
INFORMATICA, 2002, Vol. 13, No. 3, 255–274 255
 2002 Institute of Mathematics and Informatics, Vilnius

Separation of Concerns in Multi-language
Specifications

Robertas DAMAŠEVIČIUS, Vytautas ŠTUIKYS
Software Engineering Department, Kaunas University of Technology
Studentu̧ 50, 3031 Kaunas, Lithuania
e-mail: damarobe@soften.ktu.lt, vytautas.stuikys@if.ktu.lt

Received: April 2002

Abstract. We present an analysis of the separation of concerns in multi-language design and multi-
language specifications. The basis for our analysis is the paradigm of the multi-dimensional sepa-
ration of concerns, which claims that multiple dimensions of concerns in a design should be imple-
mented independently. Multi-language specifications are specifications where different concerns of
a design are implemented using separate languages as follows. (1) Target language(s) implement
domain functionality. (2) External (or scripting, meta-) language(s) implement generalisation of the
repetitive design features, introduce variations, and integrate components into a design. We present
case studies and experimental results for the application of the multi-language specifications in
hardware design.

Key words: multi-language design, separation of concerns, meta-programming, scripting, hardwa-
re design.

1. Introduction

Today the high-level design of a hardware (HW) system is usually based either on the
usage of the pure HW description language (HDL) (e.g., VHDL, Verilog), or the algo-
rithmic one (e.g., C++, SystemC), or both. The emerging problems are similar for both,
the HW and software (SW) domains. For example, the increasing complexity of SW and
HW designs urges the designers and researchers to seek for the new design methodolo-
gies. The main emphasis in the methodologies is given to raising the level of abstrac-
tion, and applying the separation of concerns in design process. Designers are mainly
focusing on the language-based solutions to these problems as follows. (1) Designing
within the realms of a particular language (e.g., introducing HW design concepts into
C++ with class libraries (Swan, 2001)). (2) Extending the syntax of an existing language
(e.g., C++ with abstractions for high-level parameterization (Singhal et al., 1993), or
VHDL with customizable interfaces (Siegmund et al., 2000)). (3) Designing a new (usu-
ally domain-specific) language, which represents the domain content more suitably (e.g.,
parameterised HW design (Luk et al., 1998)).

These approaches, however, have many weaknesses as follows. (1) To design a sys-
tem, all designers are required to use the same language, which is working at the same



256 R. Damaševičius, V. Štuikys

level of abstraction, i.e., the implementation of domain functionality. (2) The concerns
are usually separated only at the component level of a particular programming language;
and (3) designers are focused at a specific solution of a problem rather than designing
for reuse. This ‘one-dimensional’ view to system design is undermining some impor-
tant problems such as generalization and customization, which do not have an adequate
solution within the one-language design paradigm.

The usual way to managing complex problems in system design is to apply at a higher
extent the principle of the separation of concerns also known as ‘divide-and-conquer’
strategy. In its most general form, it refers to the ability to identify, encapsulate, and
implement at a time only those parts of a design that are relevant to a particular concept,
goal, or purpose. Although, the separation of concerns has been known for decades in SW
engineering, up to recently it was used mostly at the component level, i.e., to reduce the
complexity of algorithms by dividing the problem into the several smaller ones, and im-
plementing them separately. The most evident result of employing this ‘multi-component
design’ strategy is the usage of component libraries. However, since the complexity of de-
signs has grown significantly, the separation of concerns has to be considered at a higher
level of abstraction, too.

Ossher, Tarr and their colleagues (Ossher et al., 2000) introduced the concept of the
multi-dimensional separation of concerns (MDSoC), which is a new direction in SW
engineering research and practice. The MDSoC aims at (1) identifying and encapsulating
multiple dimensions of concern simultaneously, (2) identifying and encapsulating new
concerns during SW lifetime, and (3) representing and managing the overlapping and
interacting concerns.

Concurrently, there is a great deal of research (Multi-language design, Aspect-
Oriented Programming, Subject-Oriented Programming, Generative Programming, In-
tentional Programming, etc.), which emphasise (directly or indirectly) the separation of
concerns and the higher levels of abstraction (including the usage of multiple languages)
in SW and HW design.

