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Abstract. An adaptive control scheme for mechanical manipulators is proposed. The control loop
essentially consists of a network for learning the robot’s inverse dynamics and on-line generating
the control signal. Some simulation results are provided to evaluate the design. A supervisor is
used to improve the performances of the system during the adaptation transients. The supervisor
exerts two supervisory actions. The first one consists basically of updating the free-design adaptive
controller parameters so that the value of a quadratic loss function is maintained sufficiently small.
Such a function involves past tracking errors and their predictions both on appropriate time hori-
zons of low performances during the adaptation transients. The supervisor exerts two supervisory
actions. The second supervisory action consists basically of a on-line adjustment of the sampling
period within an interval centered in a nominal value of the sampling period. The sampling period
is selected so that the transient of the tracking error is improved according to the simple intuitive
rule of using a sampling rate faster as the tracking error changes faster.

Key words: adaptive control, adaptation transients, supervised adaptive control.

1. Introduction

The problem of designing adaptive control laws for rigid robot manipulators has inter-
ested researchers for many years. The development of effective adaptive controllers rep-
resents an important step towards high-precision robotic applications. Since robotic ma-
nipulators are inherently nonlinear systems with time-varying inertia and gravitational
loads, the adaptive control approach has been proposed as a feasible technique to achieve
consistent performance in the presence of configuration and payload variations.

In recent years, adaptive control results for robotic systems have included rigorous
stability analysis (Craig, 1988; Slotine and Li, 1989; Li and Slotine, 1989; Sadegh and
Horowitz, 1990; Feng and Ren, 1995) and the existence of globally convergent adaptive
control laws has been established. On the other hand, over the last few years the possible
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use of learning networks within a control systems environment has been considered by
several authors (Psaltis et al., 1988; Narendra and Parthasarathy, 1990; Antsakis, 1990;
Hunt et al., 1992; Sadegh, 1993; Gupta and Rao, 1994). The typical encountered approach
is the use of the network as a modeling technique to approximate either the plant’s direct
or inverse dynamics, taking advantage of the network’s capability of nonlinear mapping.
Concerning the application of learning controllers to control mechanical manipulators,
several works have appeared in the literature, for example Miyamoto et al. (1988), Ozaki
et al. (1991), Sundararajan et al. (1993), Teshnehlab and Watanabe (1994), Pham and
Oh (1994). Many of these works use the neural network’s learning capability to off-line
estimate the inverse dynamics of the manipulator so that the control law can be generated.

On the other hand, it is usually a key design point obtaining a good performance
when any control design is performed. In this context, it is important the achievement of
good transient performances when synthesizing adaptive control laws since it is known
that those designs are subject to poor performances if special tools are not involved in
the design. Particular useful tools for that purpose are the on-line updating of the free
parameters of the adaptation algorithm and the on-line generation of the sampling period
so that the tracking error is improved during the transient (see, for instance, De la Sen,
1984a; 1986). The off-line selection of the sampling period has been proved to be also
useful for the improvement of the performance in regulator-type problems (Schlueter and
Levis, 1973; Barry, 1975; Glasson, 1980).

In this paper, an adaptive control scheme for mechanical manipulators is presented
that takes advantage of the relationships between adaptive and neural controllers.

The control loop basically consists of a simple neural network which learns the robot’s
inverse dynamics, so that the control signal can be on-line generated. The synthesized
controller involves the use of a supervisor to improve the transient performances since
such a strategy was proved to be useful in classical problems of adaptive control to im-
prove the adaptation transients. See De la Sen (1984a; 1985). One takes the design advan-
tage arising from the freedom in selecting online the so-called free-design parameters of
the algorithm. Such parameters of the estimation algorithm are those which can be freely
selected in an admissibility domain being compatible with convergence and stability. The
proposed supervisor consists of two actions, namely:

1. An on-line updating procedure of one of the free-design parameters of the estima-
tion algorithm so that the adaptation rate is governed according to an extra adap-
tation loop in such a way that the tracking error during the adaptation transient
exhibits improved performances. Such a strategy may be interpreted as a high-
level supervisor which implements a simple empirical suboptimization procedure
of the prefixed admissible values in the free-design parameter of the adaptation al-
gorithm so that a weighted generalized quadratic tracking error is minimized. An
optimization horizon including a set of samples including past measurements and,
eventually, tracking error predictions is considered.

2. The sampling period is generated from an updating sampling law within an interval
centered around its nominal value being suitable for operation in each particular
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Fig. 1. Model-based feedback linearization control scheme.

application. The adaptive sampling law guarantees that sampling occurs at a faster
rate as the tracking error varies rapidly with time. See, for instance, Hsia (1972;
1974) and De la Sen (1986) for a general description of the adaptive sampling
problem as well as description of a general analytic method to derive wide sets of
adaptive sampling laws so that the transient performances are improved compared
to the usual case when constant sampling rates are used. Simulation examples show
that the obtained results, without involving the use of supervisor, are comparable to
those achieved using adaptive computed-torque control techniques. The use of the
supervisor improves those performances during the transients. Note that the use of
a supervisory scheme is linked to the potential use of a multimodel control scheme
since the some parameters, like the sampling period or the adaptation gain, which
are very crucial in the dynamics can be online updated by the supervisory action.

The paper is organized as follows. Section 2 formulates the problem of controlling
a mechanical manipulator with unknown parameters. Sections 3 solves the controller
synthesis by using an adaptive approach to the control problem. Section 4 discusses the
proposed supervisor for improvement of the adaptation transients and the closed-loop
stability is also discussed. Section 5 presents simulation examples to evaluate the designs
and comparisons between the situations of absence and implementation of the proposed
supervisor. Finally, some concluding remarks are given in Section 6.

