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Abstract. The paper analyzes the performance of parallel global optimization algorithm, which
is used to optimize grillage-type foundations. The parallel algorithm is obtained by using the au-
tomatic parallelization tool. We describe briefly the layer structure of the Master–Slave Template
library and present a detailed mathematical formulation of the application problem. Experiments
are done on the homogeneous computer cluster of 7 IBM machines RS6000. The results of experi-
ments are presented.
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1. Introduction

The parallel programming tools and packages are evolving rapidly. However the com-
plexity of parallel thinking does not allow to implement many algorithms for the end user.
Unlike conventional programming, the template programming does not require from the
user to know the parallel programming tools to create parallel programs. Instead the user
has to recognize his algorithm type and to choose the right template where some code
pieces are inserted into predefined places (see, Freeman and Phillips, 1991; Šablinskas
and Baravykaitė, 2002; Pflaum, 2001).

Master–Slave (MS) template is used to parallelize algorithms for solving global opti-
mization problems, numerical integration of multidimensional integrals, graph problems.
We have developed a special tool, which enables the user to parallelize automatically
MS-type algorithms. This tool was used for adaptive multidimensional numerical inte-
gration on distributed memory parallel computers (see, Čiegis et al., 1998; 1999). It is
interesting to note, that numerical integration and global optimization algorithms have
many common features, when their parallelization is considered. The costs of each sub-
problem are distributed unevenly and a pool of subproblems is generated dynamically
during the realization of the algorithm.
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and Eureka grant OPTPAPER 2623, E-2002.02.27
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The acceptance of numerical algorithms and software tools can benefit from demon-
strating that they work robustly and safely over a wide range of practically relevant prob-
lems (see, Lang, 2001). In this paper we will use the developed parallelization tool to
solve a real-life application in civil engineering. Our goal is to optimize the grillage-type
foundations in the construction of buildings. The grillage-type foundations are the most
popular and effective scheme of foundations, especially in case of weak grounds. The
optimal scheme of grillage should posses the minimum possible number of piles. Theo-
retically, reactive forces in all piles should approach the limit magnitudes of reactions for
those piles. This goal can be achieved by choosing appropriate pile positions. Engineer-
ing tests algorithms are useful only in case of simple geometries and loadings. Otherwise
computational optimization procedures are evident necessities. Such analysis was done
by Belevičius and Valentinavičius (2000), Belevičius et al. (2002). The global minimum
solution is important in applications, but the proposed techniques can not guarantee that
the algorithm will not stop at some local minimum solution. In this paper we apply mod-
ifications of these algorithms, which increase the probability to find a better solution.

We note that many problems of engineering, physics, technology, economics are re-
duced to global minimization of multimodal functions. Such problems are difficult in the
sense of the algorithmic complexity theory and global optimization algorithms are com-
putationally very intensive. The global optimization algorithms are reviewed in Törn and
Žilinskas (1989), Horst et al. (2000). The black box global optimization algorithms and
their parallelization is investigated by Madsen and Žilinskas (2000), Žilinskas (2001).

The paper is organized as follows. In Section 2, we describe our tool for automatic
parallelization of Master–Slave type algorithms. The problem of optimization of grillage-
type foundations is formulated in Section 3. Here we also describe briefly optimization
technique and serial algorithms. In Section 4 we use the tool to find optimal positions
of piles. Efficiency of the automatically obtained parallel algorithm is investigated and
results of computational experiments are presented. Some final conclusions are given in
Section 5.

2. Parallelization Tool

In this section we will describe very briefly our tool for automatic parallelization of
Master–Slave type algorithms (see, Šablinskas and Baravykaitė, 2002 for more details).

The template programming and other semi-automatic tools for parallel programming
hide the fact that the user is doing a parallel programming at all. To achieve this, we
organize the Master–Slave Template library into a set of independent layers. The Fig. 1
describes the layer structure of a program. Each layer consists of a set of procedures
which either implement the layer logic, or serves as an interface that do the transformation
of names and/or parameters.
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Fig. 1. The layer structure of a program.