The contribution of this paper is as follows: (1) the classification of the multi-language
design paradigms, specifications, languages and their roles in these specifications; (2) the
application of the explicit separation of concerns for the multi-language specifications in
HW design.

The structure of the paper is as follows. We review the related works in Section 2. We
consider the multi-language design systems and specifications, and analyze the roles of
languages in Section 3. We discuss the multi-dimensional separation of concerns in HW
design in Section 4. Case studies and experimental results are presented in Section 5.
Finally, we provide the conclusions in Section 6.

2. Related Works

The MDSoC paradigm is discussed in a number of papers. Ossher et al. (2000) hypoth-
esised that major difficulties associated with the improvement of SW reuse, comprehen-
sibility, component integration, system composition and decomposition, and high impact



Separation of Concerns in Multi-language Specifications 257

of modifications in SW systems are due to a deficiency of the separation of concerns.
Authors emphasise the need to consider the separation of overlapping concerns, sepa-
ration in various dimensions of concerns at a time or simultaneously, to deal with the
interaction and integration of concerns.

Tarr et al. (2000) claim that concerns are the primary motivation for organising and
decomposing SW into manageable and comprehensible parts. Many different kinds, or
dimensions, of concerns may be relevant to different developers in different roles, or at
different stages of the SW lifecycle. Silva (1999) formulates the requirements for the
MDSoC approaches as follows. (1) Provide flexible abstractions for SW concerns. (2)
Support the abstraction composition. (3) Describe abstractions and abstraction composi-
tion independently of integration mechanisms. (4) Balance the abstraction flexibility and
usage simplicity.

Despite of the fact that this direction is still in the initial stage and many problems are
yet to be solved, the benefits of the MDSoC have already been reported in several works
of other authors. For example, Kandè et al. (2000) apply the MDSoC in the description of
SW architecture, which allows considering the system from multiple perspectives simul-
taneously. Batory (2000) emphasises the role of encapsulation in the MDSoC. Murphy et
al. (2001) study the MDSoC in object-oriented (OO) systems.

The multi-language design approach proposed by Jerraya et al. (1999), implements
the MDSoC at the level of programming languages. They argue that different languages
that are more suitable and efficient for the specification of subsystems of a large system
should be used. Kleinjohann (1998) investigates the semantic problems in multi-language
design with regard to the composition of system parts specified in several languages, and
considers language integration and coupling models.

Meta-programming (MPG) has been known for a long time, especially in formal logic
programming. Sheard (2001) gives an excellent overview of the MPG systems, and tax-
onomy of meta-programs. MPG in high-level system design languages is not so much the
covered topic. Veldhuizen (1995) considers the template meta-programs in C++. Meiyap-
pan et al. (1999) discuss the MPG capabilities of VHDL.

Czarnecki et al. (2000) introduce a program development approach for generating
customised components and systems called Generative Programming (GP). The focus
is on automating the mapping between the problem and solution domains given by an
established architecture. GP uses the principle of the separation of concerns to separate
each domain problem into a distinct generic component or sets of components, which are
used to generate a target program.

Harrison et al. (1993) propose Subject-Oriented Programming (SOP), which is a pro-
gram composition technology that supports building OO systems as compositions of sub-
jects. A subject may be a complete application in itself, or it may be an incomplete frag-
ment that must be composed with other subjects to produce a complete application. SOP
allows customising and integrating systems and reusable components.

Simonyi (1995) proposes Intentional Programming, a language-independent pro-
gramming environment, in which all source code is represented as an abstract syntax
tree (AST). Nodes of an AST are called intentions and correspond to the semantic con-
structs of a language. Examples of intentions include if-statements, type declarations,



258 R. Damaševičius, V. Štuikys

assignment statements, etc. The Intentional Programming system manipulates with the

intentions at a higher-level of abstraction.

Kiczales et al. (1997) propose a novel programming paradigm called Aspect-Oriented
Programming (AOP). The AOP-based specification of an application consists of compo-
nent and aspect specifications. A component is a generalised procedure, which is imple-

mented using the component language. An aspect is a property of the component that

affects its performance or semantics in a systematic way, and is implemented using the

aspect language(s).
Nuseibeh et al. (1994) consider multiple viewpoints that hold partial requirement

specifications described and developed using different representation schemes and deve-

lopment strategies. Leite et al. (1991) makes a further distinction between views, perspec-
tives and viewpoints. By explicitly deploying views that encapsulate partial specifications

together with the development techniques by which they are produced, the problems of

integration may be addressed.