2. Problem Formulation

The vector equation of motion of an n-link robot manipulator can be written as:

τ = M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) + F (Θ, Θ̇), (1)

where τ is an n × 1 vector of joint torques; Θ, Θ̇ and Θ̈ are the n × 1 vectors of joint
positions, speed and accelerations, respectively; M(Θ) is the n × n mass matrix of the
manipulator; V (Θ, Θ̇) is an n × 1 vector of centrifugal and Coriolis terms; G(Θ) is an
n× 1 vector of gravitational terms and F (Θ, Θ̇) is an n× 1 vector of friction terms.

The equations of motion (1) form a set of coupled nonlinear ordinary differential
equations which are quite complex, even for simple manipulators. One of the most widely
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used techniques to design a trajectory following control system for such a device is the so-
called computed-torque control using feedback linearization (Craig, 1986). The method
basically consists in introducing a nonlinear model-based feedback to compensate for all
the nonlinearities present in the robot (see Fig. 1). If the model of the system is accurately
known, this nonlinear inner loop decouples and linearizes the robot’s dynamics in such a
way that a linear outer loop can be used to efficiently control the resulting linear system
to track a desired trajectory Θd, Θ̇d, Θ̈d. A frequently used computed-torque control
scheme is shown in Fig. 1 where N(·, ·) is a nonlinear block which includes nonlinear
effects on the plant. From the block diagram, the nonlinear, model-based control law is
found to be:

τ̂ = M̂(Θ̈)τ ′ + V̂ (Θ, Θ̇) + Ĝ(Θ) + F̂ (Θ, Θ̇), (2)

where M̂(Θ̈), V̂ (Θ, Θ̇), Ĝ(Θ), F̂ (Θ, Θ̇) are estimates of M(Θ), V (Θ, Θ̇), G(Θ),
F (Θ, Θ̇), respectively, where τ̂ is identical to τ in (1) with the parameters being replaced
by their estimates and τ ′ has been calculated as:

τ ′ = Θ̈d + KvĖ + KpE (3)

with Kv and Kp n × n constant diagonal matrices and the servo error E defined as
E = Θd −Θ.

From (1) and (2) and the servo error, the error torque becomes:

τ̃k = τk − τ̂k =M̃(Θ)Θ̈ + Ṽ (Θ, Θ̇) + G̃(Θ)+F̃ (Θ, Θ̇)−M̂(Θ)(KvĖ+KPE)

= M̃(Θ)Θ̈d + Ṽ (Θ, Θ̇) + G̃(Θ) + F̃ (Θ,
...

Θ)

+M̂(Θ)
(
Ë − M̂−1(Θ)

(
M̃(Θ)Θ̈ + Ṽ (Θ, Θ̇) + G̃(Θ) + F̃ (Θ, Θ̇)

))

= M̂(Θ)Ë + M̃(Θ̈)Θ̈d + M̃(Θ)Ë − M̃(Θ)Θ̈d = MË. (4)

Using (1–4), by calculating the torque from (2) using (3) and then substituting in the
second-order differential equation obtained from (4) the closed-loop dynamics equation
is found to be:

Ë + KvĖ + KpE = M̂−1(Θ)
[
M̃(Θ)Θ̈ + Ṽ (Θ, Θ̇) + G̃(Θ) + F̃ (Θ, Θ̇)

]
, (5)

where the modeling parametrical errors are

M̃ (Θ) = M(Θ)− M̂(Θ); Ṽ (Θ, Θ̇) = V (Θ, Θ̇)− V̂ (Θ, Θ̇);

G̃(Θ) = G(Θ)− Ĝ(Θ); F̃ (Θ, Θ̇) = F (Θ, Θ̇)− F̂ (Θ, Θ̇).

If all the robot’s parameters are perfectly known, the closed loop equation (5) takes
the following linear and decoupled form since the terms in the right-hand side brackets
of (5) become zero:

Ë + KvĖ + KpE = 0, (6)
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so that it becomes clear that a simple suitable selection of Kp and Kv can easily regulate
the evolution of the servo error. However, although some parameters of a robot are easily
measurable, some other effects, such as friction, mass distribution or payload variations
can not, in general, be accurately modeled, and thus the assumption of obtaining negligi-
ble modeling errors is quite unrealistic in practice. In these conditions, it looks apparent
that some sort of adaptive parameter estimation mechanism should be included in the
control loop, so that equation (5) became approximately linear and uncoupled and the
servo errors could be asymptotically eliminated.

3. Adaptive Control Scheme

The equations of motion (1), although quite complex and nonlinear in general, can be
expressed in a linear in the parameters form, since all the potentially unknown parameters
(link masses, lengths, friction coefficients, etc.) appear as coefficients of known functions
of the generalized coordinates. In an adaptive control system design context, one usually
takes the advantage of the above property of linearity in the parameters by rewriting (1)
as:

M(Θ)Θ̈ + V (Θ, Θ̇) + G(Θ) + F (Θ, Θ̇) = W (Θ, Θ̇, Θ̈)P, (7)

where P is an r × 1 vector containing the robot’s unknown parameters and W (Θ, Θ̇, Θ̈)
is an n × r matrix of known nonlinear functions, often referred to as regression matrix.
In the same way, the r × 1 estimated parameters vector P̂ fulfil:

M̂(Θ)Θ̈ + V̂ (Θ, Θ̇) + Ĝ(Θ) + F̂ (Θ, Θ̇) = W (Θ, Θ̇, Θ̈)P̂ , (8)

and thus:

M̃(Θ)Θ̈ + Ṽ (Θ, Θ̇) + G̃(Θ) + F̃ (Θ, Θ̇) = W (Θ, Θ̇, Θ̈)P̃ , (9)

where the parameter estimation error P̃ has been defined as P̃ = P − P̂ . Figs. 2 and
3 show the adaptive control scheme. The design is a neural extension of the computed-
torque control strategy. A two-layered learning network with nxr inputs and n outputs is
used to learn the manipulator’s inverse dynamics, so that the control law can be on-line
generated. The network’s inputs are known nonlinear functions of the system response
(more concretely, the elements wij of the regression matrix W (Θ, Θ̇, Θ̈) are defined in
(7)), while its outputs are estimates of the input torques to the robot:

τ̂ (t) = τ̂k =
n∑

i=1

r∑
j=1

wij(Θ, Θ̇, Θ̈)p̂jk
for t ∈ [tk, tk+1), (10)

which is a piecewise constant signal from the zero-order sampling and hold device. Defin-
ing the connection weights vector and the estimated torques vector as

P̂ = [p̂1, p̂2, . . . , p̂r]
T ; τ̂ = [τ̂1, τ̂2, . . . , τ̂n]T , (11)
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Fig. 2. Computed-torque control scheme.

