
INFORMATICA, 2002, Vol. 13, No. 4, 381–392 381
 2002 Institute of Mathematics and Informatics, Vilnius

Data Aggregation Sets in Adaptive Data Model

Petras Gailutis ADOMĖNAS, Algirdas ČIUČELIS
Vilnius Gediminas Technical University
Saulėtekio 11, LT-2040 Vilnius, Lithuania
e-mail: adomenas@fm.vtu.lt, fmf@fm.vtu.lt

Received: January 2002

Abstract. This article presents the ways of identification, selection and transformation of the data
into other structures. Relation selection and transformation may change data quantity and order
of laying out. As a result the data are aggregated to the structure needed for application problem
algorithm. Data aggregation makes possible to adapt data structure presentation order and quantity
for any application problem. Naturally, there must be enough necessary data in the relation sets for
any application problem.

Key words: input data, application problem, data sets, relation.

1. Introduction

The adaptive data model consists of two parts. These are aggregation data sets and data
processing. This article investigates the first part only, i.e. data aggregation problems. The
data aggregation model is composed of input data identification and data transformation.
Input data are relations and input data identification means identifier formation of general
characteristics for all attribute meanings in one relation. This identifier lets select needed
relation from the others. Transformation is laying out of different relations in a necessary
order and quantity. Besides, it is possible to change structure by removing into one aggre-
gate data set that is necessary for solving a concrete application problem. An application
problem is regarded here as a data processing problem with the only requirement: its in-
put data are relational type data sets (DS) defined in (Adomenas, 2001). The correctness
of adaptability is understood in this case as laying out of formal expression of input data
identifiers into separate DS identifiers by which the sets identified have to provide any
application problem with input data, i.e., with the required DS schemes, their subsets,
extensions or their parts, the necessary amounts, as well as all the input data presentation
sequence or order.

There exist different approaches to the structure, integrity, and constraints of the re-
lational data model so far (Ullman, 1988; Thalheim, 1991; Bekke, 1992; Haeuer and
Saake, 1995). There is an attempt to unify some of the main attitudes and terminol-
ogy (Binemann-Zdanowicz, 2000). The relational data model is extended by new con-
ceptions and mechanisms (Adomenas, 2001). In such a situation, it is indispensable to
present some of the reasoning and their formal expressions so as they are treated (Ado-
mėnas, 2001).



382 P.G. Adomėnas, A. Čiučelis

Let there exist a data set (DS)

u =
Aj

cij
,

where Aj are attributes of the DS that make up its scheme, cij (1 � i � m, 1 � j � n)
are attribute values, n is the rank of the DS, and m is the order or power DS. All the
attribute values that have fixed (the same) i are called a tuple, and those having the same
j are called a domain of attribute Aj . Let uk be a set of relational sets which contain all
the attribute values cij or input data that are necessary to solve an application problem Pk .

Suppose every set uk is identified by the identifier Wk of the same k which is going
to be defined later. Then the aim of this article can be concretized as follows. Let < N >

be a data source and it includes uk necessary to solve the problem Pk. It remains to prove
that there exists an algorithm that is able to arrange DS identifiers Wk in such a way that,
it were possible to present uk according to these identifiers to solve any Pk:

uk
wk←−< N > .

This arrow show the directions of data removing from < N > to uk.
The most general idea of the formation theorem is formulated in this way. Since there

is no need to have all the attribute values cij of the sets uk to solve Pk, one has to prove
that there exists an algorithm of transformtion T l such that makes it possible to transfer
from the sets uk to the set u only those cij which are necessary and sufficient to solve Pk:

u
T l

←−< uk > .

Here l are kinds of transformations, whose realization enables us to transfer the nec-
essary cij from uk to u.