VanHilst et al. (1996) address the collaboration-based (or role-based) designs, which

decompose an OO application into a set of classes and a set of collaborations. Each ap-

plication class encapsulates several roles, where each role embodies a separate aspect

of the class behaviour. A co-operating suite of roles is collaboration, which expresses

the distinct aspects of an application. Turner et al. (1998) consider Feature Engineering.

Features are a grouping or modularization of particular requirements and their implemen-

tation within a specification.

Ousterhout (1998) drew attention to the scripting technology. He distinguishes the

roles of the scripting language (ScL) (such as Perl, TCL) and the system programming

language (such as C++, Java). A system programming language serves for the design of

domain algorithms from scratch. A ScL serves for gluing (integrating) components into

a system. According to (Schneider et al., 1999), scripting can be considered as a higher-
level binding technology for component-based systems, which denotes abstractions for

connecting components. Achermann et al. (2000) claim that scripts are high-level spe-
cifications that make the co-ordination of components explicit. Nierstarsz et al. (2000)

examine the language support for the separation of concerns as follows: (1) component

algebras, (2) higher-order wrappers, (3) glue abstractions, (4) mixins and other composi-

tion mechanisms.

We can summarise the overview of the related works as follows. (1) The authors solve

the complexity problem of designs by using the principle of the separation of concerns,

and extracting multiple concerns, which are called dimensions, aspects, features, views,

viewpoints, roles, collaborations, or intentions by different authors. (2) The authors use

multiple languages (implicitly or explicitly) for implementing the concerns. (3) A great

emphasis is given to the integration and composition of concerns. In the following section

we consider the usage of the multi-language specifications in SW and HW design in

detail.



Separation of Concerns in Multi-language Specifications 259

3. Multi-Language Specifications and Design Systems

3.1. Motivation for Multi-Language Specifications

Most existing system specification languages are based on a single language paradigm.
Each of these languages was developed for a given application domain, e.g., SW design
(C++, Java), HW design (VHDL, Verilog), etc. However, the languages which provide
general solutions for all domain problems, are not as optimal and efficient for problem
solution as domain-specific languages (DSLs). For example, VHDL has to deal with HW
design issues as follows. (1) Behavioural description of the functionality of the HW mod-
els with signals (signal is a domain-specific object in VHDL). (2) Generic description of
the similar HW models (generic map, conditional and repetitive generate statements). (3)
Structural description of the particular compositions of the lower-level HW models (port
map, configuration statements, packages, etc.).

Only the behavioural description of domain objects by signals and their events is a
HW design-specific problem in VHDL. The other issues are well known in other domains
as well, and are solved by a number of languages (i.e., meta-, scripting, shell languages,
etc.). It would be reasonable, according to the MDSoC paradigm, to leave the solution of
these problems for the separate languages. For example, the first language (algorithmic)
deals only with the solution of the specific domain problems. The second language (meta-
language) deals only with the generalisation and parameterisation of the specific ‘look-
alike’ components. The third language (scripting) deals only with the establishment of
connections between the component instances. Programs written in different languages
cooperate together in a multi-language specification of a design. A particular number of
languages used may be left to the designer’s free choice, and is topic worth of the separate
consideration.

The usage of the external languages and multi-language specifications are well known
in the domains of meta-programming and scripting. Further we consider these program-
ming technologies in detail.

3.2. Preprocessors, Macro Languages and Meta-Programming

The multi-language specifications have been known for a long time in SW engineering.
The examples are the various macro languages and pre-processors (e.g., CPP for C, M4
for FORTRAN and C), which allow modification of source code before actual compila-
tion. Macro programming systems were first created in the 1960s as a way to ease the
development of assembly language programs, but the idea survived to our days and led
to the invention of the automatic configuration systems, such as autoconf, metaconfig.
These systems help to make a target code configurable and portable to various platforms
and operating systems by using a sort of an external language to control the compilation
process. The concerns “compilation” and “execution” are clearly separated.

