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Vytautas Magnus University
Vileikos 8, LT-3035, Kaunas, Lithuania
e-mail: r.liutkevicius@if.vdu.lt

Received: June 2002

Abstract. This paper analyses the control of nonlinear plant with the changing dynamics. Adaptive
controllers, based on fuzzy logics, are synthesized for the control of air pressure and water level.
Their satisfactory efficiency is experimentally demonstrated under different working conditions.
Fuzzy controllers are compared to conventional PI and PID controllers.
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1. Introduction

Water level and air pressure control is a classical problem in control engineering. These
problems are usually analyzed in literature in separate cases, mathematical models are
defined for water level or air pressure systems, and digital control methods are investi-
gated (Ogata, 1997; Driankov, 1998). In most cases simple control system conditions are
assumed, such as natural water/air flow, not affected by additional forces.

The control problem becomes more complex if water level and air pressure control are
considered in one system. In such case the change of water level or air pressure set point,
changes the dynamics of the whole system and this requires the adaptation of controller
parameters. When water flows through pipes, the silt gathers on inner side decreasing its
diameter and herewith the amount of flowing water. This feature changes the dynamics
of the flow system and stipulates an adaptation of controller parameters. In this paper the
effect of such phenomenon on control system is also analyzed.

In this paper adaptive fuzzy controllers are introduced as an alternative for the water
level and air pressure control. In the absence of sufficiently precise process mathemati-
cal model and in the presence of non-linearity, fuzzy logic based control usually have an
advantage over conventional PI or PID control (Ogata, 1997; Chen, 2001). The primary
control problem, considered with this control system, is regulating both water level and
air pressure at the specified set points. The secondary problem is that of decreasing vari-
ations of manipulated variables, as these affect the useful life – time of physical devices,
in this case water and air pumps.
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2. Control Plant

The plant’s scheme is shown in Fig. 1. Its central part is a close tank with adjustable
water level and air pressure. The variables of the process “pressure” and “level” can be
varied using the inlet water flow and/or the inlet airflow. These are varied with separate
pumps (1, 2). The pumps are the actuators and have an electrical input-range of 0 to 10V.
The tank has two outlets for water flow and two outlets for airflow. The manual valve
(5) and/or the combination of the magnetic valve (4) and manual valve (4a) control the
exit water flow. These valves and the control of the water pump manipulate the stationary
condition of water flow. The manipulating of pressure is performed through control of
the valves (6, 6a, 7) and the air pump (2). Air chamber (3) increases the time constant of
the pressure loop and equalizes pulses in the airflow. The water flows in and out of the
tank through rubber hoses, what are circled in rings. This water flow peculiarity increases
plant’s nonlinear characteristics. The water flow in this case depends on the water tem-
perature and its softness. These characteristics influence the water flow resistance. The
change of level and pressure set points itself changes the dynamics of the plant. This is
because water level and air pressure are dependent on each other, so the change in air
pressure affects the water level, whereas the change in water level affects the air pressure.
This is obvious as the decrease in air pressure means that less force acts on water and less
power is needed to keep the water at the desired level. The change of water level changes
the size of tank area, left for air, and the less the area the less the power is needed to keep
the pressure at a given set point.

Fig. 1. Plant scheme.
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3. Plant’s Linear Model

The physical processes in the plant can be approximately described by a linear mathe-
matical model (Fig. 2).

Here ṁeL is inlet air mass flow, ṁeW – inlet water mass flow, h – water level, p – air
pressure. UPi, ULi are manipulated variables, and UPo, ULo are controlled variables of
pressure and level, respectively.

GSL (s) =
KSL

(1 + sT1L) (1 + sT2L)
, GSW (s) =

KSW

(1 + sT1W )
(1)

– actuators’ transfer functions,

G11 = p(s)
ṁeL(s) = K11

l+sTL
, G21 = h(s)

ṁeL(s) = K21
(1+sTL)(1+sTW ) (2)

– sub-model pressure transfer functions,

G22 = h(s)
ṁeW (s) = K22

l+sTW
, G12 = p(s)

ṁeW (s) = s·K12
(1+sTL)(1+sTW ) (3)

– sub-model level transfer functions.
The model is implemented with the Concept 2.1 programming unit and compared

with the actual plant (Fig. 3). The gains KSL, KSW , K11, K12, K21, K22 and time com-
ponents TW and TL are calculated at the working point: level ho = 10 cm, pressure
po = 20mbar, temperature Q = 295K.