Fig. 3. Proposed neural control scheme.

(10) can also be expressed in a familiar matrix form:

τ̂k(t) = τ̂k = W (Θ, Θ̇, Θ̈)P̂k for t ∈ [tk, tk+1) , (12)

which is formally the same as (8) where P̂k is a parameter vector which is estimated in a
discrete-time way, i.e., it is only updated at sampling instants by the adaptation algorithm.
The inverse dynamics is learned by measuring the input and output signals in the robot
and then adjusting the connection weights vector at each discrete instant kTi (with Ti

being the i-th sampling period) by using an extension of the well-known Widrow–Hoff
delta rule (Widrow and Lehr, 1990):

P̂k+1 = P̂k +
FkW

T
k Eτk

ck + ‖WkFkWT
k ‖

, (13a)

Fk+1 =
1
λk

(
Fk −

FkW
T
k WkFk

ck + ‖WkFkWT
k ‖

)
, (13b)
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where Eτk is the prediction error vector, defined as Eτk = −τ̃k = τ̂k − τk, WT
k (·) is the

regression matrix used for updating the parameters, and Fk is an adaptation gain matrix
which satisfies Fk = FT

k and is positive definite for all samples k � 0. Both symmetry
and positive definiteness are achieved automatically for all sample by initializing the
algorithm with F0 = FT

0 > 0. The parameter sequenceλk ∈ (0, 1) is the forgetting factor
used to update the adaptation gain matrix and ck ∈ (0,∞) is a scalar for all k � 0. Both
free parameters of the algorithm have to satisfy the given stability constraints in order
to achieve closed-loop stability. The matrix sequence obtained from (13.b) is positive
definite (at the limit it can become semidefinite) and time-decreasing. The norms taken
in (13) are the Euclidean norms. The above approach is used in the simulated example
given in Section 5. 3 to evaluate the supervision efficiency.

If the manipulator’s inverse dynamics is correctly learned by the neural network, both
nonlinear dynamics cancel each other according to the block diagram shown in Fig. 3.
Thus, the closed-loop system turns linear and the closed-loop tracking properties are ad-
justed with a suitable selection of the proportional and derivative gain matrices Kp, Kv.
This is the same effect obtained using the conventional adaptive control approach de-
scribed in the previous section.

Remark 1. The given neural control scheme uses an extremely simple linear neural net-
work to learn the manipulator’s nonlinear inverse dynamics. This can be accomplished
by using the nonlinear prefilter W at the network’s input, so that the composite device
(nonlinear filter plus linear network) is able to map a nonlinear function. This partitioned
design greatly simplifies the analysis of the overall control scheme, since it formally re-
duces to a conventional adaptive control system. However, it seems clear that, in general,
nonlinear neural networks should be employed to efficiently learn a nonlinear dynamical
behavior.

4. Design of a Supervisor for Improvement of the Transient Performances

4.1. Heuristic Motivation

Note, by inspection, that the learning rule (or adaptation algorithm) Eqs. (13) has an
adaptation rate highly dependent on the size of the ck-updating parameter which is a
free-design parameter provided that it is positive and bounded. Assume that the gain λk

is constant. The adaptation rate is very low when the ck-sequence takes very large values
compared to the square of the regressor norm. The adaptation rate increases as such a
sequence takes smaller values compared to the square of the regression matrix norm.
Thus, a good solution for improvement of the transients will be the on-line updating of
such a sequence to govern the rate of the parametrical adaptation. A similar reasoning
applies when using γk as free-design on-line updated parameter within the interval (0, 2).
A second action of the supervisor as it was commented in the introductory section is
concerned with the on-line choice of the sampling period within an interval centered
around a nominal sampling period. The boundary of the variation domain of the sampling
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period is established according to ´a priori´ knowledge about guaranteeing closed-loop
stability and a prefixed bandwidth. Other considerations as, for instance, the upper limit
of the sampling rate or the achievable performance of the application at hand (Hsia, 1972;
1974; De la Sen, 1984b) have to be also taken into account. The overall supervisor is
designed for:

– an on-line calculation of a free parameter of the adaptation algorithm;

– a calculation of a time-varying sampling period dependent on the time variation of
the tracking error.

It is based upon three main heuristic rules, namely:

Rule 1. If the tracking error is increasing with respect to preceding samples then de-
crease (increase) the last value of the sequence of the free-design parameter provided
that the previous action (i.e., the kind of supervisory action at the preceding sample) was
to increase (decrease) the value of such a sequence.

In other words, if the tracking performance is deteriorating then correct the supervi-
sion philosophy of the last action exerted on the value of the free parameter f the algo-
rithm.

Rule 2. If the tracking error is decreasing with respect to preceding samples then de-
crease (increase) the last value of the sequence of the free design parameter provided
that the previous action was to decrease (increase) it. [In other words, if the tracking
performance is being improved then do not modify the last action exerted on the value of
the free parameter].

Rule 3. Compute a time-varying updated sampling period as being inversely propor-
tional to the absolute value of the tracking error time-derivative within a predefined in-
terval [Tmin, Tmax] = [T0−∆T, T0 +∆T ] centered around a prefixed nominal sampling
period T0.