Assume that, to solve a concrete problem Pk we have to present input data, i.e., the
necessary amount, different schemes of DS, and in a proper order:

uk =
(
u1

1, u
1
2, . . . , u

1
n1

, u2
1, u

2
2, . . . , u

2
n2

, . . . , ut
1, u

t
2, . . . , u

t
np

)
(1)

Here indices 1, 2, . . . , t of u denote different schemes of DS, 1, 2, . . . , n1, . . . , 1, 2, . . .,
n2, . . . , 1, 2, . . . , np stand for extensions (copies of DS of the same scheme, filled with
data that are characterized by different parameters of identifiers). Thus n1, n2, . . . , np in-
dicate amounts of DS extensions of each different scheme. This formal way of input data
presentation is in fact impossible to be used in the model of an application problem. One
of the reasons why is that, if a certain problem has great amounts of DS, it is impossible to
indicate all of them in a model. Besides, some of the problems require the completeness
of input data (each of the schemes 1, 2, 3, . . . , t has n1, n2, . . . , np copies of extensions,
respectively), while for other problems it is not necessary. In addition, if we wish to use
the same data (only in different amounts and another order) for solving other or different
problems, it is indispensable to have a universal method for their identification or a model
for identifying all DS as a composite part of the mathematical model of an application
problem.



Data Aggregation Sets in Adaptive Data Model 383

2. Data Presentation

Let identifiers of DS have an analogous scheme as DS themselves composed of the at-
tributes A, B, D, where A is the attribute of a scheme identifier, B is the attribute of the
extension identifier and D is the attribute of the extension identifier of the time factor. As
a rule, the three attribute value codes mentioned are sufficient to identity DS, though it is
easy to notice from a further identifier analysis that another number (larger or smaller) of
identifiers does not change the essence of their formal expressions.

Suppose attribute A values are ax, where x are codes of concrete schemes, attribute
B values are by, where y is the code of a subject which the data belong to, D is the code
z of the time factor attribute dz .

Thus, any DS is identified by a relational set where ax, by, and dz are the values of
attributes A, B, and D, and Wk is the relational set of identifiers:

Wk =
[

A

ax

B

by

D

dz

]
. (2)

Obviously, for any application problem, it is always possible, to arrange input data
for its algorithm in the proper sequence, as shown in (1), because otherwise the existence
of the problem itself would be impossible, however, in the mathematical model of this
problem sequence (1) has to be replaced by the set of identifiers:

axbydz,

Otherwise the data presentation model would not exist and it would be necessary to
present input data that may differ for each particular problem. Apparently it is reason-
able to present the set of identifiers (2) in the application problem model in a concise
mathematical form. Then, for input data of a particular problem, we indicate the nec-
essary parameters typical only of this problem. In such a case, we have to extend the
indicated mathematical data presentation form by programming means into a sequence
of identifiers of type (2) before solving the problem, later on replacing it by the sequence
of input data (1). But then we have to prove that it is possible to extend, by the same
ways, the mathematical identifier model with different parameters to a sequence of input
data identifiers, correct to any application problem.

Let there any of identifier indices x, y, z be denoted as w and expressed by natural
numbers, and any value of identifier attributes a, b, d are denoted by g.

Theorem 1. One can express any attribute value gw by the following modifications of
the indices w presentation

gw=g1−4 and g20,4−1,8,7,11−13,6, (3)

and by the ways of extension of these modifications:

g1−4 = g1, g2, g3, g4 and

g20,1−4,8,7,11−13,6 = g20,g4, g3, g2, g1,g8,g7, g11, g12, g13,g6, (4)



384 P.G. Adomėnas, A. Čiučelis

that would satisfy the requirements of any application problem algorithm to the ordering
of input data identifiers and amounts of DS extensions for each different but necessary
scheme of this problem.

In the case gw = g1−4, extension of identifier indices is very explicit, if we have in
mind that not only these four indices of identifiers can be involved in the extension, but
also some other amount, e.,g.,

gw = g1−66 = g1,2,3,...,65,66.

Besides, there is no need whatsoever that indices should start from one or that they be
of increasing order:

g12−33 = g12,13,14,...,32,33; g12−3 = g12,11,10,...,4,3.