From Fig. 3 it is seen that the plant model corresponds to the actual situation only at
the working point for which it was linearized. The change of set points makes the model
inadequate. This means that the process is nonlinear, because for every other set point
it is necessary to recalculate the model parameters. Besides, this model is simplified by
ignoring saturation effects, water flow friction non-linearities, and other characteristics,
that make noticeable influence to the actual process. The nonlinear characteristics of the
plant and not accurate enough its mathematical model induced to use fuzzy logic for the
control of the plant.

Fig. 2. Plant model’s structural scheme.
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Fig. 3. Comparison of plant ouput and the output of its model.

4. Adaptive Fuzzy Controller

Two uncoupled adaptive fuzzy controllers are used for the control of water level and air
pressure in the plant. Both controllers have the same structure; different are only the gains
and knowledge bases (Fig. 4). The structural scheme consists of four main parts: the plant,
the fuzzy controller to be tuned, the rule-base initializer and the learning mechanism (an
adaptation mechanism). The fuzzy controller uses the learning mechanism to observe nu-
merical data from fuzzy control system. Using this data, it characterizes the fuzzy control
system’s current performance and automatically adjusts the fuzzy controller so that given
performance objectives are met. The learning mechanism consists of two parts: a “fuzzy
inverse model” and a “knowledge-base modifier”. The fuzzy inverse model performs the
function of mapping the deviation from the desired behavior to changes k in the process
input, that are necessary to force process error e to zero. The knowledge-base modifier
adjusts the fuzzy controller’s rule-base to affect the changes needed in the process inputs.

Fig. 4. Adaptive fuzzy controller.
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Plant’s water level and air pressure fuzzy controllers each have two input signals and
one output – control action. The input signals for water level control are the water level er-
ror el and the change in error cl. The input signals for air pressure control are the pressure
error es and the change in error cs. The controllers control actions are water pump control
signal ul, and air pressure pump control signal us. Nine triangular symmetric member-
ship functions are used on all the input universes of discourse. The membership functions
are normalized and uniformly distributed across the universes of discourse (Fig. 5).

For the evaluation of rules the minimum operator (Cox, 1994; Passino, 1998) is used
to represent the premise and the implication, and COG (center of gravity) method for the
process of deffuzification (Passino, 1998; Chen, 2001). The input and output universes
of discourse are normalized to intervals [−1; 1]. The scaling controllers’ gains for the
level error, the change in level error, the pressure error, and the change in pressure error
are chosen via the design procedure to be gel = 1/2.22, gcl = 1/0.33, ges = 1/5, and
gcs = 1/1.01. The gains gcl and gcs were chosen by the experiment, analyzing the values
that inputs cl and cs get during the system performance under different reference inputs.
According to the gain values, the inputs universes of discourse are the following: [−2.2,
2.2] for input el, [−0.33, 0.33] for input cl, [−5.0, 5.0] for input es, and [−1.01, 1.01] for
input cs. The output gains are used to extend the output from interval [0, 1] to [0, 10] as
10 is the maximum voltage, the pumps can obtain. The controllers’ output universes of
discourse are covered with seventeen symmetric, triangular membership functions, with
the base widths equal to 0.25.

The adaptive fuzzy controller has two rule-bases. The first one stores the knowledge
about how to control the system at given water level and air pressure set points and is
used by rule-base initializer to form the second rule-base which is directly used by the
controller. The second rule-base describes how to control the process at particular actu-
ating error and its change in time. The rule-bases consist of rules that have an If–Then
form. At the start up of the controllers, the assumption is made that the controllers know
nothing about how to control the process. The learning mechanism modifies the rule-
bases and remembers the modifications thus providing the controller with the informa-
tion about the process. The learning mechanism is a two input one output fuzzy system,
whose outputs are the fuzzy controller’s rule-base correction values. The learning mech-
anism has its own rule-base of how to define the necessary changes. The If–Then rules
are arranged so that the output membership function centers are equal to a scaled sum of
the rules’ premise linguistic-numeric indices. All the membership functions are labeled