Thus, the sampling period decreases as the tracking error absolute value grows faster
and vice versa, (Hsia, 1972; 1974; De la Sen, 1986). In Rule 3, ∆T

T0
has to be small since

the discrete parametrization of the plant is time-varying under time-varying sampling
(De la Sen, 1984b; Fuster and Guillen, 1987). Thus, small variations of the sampling
period lead to small deviations of the plant parametrization from time-invariance and
the estimation algorithm (13) is still valid, in practical situations. This is the philosophy
used in this paper to design the admissibility domain of the sampling period. Another
useful variation would be, for instance, to use a time-varying whose length decreases
asymptotically converging to the nominal sampling period; i.e., [Tmin(k), Tmax(k)] is
designed so that Tmin(k) → T0 and Tmax(k) → T0 as k → ∞. On the other hand, Rule
3 can also be modified by involving higher-order time-derivatives of the tracking error
(Hsia, 1974; De la Sen, 1986).

The above three actions are completed with the following design philosophies:

(1) The sizes of the modifications in the successive values of the free-design parame-
ter sequence (i.e., the ck-sequence) of the parameter adaptive algorithm have to be
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related to the ‘amplitudes‘ of the improvement or deterioration of the transient per-
formances within the stability constraints for ck in (13) of its values being positive
and bounded.

(2) It is better to analyze the transient tracking errors over a finite horizon of preceding
samples and, eventually, also on a finite horizon of its future predictions over each
current sample in order to include both a correcting and a predictive-correction
effects of registered tracking errors to calculate the current value of the sequence
of free-design parameters. The use of a unique sample in the supervisory loop
would lead, in general, to unsuitable actions when measurement failures arise or
when abrupt changes in the control input appear art isolated sampling instants.

4.2. Supervisory Action on a Free-Design Parameter of the Adaptation Algorithm

Define the loss function Jε
k =

k+N2∑
i=k−N1

σ|k−i|ET
i QiEi, for each current k-th sample as

supervisory criterion where E(·) = [E1(·), E2(·), E3(·)]T is the tracking error vector,
N1 and N2 are, respectively, the sizes of the correction and prediction horizons [k −
N1, k) and [k, k+N2] associated with the current k-th sample, Q(·) is a (at least) positive
semidefinite weighting matrix and 0 < σ � 1 is the forgetting factor of the loss function.
Note that Ej for j > k are predicted tracking errors in the loss function for each k-th
sample. In this paper, the free design parameter in (13) is ck which has to belong to an
admissibility interval compatible with the stability constraint, i.e., it has to be positive and
bounded. The horizon sizes, weighting matrix and forgetting factor of the loss function
are chosen by the designer according to the next design criteria:

(a) How relatively important each robot articulation is compared to the remaining
ones. This idea is relevant top the choice of the Q(·)-matrix. In Fig. 4, the third
articulation could be considered more important, if suited, since it has to follow a
reference related to the final trajectory for each specific application. If the matrix
is chosen as diagonal with positive identical diagonal entries then all the articula-
tions are considered equally relevant and then all the tracking error components are
introduced with identical weights in the supervisory loss function.

(b) The relative weight in the loss function given to the more recent measured errors
and their next immediate predictions compared to the older ones and subsequent
future ones, respectively. This idea is relevant to the choice of σ.

(c) The relative weight in the loss function given to the past tracking errors (correction
horizon) compared to the predicted errors (prediction horizon).

The supervisory action for ck is described in the following algorithm.

Supervisor of ck

Step 0. Define [cmin, cmax] with cmin > 0, cmax > cmin > 0 as the admissibility
domain for the free parameter ck of the adaptation algorithm (13). Define also the loss
function J according to the above supervisory design criteria (a) to (c). Initialize k ← 0.
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Step 1. For each current k-th sampling instant, make c̄k = ρk‖WkFkW
T
k ‖+ c̄

ck =




cmin if c̄k � cmin,

c̄k if c̄k ∈ (cmin, cmax),
cmax if c̄k � cmax,

ρk = ρk−1 + Min

(
gk, Int. part

[
Jk − Jk−1

Jk−1

])
· Sign [ρk−2 − ρk−1] ·∆ρ,

gk =
K − c̄

‖WkFkWT
k ‖∆ρ

,

with sign (0) = 0.
Step 2. Apply the parameter-estimation algorithm of (13) and generate the torque (2).
Step 3. k ← k + 1 and go to Step 1.

Remark 2. Note that Step 1 follows the heuristic rules given in Section 4.1 since ρk and
then ck increase when Jk increases (decreases) with respect to its preceding value pro-
vided that ck−1 decreased (increased) with respect to its preceding value. If ρk decreases
(increases) when Jk decreases (increases) then ck is decreased. The choice of according
to a proportional factor of the regression matrix square norm is proposed to follow such
empirical design guidelines. Thus, if the loss function value increases then the action on
the free-design parameter should be changed of sign with respect to the previous one.
If the loss function value decreases the supervisory policy has to be kept. The saturation
gk for the modification of ρk in Step 1 guarantees that ck is upper-bounded by a prede-
fined positive design constant K . The small positive constant c̄ is used to avoid division
by zero in the parameter estimation (13) when the measurement regressor is zero. The
supervisory learning rule also ensures, apart from the above mentioned saturation, that
the eventual corrections on the choice of the parameters increase as the efficiency dete-
riorates. Such an efficiency is given by the loss function and it decreases with the sizes
of those positive or negative increments in ρk being given by the relative variation of the
loss function between two consecutive sampling instants.

Remark 3. The use of the above supervisory action maintains the stability of the adaptive
closed-loop scheme since the admissible variation domains of the g(·) and c(·) sequences
of free-design parameters are maintained.