It means that all the data identifier presentation and extension variants mentioned are
correct and they embrace any variants of concise data presentation and their extension,
where identifier indices are presented in successive increasing or decreasing natural num-
bers. In addition, the number of groups in one gw of thoseindices is not limited:

gw = g2−5, g66−61, . . . , g33−38 = g2,3,4,5, g66,65,64,63,62,61, . . . , g33,34,35,36,37,38.

The second case, shown in expression (3), differs from the considered one only in that
individual indices or their groups, such as g8,7,33 in expansion (4), can be inserted be-
tween the given expressions and expansions in any order and quantity. So, the latter case
increases and facilitates the possibilities of data presentation variety even more than the
first case considered. After estimating all the given cases, it is evident that the indicated
expansion ways allow DS identifiers, included in expression (2), to present input data in
any order and quantities, necessary for a particular application problem. First of all, the
identifiers are extended according to a indices, then b indices, and at the end by d indices.
This makes up, however, but one sixth of all the possible expansion ways, since awbwdw

arranged in any order identify one and the same DS. Then we can select, for a partic-
ular application problem, one of the suitable expansion ways with a different identifier
arrangement ordering in the expansion of the same DS identifiers:

awdwbw ≡ awbwdw ≡ bwawdw ≡ bwdwaw ≡ dwawbw ≡ dwbwaw. (5)

The latter identities show all the possible arrangement both in the presentation and
extension of an identifier. When analyzing expression (3) we have shown all the possible
variants, indicating DS quantities and their ordering inside of each permutation in ex-
pression (5). Consequently, the ability of satisfying the requirements to input data for any
application problem algorithm has been proved.



Data Aggregation Sets in Adaptive Data Model 385

3. Data Transformations

Let input data to solve a particular problem be collected in data sets u. We regard data
transformation to be data transference from one and the same scheme DS uk to a set u,
having a possibility to change the structure and content of DS during the transformations.
If we transfer data of other DS schemes to u, then we need other kinds of transformation.

Possible variants of transformations from one and the same scheme of DS are as
follows:

a) all cij are necessary from all DS without changing the ordering of cij ;
b) all cij are necessary from all DS changing the inner ordering of cij ;
c) a certain part of tuples is necessary from each DS;
d) a certain part of domains is necessary from each DS;
e) certain separate cij are necessary from each DS;
f) all the possible combinations of variants b, c, and d are necessary from different

DS schemes: b, c, d; b, c; b, d; c, d.

The most general formula of transformation will be:

u
T l

←−< uk > .

Dependent on the transformtation formula parameters, one can transfer DS data from
sets to the same set u, thus forming u of quite a different structure and content than those
of (1). Obviously, we have to extend the abovementioned most general transformation
formula up to the reference to inner addresses of DS cij having a possibility of selecting
necessary tuples, domains, individual cij and all possible their combinations in such a
way that it were possible to construct u such that would enable us to choose input data in
their content, structure and quantities suitable for any application problem:

T l
(
{i/j}1[i/j]2

q←− {i/j}3[i/j]4
)
. (6)

Here l denotes the code of the kind of transformation to be defined later on. {i/j}1,
[i/j]2, {i/j}3 and [i/j]4) stand for attribute value addresses in the sets identifier by up-
per indices 1 and 3, 2 and 4, all the four, three or two of which can be involved in the
transformation, dependent on the transformation code l. If all the four sets are involved in
the transformation, then the contents of addresses {i/j}1 and {i/j}3 are mutually com-
pared to verify if they satisfy the transformation condition q, and the data transfer from
[i/j]4 to [i/j]2 is performed only in case the condition q has been satisfied. The address
of the attribute value cij in the set is shown by i and j, which can have different values
for different sets at one and the same moment of transformation, despite the fact that they
are identical in formula (6).

If four sets are involved in the transformation, then in some of them (say 1 and 3) we
look for data that satisfy q, while the transformation itself is performed in the other sets
(2 and 4). If three sets are involved in the transformation, then

T l
(
{i/j}1[i/j]2

q←− [i/j]3
)

(7)



386 P.G. Adomėnas, A. Čiučelis

In this case, set 1 whose data are directly compared to that of the data source which is
identified in the latter formula as set 3, since set 4 is not involved in the transformation.
If only two sets are involved in the transformation, then the data are both compared and
transformed in the same sets:

T l
(
[i/j]1

q←− [i/j]2
)
.