One of the most popular pre-processors, CPP, allows to define a new syntax, abbrevi-
ate repetitive or complicated constructs, inline functions, propagate symbolic constants,



260 R. Damaševičius, V. Štuikys

eliminate dead code, etc. CPP also permits the system dependencies to be made explicit,
which results in a clearer separation of concerns.

Formal specification languages often use several languages at a time. For example,
BNF (Backus–Naur Form) developed in 1960, is used for the description of the syntax of
a programming language. Extended BNF, which is used in compiler generators, such as
Lex and Yacc (Terry, 1997), integrates both BNF grammar rules and TL code, where the
concerns “syntax” (described in BNF) and “semantics” (described in a TL) are clearly
separated.

The term ‘meta-program’ has been introduced in formal logic programming, and ini-
tially meant the higher-order logic program. As the scope of application broadened, the
term has acquired new meanings. According to Batory et al. (1992), a meta-program
is “a program that generates the source of the application ... by composing pre-written
code fragments”. In a meta-programming (MPG) system meta-programs manipulate tar-
get programs (TPs): they may construct TPs, combine TP fragments into larger TPs,
analyse the structure and other properties of TPs, and execute (instantiate) TPs to obtain
their values (instances), etc.

We can define MPG as a programming technique that enables manipulation with
other program structures. Another definition can be found in (Ryman, 1990): “meta-
programming is the process of specifying generic software source templates from which
classes of software components, or parts thereof, can be automatically instantiated to
produce new software components”. An example of such implicit MPG is C++ templates.
This case of MPG, however, is implemented within the realms of a single language, there-
fore, the separation of concerns is not fully implemented.

Another case of MPG involve the usage of the explicit meta-language, i.e., “any lan-
guage or symbolic system used to discuss, describe, or analyse another language or sym-
bolic system” (Czarnecki et al., 2000). To distinguish between different languages, a
lower-level language is called target language (TL), and a higher-level one – a meta-
language (ML). These different levels of abstraction can be described using (1) different
subsets of the same language, (2) language extensions, or (3) actually different languages.

A common usage of MPG is to provide mechanisms for writing generic code. Usu-
ally a TL implements commonalties in a domain, while a ML allows developers to specify
variations to be implemented in the target system and to synthesise customised implemen-
tations by composing TL code fragments. The genericity can be achieved by the parame-
terisation of differences in different program representations, which allows representing
components with many commonalties in a compact way. This simple feature allows im-
proving reusability substantially by providing parameterised components, which can be
instantiated into target programs for different choices of parameters.

Examples of the MPG usage, with different behaviour models, include (1) macro
languages like M4 or CPP, where strings are transformed to generate other strings. (2)
HTML/XML generators that transform inputs into forms interpretable by web clients.
(3) Lisp language, where an input list can be transformed into another list before being
compiled. (4) MetaML (Sheard, 2001), where programs are transformed into an annotated
syntax tree.



Separation of Concerns in Multi-language Specifications 261

3.3. Program Generation and Transformation Systems

Another example of the multi-language systems are SW generators, which usually gener-
ate a target code from a high-level specification, and often use an intermediate language
or abstract syntax tree as a convenient representation to perform the optimization and
transformation of a target code before actual generation. A related area is program trans-
formation systems. Successful program generation and transformation systems include
Draco (Neighbours, 1989), FermaT (Ward, 1989), TXL (Cordy et al., 2001), and many
others.

Draco factors the domain of application into modeling domains (e.g., a network do-
main or a database domain). A modeling domain is a pure abstraction of the knowledge
about the domain and does not specify how abstractions in that domain will actually be
implemented. Abstractions and their operations in each domain are defined by a DSL.
The programmer writes his programs in the languages of these various domains, which
are compiled into lower-level domain languages until executable code in a language like
C, C++, or Java. Therefore, different system concerns are isolated in different domains,
and are implemented using different DSLs.

FermaT is a program transformation system based on two layers of languages. These
languages implement different concerns as follows. (1) A high-level, general purpose
language WSL is used for recording, analyzing and manipulating programs and fragments
of programs. (2) A very high-level DSL, called METAWSL (an extension of WSL) is used
for representing programs as tree structures, and has constructs for pattern matching and
iterating over components of a program structure.