Fig. 5. Set of normalized membership functions used for all four inputs “Level error”(el), “Level derivative
error” (cl), “Pressure error” (es), and “Pressure derivative error” (cs).
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with linguistic-numeric indices that are integers with zero at the middle. As each learn-
ing mechanism input is defined with nine membership functions, the linguistic-numeric
indices are set as follows: “−4”, “−3”, “−2”, “−1”, “0”, “1”, “2”, “3”, “4”. Then the
center of learning mechanism output fuzzy set Y s membership function is located at

(i + j)
1
8
, (4)

where s = i+ j is the index of the output fuzzy set Y s, i and j are the linguistic-numeric
indices of the input fuzzy sets (i – for error, j – for change in error), 1/8 is the base
width of output membership function (Passino, 1998). The evaluation of equation (4) for
all linguistic-numeric indices results in the rule base of the form of matrix, where each
element represents the centers of seventeen distinct output membership function centers.

The normalizing gains, associated with water level learning mechanism inputs yel and
ycl, are chosen to be gyel = 1/2 and gycl = 1/0.33, and normalizing gains, associated
with air pressure learning mechanism inputs yes and ycs, are chosen to be gyes = 1/2.5,
and gycs = 1/1.01, respectively. The output gains, gkl and gks are chosen to be 0.128,
and 0.012, respectively. These gains are also named as learning ratio. The learning mech-
anism also utilizes symmetric triangular-shape membership functions for the input and
output universes of discourse, minimum to represent the premise and implication, and
COG (center of gravity) defuzzification (Chen, 2001). This method calculates a crisp
output according to equation (5)

ucrisp =

∑
i

bi ·
∫

µ(i)∑
i

∫
µ(i)

, (5)

where bi is the center of the membership function of the consequent of rule (i),
∫

µ(i) –
the area under the membership function µ(i). (5) is the classical formula for computing
the center of gravity.

∫
µ(i) is easy to calculate if membership functions are symmetric,

triangular-shape, peak at one and have a base width of w. Then the area under the triangle
“chopped off” at height h is equal to

w

(
h − h2

2

)
. (6)

Given this, the computations needed to compute the crisp output are not too significant
(Passino, 1998).

5. Experiment Results

The purpose of experiments was to evaluate the efficiency of adaptive fuzzy controllers
under different working conditions. i.e. changing reference signals, changing plant dy-
namics, when the throughput of output water and air is decreased twice. The reference
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signals have step form and are chosen for water level to be 8, 11, 14, 17, 12.5, 9.5, and 8
cm, and for air pressure – 4, 8, 16, 24, 20, 12, and 4 mbar. Level and pressure reference
signals change their values in approximately 57 sec. The experiment results, controlling
the plant with adaptive fuzzy, PI, and PID controllers, are given in Figs. 6, 7, 8 and Tab-
le 1.

Each graph is split into two parts: the upper part shows the plant’s air pressure re-
sponse to the step form air pressure reference signal, gray signal is the pressure control

(a)

(b)

Fig. 6. Response of the plant to step form level and pressure reference signals: (a) – plant operates under normal
conditions, (b) – plant’s water and air outlets diameters are reduced. Plant is controlled with adaptive fuzzy
controllers.
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(a)

(b)

Fig. 7. Response of the plant to step form level and pressure reference signals: (a) – plant operates under normal
conditions, (b) – plant’s water and air outlets diameters are reduced. Plant is controlled with PI controllers.

signal; the lower part shows the plant’s water level response to the water level reference
signal, gray signal is the water level control signal. It is seen from the graphs that after
the reduction of outlets’ diameters the performance of PI and PID controllers visibly de-
crease, and higher reference signals are unable to track. The variations of control signals,
both air pressure and water level, in case of fuzzy controller, are much smaller if com-
pared with the PI and PID control signals. The actuating errors are in most cases smaller
when the plant is controller with fuzzy controller (Table 1). The square root average er-
rors of water level, air pressure, water level control, and air pressure control signals are
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(a)