The transformation condition q may have different values: =, �=, <, >, ∀, ∃, etc., or
not be present in the transformation formula at all (unconditional transformation). In the
case of building up input data, it suffices for q to be =, and also two sets are enough: that
of the data source and a set that accepts data. The equality and other values of q as well as
the whole formula (6) are used in those cases where transformations are directly involved
in data processing but not in the formation of the data set u.

The kinds of transformations expressed by the code l may be as follows:

– unconditional transformation (l = 0);

– transformation when q is satisfied first and thus the transformation is completed by
one and the same transformation formula (l = 1);

– transformation when q is satisfied, and after the transformation, other cases to sat-
isfy q are sought as long as the whole data source has been looked through, i.e.,
all the DS of one and the same scheme from uk, after which the transformation is
completed (l = 2);

– transformation when q is satisfied, and after it other cases to satisfy q are sought
as long as the whole data source has been looked through, i.e., all the DS of one
and the same scheme from uk, returning afterwards to the beginning of the data
source and seeking cases to satisfy q, after changing the contents of address {i/j}1,
and completing the transformation only when all the data in the addresses {i/j}1,
necessary for comparison have been exhausted (l = 3).

In case we need a sub kind of the kind transformation, after the first digit which means
a kind of transformation the next digit is indicated, which stands for a sub kind.

Theorem 2. For any application problem the data transformation

T l
(
{i/j}1[i/j]1 =←− [i/j]2

)
,

can form such an input data set u that it were possible to solve that problem if the data
were indicated in the sets uk, i.e., in the data source.

The addresses {i/j}1 and [i/j]1 are addresses of the same set, only the former {i/j}1
show the contents of which address is compared with the address contents of the set
[i/j]2, while the latter [i/j]1 indicate to which addresses the contents of [i/j]2 are trans-
ferred.



Data Aggregation Sets in Adaptive Data Model 387

If, for each kind of transformation l logically compatible with each variant of the
transformation from a to f, there exists a single-valued transformation algorithm ex-
pressed by the transformation formula with different parameters, then one can consider
this theorem proved.

If, for a particular application problem, all cij from all the DS (1) are necessary with-
out changing the ordering of cij (variant a), obviously it is unconditional transformation
(l = 0)

T 0
(
[i/j]1 ←− [i/j]2

)
,

where 1, or the structure of the set u and that of the same scheme sets 2 from uk are
identical. Since the contents cij of the respective addresses of the mentioned sets are also
the values the of the same attributes, any expansion of sets in the set u has no sense. In
other words, after every transformation we solve the problem of processing u and perform
the next transformation of cij as long as all the sets of the same scheme in the data source
have been exhausted.

If, for a certain application problem, all cij from all the DS (1) are necessary changing
the inner ordering of cij , then we divide the transformation procedure into two sub kinds
of l = 0: namely, l = 01 and l = 02. As l = 01, the transformation procedure is just like
in the previous case except that the addresses [i/j]1 are ordered other than that of [i/j]2.
There can be x = [(m× n)!− 1] different orderings, where m is the order of the set, and
n is its rank. Thus, we subtract a unit from all the possible transformations of addresses,
since the ordering of [i/j]2 cannot by repeated and the transformation has the necessary
condition, in this case, to change the ordering of cij . As l = 02, all the sets of one scheme
in the resulting set u are accumulated in the row of sets

T 02
(
[i + n/j]1 ←− [i/j]2

)
,

or the column of sets

T 02
(
[i/j + m]1 ←− [i/j]2

)
.

In both cases transformations are performed by inserting one set of the same scheme
into u each time distinguishing the first transformation, and increasing the current address
components by the rank i + n or power j + m of the set.

If there is a need for a certain part of tuples from each of the same scheme DS (vari-
ant c), then

T 2
(
{i/j}1[i/j]1 =←− [i/j]2

)
.