We require that the user code comprise of several parts:
1. The data initialization part.
2. The computational process initialization part.
3. The computation loop which uses the following procedures:

(a) take a non-completed task ti from the task pool,
(b) process the task ti and return the result ri,
(c) add up the result ri to the totals.

4. The result output part.

The user’s main program in C will look like:

int main()
{
struct t_init_data id;
struct t_data t;
struct t_result res;

M_prepare_job_pool(&id);
if (! S_initialize(id)) return 0;
while ( M_take_piece_from_pool(&t))
{
S_compute(t, &res);
M_add_to_result(res);

}
M_print_result();
return 1;

}

Testing. After the user adjusts the sequential code to conform the requirements, the
testing is made by compiling and running the program in the sequential mode. In case
of success, the user simply switches to another directory and compiles/runs the parallel
version of the same program.

The purpose of the user interface layer is to transparently connect the user layer pro-
cedures to the Master–Slave Template library.
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Fig. 2. The Master–Slave template logic layer operations.

The main goals of the MS layer is to create the master and slave processes on the
parallel machine, to organize the work flow of the MS algorithm and to exchange the
data among the processes. This layer consists of two procedures:Master,Slave. These
procedures invoke the user interface layer procedures to perform the logic of the program
and the communication layer procedures to pack and exchange the data (see Fig. 2).

The communication layer is an interface layer, its goal is to hide the communication
primitives of the MPI or PVM packages. We define an interface for each MPI or PVM
procedure which may have been used in conventional programming. The communication
layer procedure list includes data packing, unpacking, message probing and the paral-
lel program finalizing. Each procedure invokes either the PVM or MPI communication
primitives depending on the active global setting.

The Master–Slave parallelization tool written in C is freely distributed at
http://perkunas.vtu.lt/Milda/MST3.html.

3. Problem Formulation

Grillage consists of separate beams, which may be supported by piles, or may reside on
other beams, or a mixed scheme may be the case. The optimal scheme of grillage should
possess, depending on given carrying capacities of piles, the minimum possible number
of piles. Theoretically, reactive forces in all piles should approach the limit magnitudes
of reactions for those piles. Limit pile reactions may differ from beam to beam. Practi-
cally, this is difficult to achieve if designer due to some considerations introduces into
the grillage scheme the so-called ‘immovable supports’ that have to retain their positions
and do not participate in optimization process. These goals can be achieved by choosing
appropriate pile positions.

We choose the optimization of a single beam as a basis for the whole optimization
process of grillage. All grillage is divided into separate beams, “the upper beams” resting
on other “the lower beams”. First, all beams are analyzed and optimized separately. Joints
and intersections of the upper and lower beams are idealized as immovable supports for
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upper beams and concentrated loads for lower ones. Since the obtained fictitious reac-
tions/concentrated loads depend on pile positions, all calculations are iterated in order to
level with proper accuracy forces at joints. The problem has to be solved in static and
in linear stage. The problem size is up to 100 supports in separate beam and up to 150
beams in grillage, till 15 000 design parameters in total.

3.1. Mathematical Model

The optimization problem is stated as follows (see, also Belevičius et al., 2002)

min
s.t. x∈D

P (x), (1)

where P is the objective function, D is the feasible shape of structure, which is defined
by the type of certain supports, the given number and layout of different cross-sections as
well as different materials in the structure.

P is defined by the maximum difference between vertical reactive force at a support
and allowable reaction for this support, thus allowing us to achieve different reactions at
supports on different beams, or even at particular supports on the same beam:

P (x) = max
1�i�Ns

|Ri − fi Rallowable| ,

here Ns denotes the number of supports, Rallowable is allowable reaction, fi are factors
to this reaction and Ri are reactive forces in each support.

