)

QY _A2(2, output_v, W21, W22, Bit2)­

QX_A3(1, output_v, W31, Bit3),

QY _A3(1, output_v, W31, Bit3) -

(15)

QX_A2(1, output_v, W21, W22, Bit2). (16)

Global initial state:

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 0, 0). (17)

Global final state:

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 2, 2). (18)

General properties:
Deadlo~k state:

Q_glob(O, 0, 0, 0, 0, Bitl, Bit2, Bit3, PSK, KSK). (19)

II. Pranevitchus and R. Ceponyte

Unfeasible property boundedness:

Q_glob(Wll, W12, W21, W22, W31,

Bitl, Bit2, Bit3, PSK, KSK)"

271

Bitl ¢ [0,1] " Bit2 ¢ [0,1] " Bit3 ¢ [0,1]. (20)

Unfeasible property of completeness:

QX_Al(input_p, input_v, Wll, W12, Bitl, PSK)"

input_v ¢ [0,1] (21)

QX_A2(input_p, inpuLv, W21, W22, Bit2)"

input_ v ¢ [0,1] (22)

QX_A(input_p, input_v, W31, Bit3, KSK)"

inpuLv ¢ [0,1] (23)

Invariant unfeasibility:

Q_glob(Wll, W12, W21, W22, W31,

Bitl, Bit2, Bit3, PSK, KSK) " -,J. (24)

The invariant I for a alternating bit is given in (Pranevit­
chus and Panevezys, 1988).
If the logical formulae describing aggregative specifications
and interfacing table are denoted Ap , initial state description
-AI, final state one -Ao, and the properties under investiga­
tion -As, then, having the set of axioms Ap " AI " Ao " As,
conclusions can be drawn about the problems formulated.

Considering the above alternating bit example we see
that the set Ap includes logical formulae 1-16, AI - repre­
sents 17, Ao - 18, As - 19-24.

272 Application of logical programming

The following problem can be formulated : will a final
state be reached from the initial one and simultaneously will
the logical formulae determining general and individual prop­
erties be valid?

4. Use of the language PROLOG for solving the
validation problem. The problem formulated in the previ­
ous chapter can by solved by the method of resolution using
the predicate logics language PROLOG based on logical pro­
gramming. The language allows to use formal specifications in
the predicate logics by means of PROLOG (Sidhu and Cral,
1988).

To epresent logical expressions in the language PROLOG
the following parts of the program must be determined:
1. The part of descriptions:

1.1. The part determining constants (CONSTANTS).
1.2. The part determining date base (DATEBASE).
1.3. The part determining the predicates (PREDICA­

TES).
2. The part describing aggregates.

2.1. The part describing transitions.
2.1.1. Transitions of external events, e;g.:

QX_A1(1, Input_v, Wll, W12, Bitl, PSK): -

Input_v = Bitl, PSKn = PSK + 1, Bitln = MOD(Bit1),

QW _A1(1, 0, Bitln, PSKn) .

•
This means that at the signal arrival at the pole 1 when
Input_ v =Bitl, the state coordinates change, i.e., the discrete
coordinates acquire new values PSK=PSK+1 and Bit1n=
MOD (Bitl), the continuous coordinates Wll= 1. W12= 0,
MOD predicate determines the variation according to the mo­
dulus 2.

H.Pranevitchus and R. Ceponyte

2.1.2. Transition of internal events, e.g.:

QW -:-A1(1, W12, Bit1, PSK) : -

QY _A1(1, Bitl, 0, 1, Bitl, PSK).

273

This means that on occurrence of an internal event (condition
Wll=l) a signal of the value Bitl is delivered to the out­
put, and the continuous coordinates obtain the value Wll= 0,
W12= 1.
3. The part describing aggregate interfacing, e.g.:

QY _A1(1, Output_v, WI1, W12, Bit1, PSK) : -

CurrenLstate(Wll,. W12, W21, W22, VV31,

Bitl, Bit2, Bit3, PSK, KSK),

QX_A2(2, Output~v, W21, W22, Bit2).

This means that the pole 1 of the aggregate Al is connected
by a channel with the pole 2 of the aggregate A2 and a sig­
nal of the value Output_v is transmitted. The predicate
CurrenL state changes the values of the current state.
4. The part describing validation axioms.

4.1. Description of the general properties.
4.1.1. Dedlock state, e.g.:

Q_glob(O, 0, 0, 0, 0, _, _, _, _, -): -

wri te(" deadlock state).
4.1.2. Boundedness property is not implemented, e.g.:

Q_glob(Wll, W12, W21, W22, W31,

Bitl, Bit2, Bit3, PSK, KSK) : -

D(Bitl, Bit2, Bit3, PSK, KSK),

write ("boundedness property is not implemented").

274 Application of logical programming

Here the predicate D acquires the TRUE if ,the boundedness
property is not implemented.

4.1.3. Unfeasible completeness property, e.g.:

QX_A1(Input_p, Input_v, Wll, W12, Bit1, PSK): -

P(Input_v),

write(" completeness property is not implemented").
Here is predicate P acquires the meaning TRUE if there is no
logical formulae for the input signal Input_v.