The set that accepts data and the one indicating tuple identifiers is the same set,
though, if we have to preserve identifiers, we may construct a special set of tuple identi-
fiers {i/j}1:

T 2
(
{i/j}1[i/j]2 =←− [i/j]3

)
.



388 P.G. Adomėnas, A. Čiučelis

Ordering of data transferred to u, in the set [i/j]2, into tuples or domains following
successively one after another has no difference in principle, i.e., has no influence of
principle on the algorithm of an application problem, therefore it is not considered as a
separate case. Consequently, as a result of transformation, u will consist of all the tuples
of sets that have one and the same key of one and the same scheme. When

T 3
(
{i/j}1[i/j]2 =←− [i/j]3

)
,

u will contain all the tuples of the indicated keys of all {i/j}1.
If we need a certain part of domains from one and the same DS, then the transforma-

tion is unconditional, because domains are fixed in a scheme by one component i of an
address and that address must not change in set 2 since, in the opposite case, we should
have a set of another schemes. However, ordering of addresses i in the set u, i.e., set 1, in
this case, can be any, in accordance with the requirements of the algorithm of a particular
application problem:

T 0
(
[i]1 ←− [i]2

)
.

Attribute values of one and the same domain are transferred to the same domain as
long as the sets of the same scheme

T 03
(
[2, 4, 1, 6]1 ←− [1, 2, 3, 4, 5, 6]2

)

have been exhausted in the data source. With such a transformation formula, the data
source consists of two sets:

uk =

A B C D E F A B C D E F

1 2 3 4 5 6 1 2 3 4 5 6

a 2 4 77 3 4 c 5 66 2 6 7
d 11 5 4 1 2 f 3 23 1 2 4
b 34 3 5 7 9 a 3 6 8 8 6
e 4 6 8 3 2 , d 1 9 5 4 8

Here numbers 1, 2, 3, 4, 5, 6 denote addresses i of the domains, A, B, C, D, E, F are
attributes, and cij are attribute values. The set u is of the shape

u =

B D A F

2 4 1 6

2 77 a 4
11 4 d 2
34 5 b 9
4 8 e 2
5 2 c 7
3 1 f 4
3 8 a 6
1 5 d 8



Data Aggregation Sets in Adaptive Data Model 389

We can transform the domains by means of conditional transformations:

T 31
(
{i}1[i]2 =←− [i]3

)
.

In this case, we indicate the necessary attribute values in the addresses {i/j}1, and if a
domain has at least one the same value, then it is transformed.

For instance, if f, 3 ∈ {i/j}1, then

u =

C E A B

3 5 1 2

4 3 c 5
5 1 f 3
3 7 a 3
6 3 d 1

If certain individual cij from each DS of the same scheme are necessary, then this
case is analogous to the previous one, only we transform not all the domains indicated,
but only those cij that are indicated for two addresses. Therefore the formulas must also
contain the component of addresses j:

T 04
(
[i/j]1 ←− [i/j]2

)
,

T 32
(
{i/j}1[i/j]2 ←− [i/j]3

)
.

Mixed variants of transformations presented in case f: b, c, d; b, c; b, d; c, d, are evi-
dent since they are performed using the abovementioned formulas, each case presenting a
corresponding formula. Before that, one has to properly adjust the ordering of sets of var-
ious schemes in the data source uk. It means that the sequence of transformation formula
ordering has to correspond to the order of DS extensions of the same schemes assigned to
those formulas. The transformation is performed by the same formula until the extensions
of the set ax of the same schemexhave been exhausted in the set uk. Then we go over to
another transformation formula and take in turn DS extensions from another scheme in
the data source uk, whose data have to be transformed by the latter formula.

Example. Suppose a1 is the goods transportation relation the scheme of which is
formed of attributes: A1 as the quantity of transported goods, A2 as denomination of
transported goods, A3 as the transportation distance, A4 as the vehicle identification num-
bers. Then goods transportation DS is:

a1 =
[
A1

ci1

A2

ci2

A3A4

ci3ci4

]
,

where i shows the number of runs.
The names of transportation enterprises are b1, b2, b3; d1, d2 mean the transportation

dates.



