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Abstract. In well-known statistical models of global opti­
mization only values of objective functions are taken into consider­

ation. However, efficient algorithms of local optimization are also 

based on the use of gradients of objective functions. Thus, we are 
interested in a possibility of the use of gradients in statistical mod­
els of multimodal functions, aiming to create productive algorithms 
of global optimization. 
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1. Introduction. A possibility of the use of gradients in 
the calculations of conditional mathematical expectations and 
conditional dispersions of stochastic functions is considered. 
In this case the expressions are obtained which involve the 
operations of inversion and multiplication of n x k-dimensional 
matrices. These operations demand mush time and memory 
of computer. Obviously they are more complicated than the 
operations, when only the values of objective functions are 
used. Although, these expressions are complicated but their 
properties will be useful for an axiomatic definition of more 
simple, in the sense of calculation, extrapolators under the 
methods, presented in Zilinskas (1986). 
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2. Conditional distribution of value of Gaussian station­
ary field with respect to the vector of values of the field and 
its gradients. 

Let e ( x ), x E A C Rn; x = (x I , ... , X n ); Xi = (x L ... , 
xi), i = 1, k, be a Gaussian stationary field which is differen­
tiable in mean square sense. Besides Me(x) = 0, vare(x) = l. 
Let Me(x)e(y) = p(x - y) denote a correlation function. As-

sume that C = [82 p(x - y)/8Xi8Yjl~=I,n exists and is finite 
z-I,n 

at (x, x). Then the derivatives of the field are distributed ac-
cording to the Gaussian law. 

The vector (e( x), ~(xd, ... ,~( Xk), a~a(x/) , ... , aa~(x,;), . .. , 
Xl Xl 

a~a(xlk), ... , a~a(Xnd) is distributed according to the Gaussian 
X k X k 

law with the correlation matrix 

-Q'] B , 
D 

Q' (8PIX 8PIx 8Pkx 8PkX) 
= !:til , ..• , -8 n ,ldots, -8 1 , ... , -8 n ' 

ULIx tix . tkx tkx 

A=[L P~k ] 

B=[~ 
0 _ aplk 

-~] atl k at~k 

!!.P..u. 
... , 

at~k at~k 
0 0 

D = I Dll 

Dt 
Ik 

Dlk] 

Dkk 
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where . 
Pix _. p(X - Xi), i = 1, k; Pil = p(Xi - Xl), i, 1.= 1, k, i #- I, 

t1x = xi - x1, t1, = x1- xi, t1i = x.1- x1, i, 1= 1, k, j = 1, n. 

. Let n = 2, k = 1. Then we have a probability distribution 

p( e(x), e(Xl), 8t(xY)' 8t<:t?) = p(e(x), e(xd, Ve(Xl)) and. 
a correlation matrix 

1 Pix -~ 8tt.: -~ att.: 

Pix 1 0 0 

!l£a 0 _ 82~(O) 1 a2p(O) 
- atL, a(t11)2 -2" att18t~1 

82 p(O) 
-~ 0 1 a2p~O) -atl>: -2" 8tt18t~1 8(t~1)2 

Conditional mathematical expectation is calculated by the for­
mula 

1 0 0 -1 
Y1 

0 
_ 82p(O) 1 82 p(O) !bJJ.. -- 1 2 X 8(tt1)2 2 at11 8t11 8xt 

0 _! a2e{O~ 
2 8tt18t11 

_ 82p{O) 
8(t~1)2 ~ 8.X1 
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!!..E.a 8 2 p(O) 8~", 1 82 p(O) 
8t~", • ~ - 8t1", . '2 8tt 8t~1 

8 2 p(O) 8 2 p(O) (1 8 2 p(O) ) 2 
8(tt1)2 • 8(t~1)2 - '2 8t~18t~1 

Conditional dispersion is expressed by the formula 
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where 

Let us examine the probability distribution p(e(x), 
e(Xi) = Yi, a~<:~d, ... , a~~~,:), i = 1, k) = p(e(x), e(Xi), 

• • 
Ve(Xi), i = 1, k). It corresponds to the above-mentioned cor-
relation matrix. Let us mark: 

y'= 

Then conditional mathematical expectation is calculated 
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by the formula 

( A B)-I (y) 
= (Q, -Q') Bt D y' 

, (A-I + GFt -F) (Y) 
= (Q, -Q) -Ft H-I Y' 

= [Q(A-I + GFt) + Q' Ft]y + [-QF _ Q' H-I]y'. 

Conditional dispersion is expressed by the formula 

=l-(Q,-Q') U. ~r (-~,.) 
= 1- [Q(A-:- I + GFt) + Q'Ft]Qt + [-QF _ Q'H-I]Q'\ 

where G = A-IB, H = D - BtG, F = GH- I. 
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