TXL is a programming language and rapid prototyping system specifically designed
to support the structural transformation of programs. Each TXL program has two compo-
nents specified in different languages as follows. (1) Description of the Structures to be
transformed is specified using an EBNF grammar. (2) Set of Structural Transformation
Rules is specified by an example, from which an application strategy is automatically
inferred. Therefore, the concerns “program” and “transformation rule” are clearly sepa-
rated.

3.4. Scripting

The main idea of the scripting technology is that an application developer only has to
write a small amount of wiring code in order to establish a connection between com-
ponents. It can take various forms, depending on the nature and granularity of the com-
ponents, the nature and framework of the problem domain, and the composition model.
Scripting denotes abstractions for connecting components. Components implement the
provided functionality behind a standard interface and generally represent the stable parts
of applications, whereas scripts plug components together, and represent the flexible parts
of applications.

A scripting language (ScL) is a higher-level language, used to assemble components
into the pre-specified software architecture. Well known examples of ScL are shell lan-
guages for UNIX command composition, PERL for generating HTML pages and other
tasks, and Visual Basic for rapid prototyping of GUI.



262 R. Damaševičius, V. Štuikys

Shell languages (such as Bourne Shell, c shell, k shell) are dedicated for issuing com-
mands to the operation system or other applications. They offer a simple component
model (usually called pipe and filter model) based on commands and byte streams, which
can be connected using the pipe operator ‘ | ’ and file/stream redirectors (‘<’, ‘>’, etc.).
Commands can be implemented in any programming language, provided they support the
ability to read from the standard input stream and produce output onto the standard output
and/or error streams. Shell languages represent the pure scripting paradigm, concentrat-
ing on controlling data flows and gluing components (scripts) rather than performing
computations.

In the next subsection, we look at the separation of concerns in distributed and
internet-based computing.

3.5. Distributed and Internet-Based Computing

With the arrival of the internet-based technologies, the multi-language design gained the
popularity. One can mention COM and CORBA for distributed computing, JavaScript
embedded in HTML documents, Java applets and servlets, CGI programming, dynamic
web page generation using PHP, JSP (Java Server Pages) or ASP (Active Server Pages),
mobile code systems, etc.

CORBA is a framework that defines how distributed objects can inter-operate.
CORBA objects can be written in any programming language supported by a CORBA
SW manufacturer such as C, C++, Java, Ada, or Smalltalk. The language independence
is made possible via the construction of interfaces to objects using the Interface Descrip-
tion Language (IDL). IDL allows all CORBA objects to be described in the same manner;
the only requirement is a ”bridge” between the target language and IDL.

CGI (Common Gateway Interface) programming is about extracting information from
HTML forms and generating new HTML pages using PERL scripting language. PERL
encapsulates part of the domain of text file processing (e.g., pattern searching and re-
placement, arbitrarily sized strings, arrays, “associative arrays”, etc.), and also provides
a uniform access mechanism to various operating system functions. In CGI, the concerns
are clearly separated between “interface” and “information processing”.

In Java servlets, different languages represent different levels of abstraction. Java is
used for processing user requests and generating HTML code. HTML is used for GUI
interfacing and reading user requests. Therefore, we have a clear separation of concerns
“interface” and “request processing”.

3.6. HW Design and HW/SW Co-Design

We, however, are mostly interested in application of the multi-language specifications in
HW design. For a long time, HDLs such as VHDL, Verilog, existed nearly independently
of each other. However, the complexity of HW designs is increasingly growing, and de-
signers start to concern more about designing system-on-chips (SoCs) from pre-designed
IPs (Intellectual Property components), which can be implemented using different HDLs,



Separation of Concerns in Multi-language Specifications 263

rather than designing from scratch. The integration of such IPs is an issue of HW/HW co-
design.

Furthermore, more and more popular are embedded systems (ES), which are single-
purpose computers that are often a part of consumer electronics such as mobile phones.
Their design requires a tight integration of the application-specific HW and SW, and often
has strong constraints on power, cost, and speed.