390 P.G. Adomėnas, A. Čiučelis

It is obvious that every a1 must be identified by one of b and d. Thus, to solve appli-
cation problems of every transporter it is necessary to get all their DS as input data of a
concrete problem:

W1 = a1b1d1,2; W2 = a1b2d1,2; W3 = a1b3d1,2.

To determine the number of transported goods a day the input data should be:

W4 = a1b1−3d1; W5 = a1b1−3d2.

Naturally, Wk aggregates the input data only uk, where k may vary from 1 to 5. To
solve transportation problems resulting in numbers certain data transportations should be
made. An example of such transportation may be data moving from one structure into
another if we want to know how many goods are transported by the vehicle c34. Then out
of all transportation data

Wk = a1b1−3d1,2,

the ci1 with c34 in the fourth column of its tuple is transformed:

T 2
(
{1}1[2]1 =←− {4}2[1]2

)
.

In the address {1}1 of the first column c34 is presented. It is compared with the con-
tents of input data, i.e., with the contents of the fourth column of the second DS {4}2.
When the data coincide, the number indicating the quantity of transported goods is moved
from [1]2 to [2]1. Then at the end of transformation all the quantity of goods taken by
c34 will be in [2]1. By similar selection and transformation of input data it is possible to
aggregate necessary input data for solving any application problem if there are sufficient
data in Wk.

4. Conclusions

The theorems proved allow us to assert that a part of the adaptive data model – input data
presentation model – is correct. For any application problem, if only its input data are of
defined DS structure, it can provide with input data of the necessary quantity, structure,
contents, and in the proper order. We confirm thereby a possibility of the existence of an
adaptive data model in terms of data presentation.

References

Ullman, J.D. (1988). Principles of Database and Knowledge-Base Systems. Computer Science Press, Rockville.
Thalheim, B. (1991). Dependencies in Relational Database. Teubner, Leipzig.
Bekke, J.H. (1992). Semantic Data Modeling. Prentice Hall.



Data Aggregation Sets in Adaptive Data Model 391

Haeuer, A., G. Saake (1995). Datenbanken, Konzepte und Sprachen. International Thomson Publishing Group
(in German).

Binemann-Zdanowicz, A. (2000). Current issues in databases and information system. In East-European Con-
ference on Advances in Databases and Information Systems Held Jointly with International Conference on
Databases Systems for Advanced Applications. Prague, Czech Republic. pp. 307–314.

Adomenas, P.G. (2001). Data functional feature sets and their adaptability. In The 5th East-European Confer-
ence on Advances in Databases and Information Systems. Vilnius, Lithuania. pp. 131–140.

P.G. Adomėnas is a head of Information Systems Department in Vilnius Gediminas
Technical University. His research interests include investigation of relation data model
adaptability.

A. Čiučelis is a dean of Fundamental Sciences Faculty in Vilnius Gediminas Technical
University. His research interests include application of optimization theory and methods
in modern technologies.



392 P.G. Adomėnas, A. Čiučelis

Duomen ↪u agregavimo aibės adaptyviajame duomen ↪u modelyje

Petras Gailutis ADOMĖNAS, Algirdas ČIUČELIS

Tiriami reliacinio duomen ↪u modelio adaptyvumo ypatumai. Agreguojamos pirmini ↪u duomen ↪u
aibės taip, kad jos tikt ↪u bet kokiam taikomajam uždaviniui spr ↪esti, jeigu tik duomen ↪u šaltinyje
(bazėje) j ↪u pakanka. ↪Irodoma galimybė duomenis agreguoti dviem metodais: reikiam ↪u duomen ↪u
aibi ↪u atrinkimu ir reikiam ↪u duomen ↪u transformacija ↪i agreguojamas aibes. Agreguotos aibės turi
taikomajam uždaviniui reikiam ↪a struktūr ↪a, duomen ↪u kiek ↪i ir turin ↪i.