Further, the minimum-maximum problem is converted to a pure minimum problem
with constraints by treating Pmax as unknown subject to constraints that Pmax limits the
magnitudes of P everywhere in the structure and for all load cases when design changes
∆xi are performed, i.e.,:

P (x) +
Ns∑
i=1

∂P (x)
∂xi

∆xi − Pmax � 0, (2)

for the total structural space x.
For computational reasons a beam length constraint is also included into formulation

of the problem:

L(x) +
Ns∑
i=1

∂L(x)
∂xi

∆xi − L0 � 0 , (3)

where L0 is the initial length of the model.
Several possibilities exist in the choice of design parameters xi on which the structure

shape depends. Our choice is to use the most evident from the engineering point of view
parameters: nodal co-ordinates of all (or a chosen set of) supports.
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The problem is strongly non-linear, thus it is solved iteratively. In each iteration the
current shape is changed to a better neighbouring shape. The solution requires three
steps:

• finite element analysis,
• sensitivity analysis with regard to design parameters,
• optimal re-design using linear programming.

3.2. Finite Element Analysis

Simple two-node beam element with 4 d.o.f.’s has been implemented in analysis (see,
Cook et al., 1989). Nodal d.o.f.’s of element are:

u =
{
wi, θi, wj , θj

}T
,

wk and θk, k = i, j being deflection and rotation, positive counter-clockwise, respec-
tively. The interpolation functions may be found in most finite element books, see for
example (Cook et al., 1989).

After the nodal displacements are obtained, the reactive forces are available according
to:

Ri =
∑

j

Kij ua
j ,

where K is the stiffness matrix of the finite element ensamble.

3.3. Sensitivity Analysis

As seen from (2), the sensitivity (i.e., derivatives with regard to nodal co-ordinates) of
reactive forces is the must for optimization:

∂R
∂xk

=
∂Ka

∂xk
ua + Ka ∂ua

∂xk
,

where superscript a is standing for ensemble. The derivatives of nodal displacements are
obtained by solution of the following equation

Ka ∂ua

∂xk
= P

a

with pseudo-load vector

P
a

=
∂Pa

∂xk
− ∂Ka

∂xk
ua,

here P a is the loading vector for the whole structure.
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The procedure for derivative of element stiffness matrix from which matrix of ensem-
ble ∂Ka

∂xk
is composed is as follows: replace the finite element length Le with xj − xi,

detect whether k is ith or jth node of an element, and obtain ∂Ke

∂xi
or ∂Ke

∂xj
, respectively.

Thus only the element possessing node k renders non-zero stiffness derivatives. Similar
procedures are valid for derivatives of forces and reactions.

3.4. Optimization Algorithm

Let us shortly describe the optimization procedures, first for a single beam and then for
the whole grillage.

Optimization procedure for a single beam. Two absolute limits sets (maximum and
minimum) on all design co-ordinates status T are introduced according to existing design
restrictions or other considerations. In any case the design variable cannot exceed these
limits. For the first solution step, current design variables status T = 0. The absolute
limits may differ from one design variable to another, however the maximum absolute
move limits must be non-negative, and the minimum ones non-positive:

Tmin � T � Tmax, Tmin � 0, Tmax � 0 . (4)

Further, the move limits on the design variables alterations per one iteration are intro-
duced, again maximum and minimum. These move limits may vary from one design
variable to another and have to be adjusted to the extent of non-linearity of problem so
that Simplex predictions on the future behaviour of the structure do not differ considerably
from finite element solution. In general, move limits should be gradually shrunk as the de-
sign approaches the optimum. The accuracy of the approximation is required to be higher
when we get close to the optimum because the gains are small and can be swamped by
approximation errors. Adjustment of iteration move limits can be done easily by special
programmed procedures. Thus,

∆Tmin � ∆T � ∆Tmax . (5)

Two sets of intermediate always positive variables ∆T+ and ∆T̃ are introduced in order
to satisfy requirements of Simplex procedure. Omitting details (see, Pedersen, 1989) we
set

∆T+ + ∆T̃ = ∆Tmax −∆Tmin .