HW/SW co-design is a new research area growing out of HW design. Briefly, the pur-
pose of co-design is to facilitate the design of ES, i.e., systems consisting of (1) hardware
(a microprocessor (such as DSP), plus one or more semi-custom ASICs (Application-
Specific Integrated Circuits) or FPGAs (Field Programmable Gate Arrays)), for which
(2) software is required. Therefore, the issue of the separation of concerns is a hot topic
in HW design. Various dimensions of concerns at various abstraction levels should be
separated and later integrated. Here we consider several HW/SW co-design systems as
follows.

In POLIS (Balarin et al., 1997), the high-level application specification is written in
ESTEREL (“system-level” concern), and reusable modules are written in VHDL, C or
Assembler (“component-level” concern). The application is later synthesized into VHDL
(“hardware” concern) and C (Assembler) (“software” concern) specifications. The MCI
(Hessel et al., 1999) co-simulation tool allows the usage of four different languages (C
for algorithmic descriptions, VHDL for hardware, SDL for state-based specifications, and
MatLab for continuos computation) for the modeling of different concerns of complex
systems. The COSYMA (Ernst et al., 1996) co-synthesis system uses CX for system
description at a high level. After partitioning, the description of a system is translated into
C (“software”) and HardwareC (“hardware”). Agliada et al. (2001) developed a system,
which uses SystemC for high-level architecture description (“structural” concern), and
VHDL for implementing components (“behavioral” concern).

Scripting plays an important role in the HW design, too. It has been used to automate a
design flow, integrate a variety of EDA tools, extract required information from a design,
and prepare a configuration file (Chen et al., 2001).

3.7. Summary

After analysis of the multi-language systems, we classify the design paradigms (DP)
as follows: (1) one-language paradigm (1LP), which employs only one language, and
(2) multi-language paradigm (MLP), which employs multiple languages for describing
different concerns of a design. We further categorise MLP into (1) co-design (CoD),
where components are implemented using different DSLs at the same abstraction level;
(2) scripting paradigm (ScP), which emphasises component integration, and (3) meta-
programming (MPG) paradigm, which emphasises component generalisation and com-
position issues. We distinguish the internal (or homogeneous) MPG (IMPG), when MPG
is applied implicitly using the MPG constructs of a single language, and the external
(or heterogeneous) MPG (EMPG), when the languages are separated explicitly, and ML
performs manipulations of a TL code.



264 R. Damaševičius, V. Štuikys

Fig. 1. Multi-language specifications: (a) homogeneous, and (b) heterogeneous.

After analysis, we categorise the multi-language specifications (Fig. 1) as follows:
(1) homogeneous specifications (HMS), and (2) heterogeneous specifications (HTRS). In
HMS, the languages are clearly separated, i.e., we actually have the separate specifica-
tions for each language. The concerns are not clearly separated or separated only at the
same level of abstraction (e.g., Java native interfaces to C++). In HTRS, the languages
are not clearly separated, i.e., the programs of the languages are intermingled and we ac-
tually have only one specification written in two (or possibly more) languages. However,
the concerns are clearly separated and usually expressed via the generic parameters. Dif-
ferent languages represent different levels of abstraction (e.g., Java and HTML in Java
servlets).

We categorise the roles of the languages in multi-language specifications as follows:
(1) target languages (TLs) and domain-specific languages (DSLs) are for expressing do-
main functionality; and (2) external languages (ELs) are for modification, composition
and generation of TL code. The latter can be further categorised into (1) scripting lan-
guages (ScLs), which are usually used in HMS, and (2) meta-languages (MLs), which
are usually used in HTRS. These languages, in turn, can be (1) the different subsets of the
same language in the IMPG paradigm, or (2) actually different languages in the EMPG
paradigm. Of course, a role of a language depends upon the context of its usage. Further-
more, a particular language can have multiple roles. The roles of the ELs in HMS and
HTRS are rather different. In HMS, the EL is used for delegating and gluing the imple-
mentation of domain functionality at the same level of abstraction. In HTRS, the EL is
used for customising and generating TL code at the higher level of abstraction.

Additionally, high-level system programming languages such as C++ can be used as
(1) a TL in the one-language design paradigm, (2) a TL in the multi-language design
paradigm, (3) a ML in the MPG paradigm, or (4) one of many DSLs in the co-design
paradigm. We summarise the roles of languages as follows: (1) TL (or DSL) is for ex-
pressing domain functionality (F), (2) ScL is for composition (C), (3) ML is for genera-
tion (G), (4) ML and ScL are for parameterisation (P). Additionally, there can be other
roles for specific domains and languages.