4.3. Error Prediction

The measurements of the loss function in the prediction horizon are calculated by simple
extrapolations of preceding predictions or real measurements by using a Taylor series
expansion approximating the derivatives by finite differences using sampled values ac-
cording to:

fk+1
∼=

∞∑
i=0

T if
(i)
k

i!
= fk + (fk − fk−1) +

1
2
(fk − fk−1 + fk+2),
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with T being the sampling period for any signal f(t) and the i-th derivative f (i)
k being de-

fined recursively from f
(1)
k = fk−fk−1

T for i � 1. Note that even in the case when the pre-
dictions are very rough, this is not very relevant for the supervisory algorithm efficiency
because of the saturation effect included in Step 1 which guarantees that the obtained
value for the current sample of the free-design updated parameter is upper-bounded by
a prefixed bound K . In this context, it is suitable to have acceptable predictions of the
signs of the next tracking errors for each current sample rather than good estimations of
their real values. A simple estimation procedure as the proposed one can be sufficient as
shown through simulations in Section 5.3. It is also important to find an efficient balance
between the sizes of the correction and prediction horizons and, for such a purpose, it be-
comes apparent by simple empirical considerations that the size of the prediction horizon
should be not larger than that of the correction horizon which operates with real previ-
ously registered measurements. Numerical experimentation involving different sizes of
the correction and prediction horizons will help the designer in the choice of their more
convenient values.

4.4. Supervisory Action on the Sampling Rate (i.e., on-line updating rule for the
time-varying sampling period Tk

The sequence of sampling instants {tk, k � 0} is generated as tk+1 = tk + Tk with
t0 = 0 and Tk being the sampling period after the i-th sampling instant. The following
adaptive sampling law function is used for on-line adjustment of the sampling period Tk:

Tk =




Tmin if T̄k � Tmin,

T̄k if T ∈ [Tmin, Tmax],
Tmax if T̄k � Tmax,

(14)

where T̄k = CTk−1
|ε̇(tk)| and C > 0 is an arbitrary real constant. The above adaptive sampling

law is a particular case of that general one proposed in Hsia (1974) and then used De
la Sen (1986). Such a general law was obtained analytically from a penalty function
which has two additive terms. The first term penalized the deviation of the tracking error
from its last sampled value within a sampling interval and the second term penalized
the sampling action itself. The admissibility interval [Tmin, Tmax] of the sampling period
is selected according to considerations of stability, bandwidth and the requirements on
performance of each particular application (De la Sen, 1986). The above sampling law
is tested in the simulations to evaluate the performance improvement of the sampling
rate updating for the transient adaptation. The above sampling law as well as other five
updating sampling laws listed below are then comparatively tested in the simulations
to evaluate the various improvements caused by the sampling rate adaptation over the
basic free-parameter adaptation. The tracking error derivatives are approximated by finite
differences at sampling instants in order to get an easier implementation. The sampling
laws take the following specific structures:

Law 1: T̄k = TmaxT 2
k−1

C|εk−εk−1|2+T 2
k−1

,
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Law 2: T̄k = CTk−1
|εk−εk−1| ,

Law 3: T̄k =
CT 2/3

k−1

|εk−εk−1|2/3 ,

Law 4: T̄k = Tmax − C|εk−εk−1|
Tk−1

,

Law 5: T̄k = TmaxTk−1
C|εk−εk−1|+Tk−1

,

Law 6: T̄k =
√

CTk−1
|εk−εk−1| ,

where the tracking error used for updating is taken for the third articulation.

Remark 4. The supervisory technique can be also applied to the forgetting factor by
making it time-varying so that λk ∈ (0, 1] to ensure closed-loop stability of the adaptive
scheme. A useful technique is to modify the Supervision Algorithm of Section 4.2 to
on-line estimate the forgetting factor which has to belong to the admissibility domain
[λmin, λmax] = [δ, 1− δ) for some constant δ ∈ (0, 1) with the change c̄→ λ̄ > 0 and
Step 2 is modified with the replacement c̄k → λ̄k = ρkλk−1 + λ̄ with ρk being computed
as above and

λk =




λmin if λ̄k � λmin,

λ̄k if λ̄k ∈ (λmin, λmax),
λmax if λ̄k � λmax.

Subsequently, the free parameter of the adaptive algorithm ck is chosen according to

the rule ck = λk‖WkFkW T
k ‖

Tr(1−λk−δ) where Tr � Trace (F0) � Trace (Fk) > 0. Such a rule
ensures that the trace of the adaptation matrix remains upper-bounded by a prefixed finite
bound Tr for all time in spite of the fact that the adaptation gain matrix is not necessarily
time-decreasing.

4.5. Closed-Loop Stability

The following result proves that both the basic (supervision-free) system and the super-
vised ones are stable.

Theorem 1 (Stability results). The following two items hold:
(i) In the absence of supervision, the estimated parameters are bounded if their initial

conditions are bounded and the initial adaptation covariance matrix is positive definite.
Also, the closed-loop system is globally Lyapunov’s stable so that the output, input, esti-
mation error and tracking error are all bounded provided that the reference trajectory is
bounded.

(ii) If only the algorithm free-parameter ck (or, alternatively, the forgetting factor)
is supervised by the given rule while respecting its positivity and boundedness (while
belonging to the range (0, 1]) for all sample then (i) holds. If the sampling period is
supervised (with the free-parameter being supervised or not) during a finite time interval
within its admissibility domain then the (i) still holds.
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Sketch of Proof. (i) Direct calculations with (2), (3), (8), (9) and (13) yield for all
sampling instant:

Eτk = M1kP̂k + M̂kΘ̈k = MkΘ̈k + E′
τk −M1kP̃k, (15a)

E′
τk

= WkP̃k = M1k −MkΘ̈k = Mk(KvΘ̈k −KpΘ̈l), (15b)

where P̃k = P − P̂k is the parametrical error for the auxiliary parameter vector P . Thus,

Eτk = (Wk −M1k) P̃k + MkΘ̈k.