(b)

Fig. 8. Response of the plant to step form level and pressure reference signals: (a) – plant operates under normal
conditions, (b) – plant’s water and air outlets diameters are reduced. Plant is controlled with PID controllers.

calculated as

√√√√ 1
N

N∑
i=1

(xi − x)2, x =
1
N

N∑
i=1

xi (7)

for plant’s stationary working conditions, when water level reference signal is 11cm and
air pressure – 8mbar. The results are given in Table 1.
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Table 1

Square root average errors of stationary process

Errors of water level Error of air pressure and control
and control signals signals

Normal outlets Halved outlets Normal outlets Halved outlets

Control Control Control Control
Level signal Level signal Pressure signal Pressure signal
error variation error variation error variation error variationC

on
tr

ol
le

r
ty

pe

W
at

er
le

ve
l(

cm
)

A
ir

pr
es

su
re

(b
ar

)

Fuzzy 0.09 0.02 0.08 0.01 0.09 0.002 0.15 0.003

PI 11 0.18 0.14 0.18 0.13 8 1.01 0.013 0.70 0.064

PID 0.20 0.23 0.58 0.15 0.14 0.009 0.31 0.011

From the Table 1 it is seen that water level error in case of adaptive fuzzy controller,
before the reduction of outlets, is two times smaller that that of PI and PID controllers.
The water level control signal variation is 8 times and 13.4 times smaller that of PI and
PID controllers, respectively. The air pressure error in case of fuzzy controller is 10.3
times smaller than that of PI controller and 1.5 times smaller then that of PID controller.
The air pressure control signal variations in case of fuzzy controller are 8.6 times and 5.9
times smaller than in case of PI and PID controllers, respectively. After the reduction of
plant’s water and air outlets, the advantage of the adaptive fuzzy controller increases.

The similar calculations were also made for the process, tracking the step form refer-
ence signals, including the transient response. The calculations are presented in Table 2.

The oscillations of water level and air pressure control signals during the whole pro-
cess in case of adaptive fuzzy control were more than several times smaller than that of
PI and PID controllers, Table 2. The same is with water level error signals. However, the
air pressure error in case of fuzzy control was bigger than that of PI and PID controllers.
This is due to the fact, that water level and air pressure fuzzy controllers are uncoupled
– work independent of each other. Because of this feature, after the change of reference
signal, the pressure signal overshoots the reference signal for a second, thus adding large
instantaneous errors and disimproving the average error calculation results.

Table 2

Square root average errors of transient process

Errors of water level and control Error of air pressure and control
signal signal

Normal outlets Halved outlets Normal outlets Halved outlets

Control Control Control Control
Level signal Level signal Pressure signal Pressure signal
error variation error variation error variation error variationC

on
tr

ol
le

r
ty

pe

Fuzzy 0.79 0.10 0.66 0.08 0.92 0.01 1.00 0.01

PI 0.99 0.17 2.81 0.25 0.67 0.04 0.83 0.07

PID 1.01 0.19 4.33 0.29 0.81 0.02 0.99 0.04



Adaptive Fuzzy Control of Nonlinear Plant with Changing Dynamics 297

6. Conclusions

Adaptive fuzzy controllers for water level and air pressure control in the nonlinear plant
have been synthesized. The sufficient efficiency of adaptive fuzzy controllers is shown
experimentally, controlling the plant at different working conditions. It is experimentally
proved that adaptive fuzzy controllers are more powerful than conventional PI and PID
controllers when working conditions and plant’s dynamics changes in time.
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Netiesinio proceso su kintančia dinamika adaptyvus “fuzzy”
valdymas

Vytautas KAMINSKAS, Raimundas LIUTKEVIČIUS

Nagrinėjami netiesinio objekto valdymo klausimai. Sudaryti “fuzzy” logikos pagrindu veikian-
tys adaptyvūs reguliatoriai oro slėgiui ir vandens lygiui valdyti ir eksperimentiškai parodytas j ↪u
pakankamas efektyvumas ↪ivairiuose darbo režimuose. “Fuzzy” reguliatoriai palyginti su klasiki-
niais PI ir PID reguliatoriais.