Thus we obtained the following problem of mathematical programming:

min
s.t. x∈D

Pmax .

Here D is defined by the following constraints

P +
∂P
∂T

∆T− IPmax � 0 ,
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∆T+ + ∆T̃ = ∆Tmax −∆Tmin ,

L +
∂Le

∂T
∆T = L0 .

Optimization procedure for the grillage. First of all, “the upper” and “lower” beams
are distinguished, either automatically or by designer. Optimization of separate beams
then has to be embraced by accuracy loop because pile placement scheme of one beam
influences reaction distributions in remaining beams. The following algorithm is em-
ployed:

Algorithm

Initialization:
Set stiffnesses at fictitious immovable supports of upper
beams simulating joints with lower beams and
accuracy tolerance.
Set stop← false.

while stop = false do
1.1. Optimize the upper beams using defined in the last

iteration stiffnesses of fictitious immovable supports.

1.2. Optimize the lower beams in addition to
specified loadings taking into account concentrated
loads coming from the upper beams.

1.3. if stiffnesses of the upper and lower beams at joints
match (with specified accuracy) do
Set stop← true.

end if
end while

1.4. Filtering results to exclude matching supports at joints of beams.

3.5. Global Optimization

We use the random search method: a number of points are generated in the feasible re-
gion. Then the previous serial algorithm is applied with different initial conditions. Since
all problems can be solved independently, the MS parallel algorithm is suited for paral-
lelization of the whole job.

We note that computational costs of each subproblem can be very different, thus a
priori distribution of these subproblems among processors will lead to a non-efficient
parallel algorithm. The parallel MS algorithm distributes jobs dynamically and good
efficiency can be obtained in many cases. Thus optimization of grillages is a good test for
our MS parallel tool.

This method of global optimization is very simple, but we can not guarantee that the
obtained solution is close to the global minimum. The probability of finding the global
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Fig. 3. The obtained optimized pile placement scheme.

minimum approaches one when the number of test points approaches infinity. The effi-
ciency of the algorithm depends on adaptivity of selected points, we attempt to distribute
the trial points nonuniformly in the feasible region with greater density in most promising
subregions.

4. Numerical Results

The following numerical examples demonstrate the capabilities of the proposed tech-
nique. We restrict ourselves with examples of reaction minimization of academic charac-
ter in order to be able to compare the obtained results with the optimal shapes of grillages
known in advance. Our primary goal is to test the efficiency of the parallelization tool,
but we also are interested to illustrate the efficiency of the global minimization algorithm,
when it is applied for optimization of grillages.

Example
Single beam is loaded with trapezoidal distributed loading of intensity varying from 60
on the leftmost node of beam to the 40 on the rightmost one. All the supports should
be generated by program; supports with specified vertical stiffness kspring = 105 were
given for program, while Rallowable = 10.20. The program generates the computational
scheme with 101 node and 100 finite elements, which yields 50 spring-supports. Note,
that the reactions in supports are not equal changing from 9.9 to 10.2 because the program
stops optimization loops after the allowable reaction is not exceeded in any support.

The task list is obtained by selecting 50 different initial distributions of spring-
supports. The computed pile placement scheme is shown in Fig. 3.

Computation Results
In our experiments we have used the homogeneous computer cluster of 7 IBM machines
RS6000 running AIX operating system. The computational results are presented in Ta-
ble 1. Here Sp is the speed-up of the parallel algorithm

Sp =
T1

Tp
,

and Ep is the efficiency

Ep =
Sp

p
,

Tp is the time taken by p processors to solve the problem.
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Table 1

Application of the global optimization algorithm

Processors, p Time, Tp Speedup, Sp Efficiency, Ep

1 365.1 1.00 1.000

2 188.8 1.93 0.967

3 1266 2.88 0.961

4 96.5 3.78 0.946

5 78.5 4.65 0.930

6 65.4 5.58 0.930

7 56.3 6.48 0.926

From these results it is clear that the parallel algorithm, which is generated by MS

tool, uses efficiently the computer resources and the speedup increases linearly with in-
creasing number of processors.