On the other hand, one gets from (13) and the above error expression:

λkFk+1F
−1
k =

(
I − FkW

T
k Wk

ck + ‖WkFkWT
k ‖

)
; λkF

−1
k P̃k = F−1

k+1P̃k+1.

If the Lyapunov’s-like sequence Vk = P̃T
k F−1

k P̃k is defined then it follows that
Vk+1 � λkVk � Vk � V0 since

Vk+1 − λkVk = − λk

ck + ‖WkFkWT
k ‖

P̃T
k WT

k WkP̃k � 0

for ck ∈ (0,∞) and λk ∈ (0, 1], all integer k � 0 with

P̃k+1 − P̃k =
(
I − FkW

T
k Wk

ck + ‖WkFkWT
k ‖

)
P̃k − P̃k = − FkW

T
k WkP̃k

ck + ‖WkFkWT
k ‖

.

Since the sequence {Vk}∞0 is nonnegative and bounded for V0 bounded and (non-
strictly) monotonically decreasing then it has a finite nonnegative limit so that

∞ > V0 � Vk � λmax

(
F−1

k

)
‖P̃k‖2E .

This implies that the parameter error P̃k and its associate estimate are bounded for all
sample since the above maximum eigenvalue of the covariance inverse is always strictly
positive. As a result, all the estimates of the direct parameters used in the calculations in
(2) and (5) are bounded. If the regressor is bounded then Eτk and the auxiliary one E′

τk

are also bounded from the initial identities of this proof and then the estimated and error
torques τ̂k and τ̃k are bounded and WkP̃k converges asymptotically to zero. It follows
that the output and the tracking error are bounded, see (15), if the reference is bounded.
Finally, if the regressor fulfils a standard type of asymptotic persistent excitation condi-
tion then the parametrical error converges asymptotically to zero. This proves (i). The
proof of (ii) follows in the same way since the free parameters of the basic estimation
scheme always belong to their admissibility domains compatible with stability if the su-
pervisor scheme for any of the free-parameters is in operation. Finally, assume that the
sampling period is on-line updated within its admissibility domain during a finite time
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interval and then it is fixed to a constant value within such an interval. Thus, the overall
system becomes time-invariant after a finite time which may be set as initial time for
analysis and the above results still hold.

Remark 5. Note that the stability is also ensured if the time-varying sampling period
tends exponentially to any constant value within its admissibility domain (a particular sit-
uation is when such a limit is its nominal value). This property may be proved by extend-
ing directly Theorem 1 (ii) by adding to the identification and parametrical error bounded
and exponentially decaying terms. The key point ensuring that the closed-loop stability
holds under supervision is that the free-parameter of the parameter-adaptive algorithm
and the sampling period are kept within their admissible domains. Those domains are
compatible with convergence of the updating algorithm and stability.

5. Simulation Examples

In this section we will consider the control of the simple planar mechanical manipulator
with three revolute joints shown in Fig. 4. For simplicity, it will be assumed that the
masses m1 and m2 of elements 1 and 2 are concentrated at the distal end of each link,
while mass m3 is distributed according to a diagonal inertia tensor

I = Block Diagonal [Ixx, Iyy, Izz ]. (16)

Moreover, we assume that the center of mass of link 3 is located at the proximal end
of the link, that is, it coincides with the center of mass of m2.

It is worth to note that although the mechanical manipulator being considered here
is very simple, it is complex enough to illustrate nearly all the principles of general ma-
nipulators. In the same way that a typical robot with six degrees of freedom can reach
arbitrary positions and orientations in the space, the simplified planar manipulator with
three degrees of freedom can reach arbitrary positions and orientations in the plane. The
dynamics in three dimensions of the robot is compacted in a matrix form notation and

Fig. 4. The simple planar manipulator with three revolute joints.
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it is calculated from the mechanical equations involving mass, inertia moments, frictions
and applied external forces and torques in an standard way (see Craigh, 1986; 1988).The
elements of the dynamic equation (1) for this robot are found to be:

M(Θ) =



Izz + m1l

,2

1 + (m2 + m3)[l21 + l22 + 2l1l2c2]
Izz + (m2 + m3)[l2 + l1l2c2]
Izz

Izz + (m2 + m3)[l2 + l1l2c2] Izz

Izz + (m2 + m3)l2 Izz

Izz Izz


 , (17a)

V (Θ, Θ̇) =



− (m2 + m3) l1l2s2θ̇2

(
2θ̇1 + θ̇2

)
(m2 + m3) l1l2s2θ̇

2
1

0


 , (17b)

G(Θ) =


 (m1 + m2 + m3)gl1c1 + (m2 + m3)gl2c12

(m2 + m3)gl2c12
0


 , (17c)

where ci, si represent cos θi and sin θi, respectively, and c12 represents cos θ1 + θ2).
Concerning the friction terms, a combination of viscous and Coulomb friction is assumed:

F (Θ, Θ̇) =


 v1θ̇1 + k1sgn(θ̇1)
v2θ̇2 + k2sgn(θ̇2)
v3θ̇3 + k3sgn(θ̇3)


 , (17d)

where vi and ki are the viscous and Coulomb friction coefficients, respectively. In all the
subsequent examples the following values for the robot’s parameters will be assumed (SI
units):

m1 = 4.6; m2 = 2.3; m3 = 1.0; Izz = 0.1;

l1 = l2 = 0.5; v1 = v2 = v3 = 0.5; k1 = k2 = k3 = 0.5. (18)

5.1. Supervision of the Free Parameter ck

In this second example will apply the neural control structure proposed in Section 3 to
control the same mechanical manipulator of the previous example. In this case the robot
starts at position (θ1, θ2, θ3) = (0o, 30o, 20o) and the control objective is to reach the
position (θ1, θ2, θ3) = (10o,−50o,−20o) in 0.5 seconds, following again smooth cubic
trajectories, given now by:

θ1(t) = 10 + 0.12t2 − 0.016t3, t � 0.5; θ1(t) = 10, t � 0.5, (19a)

θ2(t) = −50− 0.12t2 + 0.016t3, t � 0.5; θ2(t) = −50, t � 0.5, 5 (19b)

θ3(t) = −20 + 0.72t2 − 0.096t3, t � 0.5; θ3(t) = −20, t � 0.5. (19c)
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In order to compare both control methods in similar conditions, it will again be as-
sumed that the link masses m1, m2, m3, as well as the mass distribution Izz and the vis-
cous friction coefficient v1 of the manipulator are unknown. Thus, a two-layered neural
network with 12 inputs and 3 outputs will be used to learn the robot’s inverse dynam-
ics and to on-line generate the control signal. In particular, the values λk = 1 in (13b),
c̄ = 5, cmin = 5, cmax = 5.107 and c0 = 5.106, have been chosen in the learning rule
(13). In the absence of supervisor, ck = c0 = 5.106, for all k � 0. The loss function for
the supervisor of the free algorithm parameter is N1 = 3 (Correction Horizon Size) and
N2 = 1 (Prediction Horizon Size). The network’s connection weights have been initial-
ized without using a priori information as p̂10 = 10, p̂20 = 5, p̂30 = 1, p̂40 = 1. The val-
ues for the proportional and derivative gain matrices Kp = Kv = Diag (100, 100, 100)
have been employed in the outer control loop.

Fig. 5 displays the robot’s second articulation time response for unsupervised free
parameter which is kept constant to c0 and supervised situations. The supervised design
yields a much better transient response which is practically close to the reference signal.
Figs. 6–7 show the torques for the first and second articulations, respectively and Fig. 8
shows the time evolution of the supervised algorithm free parameter ck as well as that
of ‖Wk Fk WT

k ‖ within the time interval [50, 65]. Finally, Fig. 9 shows the evolution
of the estimate m̂1 from the initial condition m̂1(0) = 9.2. It can be observed that the
neural network is able to learn the robot’s inverse dynamics quite well. As a result, the
position errors are quickly eliminated and the control objective is achieved. From the
given examples, it can be concluded that this neural approach to the control of mechanical
manipulators lead to results comparable to those obtained using conventional adaptive
control designs.

Fig. 5. Angle of the Second Articulation θ2 versus time (seconds) with and without supervisory action in the
algorithm free parameter c k . Correction and Prediction Horizon Sizes N1 = 5 and N2 = 2.
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Fig. 6. Torque of the First Articulation τ1 versus time (seconds) with supervisory action in the algorithm free
parameter ck under the Conditions of Fig. 5.

Fig. 7. Torque of the Second Articulation τ1 versus time (seconds) with supervisory action in the algorithm free
parameter ck under the Conditions of Fig. 5.
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(a)

(b)

Fig. 8. (a) Evolution versus time (seconds) of the free parameter ck from time 50 secs to time
65 secs with supervision under the Conditions of Fig. 5. (b) Evolution versus time (seconds) of
‖Wk Fk W T

k ‖ from time 50 secs to time 65 secs with supervision under the Conditions of Fig. 5.
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Fig. 9. m̂1 versus time (seconds) and m1.

5.2. Combined Supervisory of the Free Algorithm Parameter and the Sampling Period

Now, the efficiency of the use/non use of the supervisory control of Section 4 is discussed. The
closed-loop stability without or with supervisory loop is kept since all the free-parameters are al-
ways kept within their admissible domains guaranteeing stability. The parameters of the robot,
Kp and Kv are now chosen as in Section 5. 1 with the same units. The initial and final posi-
tions for the robot links are chosen as in the example of Section 5.2 with the same smooth cu-
bic trajectories defined in (19). The (unknown) parameters are defined as in the above example
and estimated with initial conditions [6, 4, 0.2, 0.8 ]. The adaptation gain matrix is initialized to
Diag [104, 104, 104, 104]. The parameters of the supervisor are re-updated online as follows.

Supervision of the free parameter ck of the algorithm:
The weighting matrix of the loss function Jε is Q(·) = Diag [0.2, 0.2, 0.2] for the samples of the
prediction horizon and Q(·) = Diag [0.9, 0.9, 0.9] for those of the correction horizon; σ = 0.5;
K = 10 (Step 2 of the Supervisory Algorithm of Section 4.2); c̄ = 5, ρ0 = 2 and ∆ρ = 0.1. The
correction and prediction horizons are chosen with N1 = 5 and N2 = 2. The associated horizon
sizes lead to the better registered transient performances by the use of the supervisory loop.

Supervision of the sampling period:
The nominal sampling period is T0 = 0.6 × 10−3 seconds. The time-varying sampling period is
chosen within the interval [Tmin, Tmax] = [0.5, 0.7] by using the constant C = 1 in the sampling
law 2 of (14) by approximating the derivatives by finite differences. Note that the use of alterna-
tive values for this constant is in most practical examples irrelevant during the transient since the
sampling rate results to be bang-bang under the sampling law (14), i.e., the sampling period takes
values at the boundary of its admissibility domain provided that such a variation interval is small.
The error versus number of samples of the third articulation and the updated estimates of m2 +m3

and Izz are shown, respectively, in Figs. 10–12. The comparison with the corresponding unsuper-
vised experiment is made by fixing in the unsupervised case a constant free-design parameter ck

in (13) to the initial value under supervised control c0 = 5.106. Fig. 10 shows the solutions of
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the trajectories for the third articulation under constant nominal sampling rate and under adaptive
sampling both under correction and prediction horizons N1 = 3 and N2 = 0 for the supervision
of ck. It can be seen that the transient is improved under adaptive sampling. Fig. 11 display the
trajectories for the third articulation under correction horizons N1 = 0, 1, 6 in the absence of
prediction horizon (N1 = N2 = 0 corresponds to the absence of supervision on ck). All those
trajectories are obtained under adaptive sampling with the sampling period constrained to the given
admissible interval. It is seen that the transient performance of the tracking error becomes improved
as the prediction horizon increases. Fig. 12 shows the trajectories for the same constraints of the
sampling period and horizon sizes N1 = 5 (correction); N2 = 0, 2 and 3 (prediction). It is seen
that the transient tracking error of the third articulation is smaller, and even the output reference
constant set-point error is smaller, under supervised adaptive control with use of prediction horizon
compared to the use of only correction horizon in the supervisory algorithm.