4.2. Non-implementing of the invariant, e.g.:

Q_glob(Wll, W12, W21, W22, W31,

Bit1, Bit2, Bit3, KSK) : -

I(Wll, W12, W21, W22, W31, Bitl, Bit2, Bit3, KSK),

write ("the invariant is not implemented").
Here, the predicate I acquires the meaning TRUE if the invari­
ant is not implemented.

4.3. Initial state, e.g.:

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 0, 0).

4.4. Final state, e.g.:

Q_glob(l, 0, 0, 0, 0, 1, 0, 0, 2, 2).

5. Relation of the aggregate local state is the global one, e.g.:

QW _Al(Wll, Wl2, Bitl, PSK): -

Current_state(Wll, W12, W2l, W22, W31,

Bitl, Bit2, Bit3, PSK, KSK),

Q_glob(Wll, W12, W2l, W22, W31

Bit1, Bit2, Bit3, PSK, KSK).

H.Pranevitchus and R.Ceponyte

~ 1-r1-0-0-0-0-1-0-0

Wll

~ 2-r0-1-0-1-0-1-1-0

W12

~ 3+1-0-0-1-0-1-1-0

Wll

~ 2+0-1-0-1-0-1-1-0
~ 4+0-1-0-0-0-1-1-0

W12

~ 5+1-0-0-0-0-1-1-0

Wll

: ~ 2+0-1-a-1-0-1-1-0
: ~ 4+0-1-0-0-0-1-1-0

~ 3+1-0-0-1-0-1-1-0

W22

~ 6+1-0-0-0-1-1-1-1

Wll

~ 7-r0-1-0-1-1-1-1-1

W12

~ 8+1-0-0-1-0-1-1-1

Wll

~ 7-r0-1-0-1-1-1-1-1
~ 9+0-1-0-0-1-1-1-1

: W12

: ~ 6+ 1-0-0-0-1-1-1-1
~ 9+0-1-0-0-1-1-1-1

: W31

: ~ 10+0-1-1-0-0-1-1-1
Fig. 2. A fragment of the set of states.

275

276 Application. of logical programming

6. Selection of an active aggregate, e.g.:

Q_glob(Wll, W12, W21, W22, W31,

Bitl, Bit2, Bit3, PSK, KSK) : -

IS(Wll, W12, W21, W22, W31),

QW _Al(Wn, W12, Bitl, PSK).

Here the predicate IS selects the aggregate with a continuous
coordinate equal to zero.

5. Validation results. The approach proposed was
applied in alternating-bit validation. A fragment of the set of
states obtained in the protocol validation is given in Fig. 2.
The state has there the following form:
Number of states +Wll- W12 - W21 - W22 - W31-
Bitl - Bit2 - Bit3.

Conclusions. The aggregative specifications analysis
method proposed in the paper does not require use or con­
struction of special programing means, implementing the pro­
cess of the analysis of aggregative models. The problem of ag­
gregative models analysis is reduced to constructing a set
of axioms and checking their consistency by the resolution
method using the logical programming language PROLOG.

REFERENCES

Bochmann, G.V. (1987). Usage of protocol development tools: the
results of a survey. (invited paper). In: 7-th IFIP Symposium on
Protocol Specification, Testing and Verification. Zurich.

Gorelik, Y., and H. Pranevitchus (1985). Automated implementa­
tion system for simulation models. In: Teorija i Modelirovanie
Slozhnych Sistem, Acad. Sci.USSR, Moscow. pp. 83-92. (in
Russian).

H.Pranemtchus and R. Ceponyte 277

Pranevitchus, H. (1982). Models and Methods for Computer Sys­
tem Investigation. Mokslas, Vilnius. 228pp. (in Russian).

Pranevitchus, H., and A. Chmieliauskas (1983). Correctness Proof
and Performance Predication of Protocols Using Aggregate Ap­
proach and Control Sequence Method. Acad. Sci. USSR, Mos­

. cow. 32pp. (in Russian).
Pranevitchus, H. and V. Janilionis (1985). Aggregative simula­

tion sistem (SIMAS). In: Perspectivy Razvitija Vychisliteljnych
Sistem, RPI, Riga. pp. 147-149. (in Russian).

Pranevitchus, H., A. Chmieliauskas, and V. Pilkauskas (1985).
Protocol symulation and verification in PRA~AS. In: In Seti i
Komutacija Paketov, ESTI, Riga. pp. 209--213. (in Russian).

Pranevitchl,ls, H., and A. Panevezys (1988). Proof-of-corretness
technique for Aggregative Models of protocols. In:IFAC/
IMACS International Symposium DIS'S8, Varna. pp. 100-
105.

Sidhu, D.P., and C.S. Crall (1988). Exec;:utable Logic Specifica­
tions for Protocol Servise Interfaces. Transactions on Software
Engineering, 14(1), 98-121.

Received February 1991

H. Pranevitchus received the Degrees of Candidate
of Technical Scienses at the Kaunas Politechnic Institute, Kau­
nas, Lithuania and Computer Science Institute of Latvian
Academy of Scienses, Riga, Latvija, in 1970 and 1984, respec­
tively. He is currently Professor and head the Departament
of Control Systems,Kaunas University of Technology. His re­
search interests include simulation of complex systems and
specification, validation, testing and simulation of computer
networks protocols.

R. Ceponyte graduated Kaunas Politechnic Institute
on 1981. She is currently a post-graduate student at Kaunas
University of Technology. She investigates computer network
protocol specification and validation.