5. Conclusions

In this paper we have studied the performance of parallel global optimization algorithm,
which was applied to optimize grillage-type foundations. This algorithm was generated
by the Master–Slave algorithm parallelization tool. It is shown that speed-ups propor-
tional to the number of processors can be achieved on distributed memory systems, like
clusters of RS6000 computers.

The global optimization algorithm, which is used in this article, is very simple and
convenient for parallel realization. But the efficiency of such algorithm is not good for
many problems. Thus it is important to analyze the possibility to use more sophisticated
algorithms of global optimization, such as branch and bound algorithms. Black box global
optimization methods are the most promising for solving civil engineering problems (see,
Madsen and Žilinskas, 2000).

Considering the results of computational example, it should be stated that we did not
obtained better solution than in (Belevičius and Valentinavičius, 2000), where the opti-
mization was started from an initial supports placement scheme prepared by a special
expert–program. However, the proposed algorithm enables us to explore arbitrary num-
ber of initial distributions thus increasing the probability of finding a better solution. The
parallel computations are obvious recipe for success in such real-life applications as op-
timization of the foundation scheme, where the number of design parameters may reach
thousands. The simple engineering algorithms used in civil engineering design pack-
ages for problem of such size require days of computer time. On the other hand, now
widespread computer cluster technologies enable practical use of parallel computations
in engineering practice.
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M. Baravykaitė has graduated from Vilnius Gediminas Technical University (VGTU)
Faculty of Fundamental Sciences in 2002. She received Master degree in engineering
informatics. Now she is a PhD student in Vilnius Gediminas Technical University. Her
research interests include mathematical modeling, parallel computing and development
of software tools.
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Lygiagretinimo ↪irankio algoritmui “Šeimininkas–darbininkai”
taikymo pavyzdys

Milda BARAVYKAITĖ, Rimantas BELEVIČIUS, Raimondas ČIEGIS

Nagrinėjama lygiagretaus globaliosios optimizacijos algoritmo, taikyto polini ↪u pamat ↪u sijyno
optimizavimui, kokybė. Lygiagretieji skaičiavimai yra viena iš galim ↪u išeiči ↪u tokiose realiose ap-
likacijose kaip ši, kur planavimo kintam ↪uj ↪u kiekis gali siekti tūkstančius. Inžineriniai perrinkimo
algoritmai, naudojami kai kuriose konstrukcij ↪u projektavimo programose, tokiems uždaviniams
reikalauja 20–50 valand ↪u kompiuterio laiko. Tuo tarpu plintančios kompiuteri ↪u klasteri ↪u tech-
nologijos jau šiandien gali būti naudojamos inžinerinėje praktikoje. Lygiagretusis algoritmas gau-
namas naudojant automatin ↪i lygiagretinimo ↪irank ↪i. Aprašoma sluoksninė “Šeimininko–darbinink ↪u”
šablono bibliotekos struktūra. Pateikiamas detalus sijyno optimizavimo matematinis modelis. Skai-
tiniai eksperimentai, atlikti homogeniniame kompiuteri ↪u klasteryje iš 7 IBM RS6000 kompiuteri ↪u,
demonstruoja proporcing ↪a procesori ↪u skaičiui pagreitėjim ↪a. Šio konkretaus taikymo pavyzdžio
atveju nėra gauti geresni inžineriniai rezultatai. Tokia pati išvada teisinga ir skaičiuojant kitais
inžineriniais lokaliosios optimizacijos algoritmais. Tačiau siūlomi algoritmai leidžia ištirti bet kok ↪i
kiek ↪i pradini ↪u sijyno schemos artini ↪u, tuo būdu didindami tikimyb ↪e surasti geresn ↪i sprendin ↪i.