5.3. Discussion of the Simulations

Worked examples led to the following conclusions on the influence of the supervisor on the im-
provement of the transient performance compared to the performance being achieved without su-
pervisory actions on the free parameter of the algorithm and sampling period.

1. The moderate increase of the sizes of the optimization and correction horizons N1 and N2

improves the achieved performance. Good performances have been obtained for sizes of lengths
less than six samples in the studied examples. The loss function decreases as the sizes of those
horizons increase from zero to six. Extra increments of the horizon sizes can deteriorate the regis-
tered performances. The prediction error should not exceed significantly the size of the correction
one in order to obtain good performances. An important key feature is that the stability is always
maintained since the algorithm parameter is always obtained within its stability admissibility do-

Fig. 10. Angle of the Third Articulation θ3 versus time (seconds) with and without supervisory action in the
sampling period with nominal T0 = 0.6 × 10−3 seconds and Ti ∈ [0.5, 0.7]. Correction and Prediction
Horizon Sizes N1 = 3 and N2 = 0.
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(a)

(b)

(c)

Fig. 11. Angle of the Third Articulation θ3 versus time (seconds) with and without supervisory action in the
sampling period with nominal T0 = 0.6 × 10−3 and Ti ∈ [0.5, 0.7]. (a) Correction and Prediction Horizon
Sizes N1 = N2 = 0 (Unsupervised action in the free algorithm parameter). (b) Ibid. N1 = 1 and N2 = 0. (c)
Ibid. N1 = 6 and N2 = 0.
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Fig. 12. Angle of the Third Articulation θ3 versus time (seconds). Supervisory Action in the Sampling Period
as in Fig. 11 with Correction and Prediction Horizon Sizes N1 = 5 and N2 = 0, 2 and 3.

main (i.e., a positive finite value) and, at the same time, the supervisory action is exerted prior to
the computation of the control torque.

2. The modification of the supervisory technique proposed in Remark 4 is also successful in
practice to improve the transient performances as it has been verified in other alternative worked
examples. In such a case, the parameter which is primarily supervised is the forgetting factor while
the ck-parameter is then on-line adjusted to maintain a bounded trace of the adaptation gain and,
thus, to ensure the closed-loop stability.

3. The use of the adaptive sampling law also improves the transient performances since the
signals are sampled faster as the tracking error becomes smaller. It is important to select properly the
bounds for the sampling period according to the stability, bandwidth and applications requirements
from ´a priori´ knowledge on the system. An important feature is not allowing large sampling rate
variations (i.e., to choose an admissibility domain for the sampling period of small measure around
its nominal value) so as to obtain a sampling law with small sampling period variations. Acceptable
values of the maximum and minimum values of the admissibility interval of the sampling period
are until ±20% of its nominal value. The technical reason is that the controlled discretized system
becomes time-varying under adaptive sampling and it has to be ´slowly´ time-varying for obtaining
improved closed-loop performances since the controller parameters are adaptively re-updated.

6. Conclusions

An approach to adaptive neural control for robot manipulators has been presented. The proposed
neural design has been developed using conventional adaptive control schemes for mechanical
manipulators as a starting point while using analogies between neural and adaptive controllers.
In particular, the presented control scheme is a neural extension of the classical computed-torque
control philosophy, with a two-layered neural network which learns the robot’s inverse dynamics
and on-line computes the control law. A controller supervisor is also proposed for improvement of
the tracking error during the adaptation transients. The supervisor consists of two parts, namely:
(1) An algorithm that selects on-line one of the free parameters of the adaptation algorithm so that
the scheme performance is improved. The mechanism used is the minimization of a loss function
of quadratic type of the tracking error; and (2) A sampling law which calculates on-line each next
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sampling period which runs faster as the tracking error increases and vice-versa. The adaptive
sampling rate operates within a neighborhood of a suitable nominal sampling period so that the
bandwidth and close-loop stability requirements are also satisfied. An adaptive control scheme has
been applied to the control of a simple planar manipulator with three revolute joints. The simulation
results have shown that the proposed controller leads to better transient performances compared to
that obtained in the unsupervised situation.
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Adaptyvus ir stabilus manipiliatori ↪u valdymas esant pagerintiems
adaptacijos pereinamiesiems procesams, kai operatyviai tikrinami
adaptacijos algoritmo ir diskretizacijos dažnio parametrai

Manuel De la SEN, Ana ALMANSA

Pasiūlyta mechanini ↪u manipuliatori ↪u adaptyvaus valdymo schema. Valdymo grandyje ana-
lizuojama roboto atvirkštinė dinamika ir operatyviai generuojamas valdymo signalas. Sistemos
adaptacijos pereinam ↪uj ↪u proces ↪u pagerinimui naudojamas supervizorius, kuris atlieka dvi funkci-
jas. Pirma, supervizorius koreguoja adaptacijos parametrus taip, kad kvadratinė nuostoli ↪u funkcija
būt ↪u pakankamai maža. Antra supervizoriaus funkcija yra operatyviai keisti diskretizacijos pe-
riod ↪a. Diskretizacijos periodas parenkamas taip, kad pereinamojo proceso sekimo paklaida (tra-
cking error) pagerinama naudojant paprast ↪a taisykl ↪e: kuo sparčiau kinta proceso sekimo paklaida,
tuo diskretizacijos dažnis turi būti didesnis.