We summarise our analysis in Fig. 2. We have identified four dimensions of the con-
cern “system design” as follows: design paradigms, specifications, languages, and roles
of languages. We performed the decomposition with respect to the design paradigms,
and present the kinds of specifications, languages, and roles of languages used for each
paradigm.



Separation of Concerns in Multi-language Specifications 265

Fig. 2. Classification of design paradigms, specifications, languages, and roles of languages.

4. Multi-Dimensional Separation of Concerns in HW Design

Tarr and Ossher use the term multi-dimensional separation of concerns (MDSoC) to de-
note the separation of concerns involving: (1) Multiple, arbitrary dimensions of concern.
(2) Separation along these dimensions simultaneously. (3) The ability to handle new con-
cerns or their dimensions dynamically as they arise throughout the SW lifecycle. (4)
Overlapping and interacting concerns. (5) Concern-based integration.

The MDSoC is based on the idea that independent concerns should be represented in-
dependently, and programs should be developed by the composition of separate concerns
according to the systematic rules. The MDSoC approaches usually deal with abstractions
and integration mechanisms. The abstractions describe the solutions for domain-specific
aspects of the design. The integration mechanisms are responsible for integrating ab-
stractions among themselves and gluing with the domain object. Further in this paper, we
apply the ideas of the MDSoC for HW design.

A key objective in designing reusable HW modules (aka soft IPs) is to encapsulate
within each module a single aspect of a design. There are many aspects or concerns when
dealing with HW design (Fig. 3). Every concern relates to the different activity in the do-

Fig. 3. Different concerns in soft IP design.



266 R. Damaševičius, V. Štuikys

main. Concerns and their dimensions can be (1) orthogonal (undependable), e.g., “data
width” and “address width”, and (2) overlapping (dependable), e.g., “data width” and
“processor type”. It is comparatively easy to identify, encapsulate and integrate concerns
for the orthogonal separation. The orthogonal separation can be introduced intuitively,
presented implicitly and does not require the development of an explicit model. On the
contrary, it is not an easy task to identify, decompose, encapsulate and integrate the over-
lapping concerns. In this case, we usually need to build a relationship model in order to
understand the concerns and extract the benefits of the relationship. Related concerns can
be grouped into kinds or dimensions, which emphasise a particular aspect of a problem.
A model to deal with a design problem is obtained when dimensions are re-integrated
together.

Each concern used in a design can be represented as a slice or dimension in the design
space. Here we understand the design space as a set of all feasible implementations of
the domain model. The design space and the concerns are the result of domain analy-
sis, which we do not consider here. The concept of the MDSoC is especially useful in
the domain of HW design where a great variety of requirements exist at the different
levels of abstraction. These requirements restrict the design space of the generic compo-
nent. The design space is further detailed by the generic parameters to meet the specific
requirements.

Soft IP may be parameterised in terms of its functionality (when a specific functional-
ity is selected from a family of related functionality), architecture (different implementa-
tions), size (data path width, address width, etc.), control (e.g., pipelining), performance
characteristics (power, area, delay), synthesis tools and target technology. The designer
uses the specified parameters to instantiate a component design customised to his re-
quirements. Common and variable features of domain components must be captured by
suitable abstractions. Commonalties reflect the shared context that is invariant across the
set of similar components (such as multipliers, ALUs, RAMs, etc.), whereas the varia-
tions, which capture the distinguishing properties of the components, have to be specified
at a higher level of abstraction and represented via the generic parameters.

We can represent the separated concerns explicitly with the generic parameters, and
the integrated concerns implicitly with a generic specification, which implements the
entire family of the related components (Fig. 4). A generic specification is the multi-

Fig. 4. Separation and integration of concerns in generic specifications.



Separation of Concerns in Multi-language Specifications 267

language one, which is a particular composition of the TL and ML programs. The TL
code encapsulates features common for the entire component family. The ML code en-
capsulates the concerns represented by the generic parameters.

In the following section we demonstrate the usage of the multi-language specifications
as a particular application of the MDSoC paradigm in HW design by our case studies.

5. Case Studies

5.1. Control Signal Insertion into VHDL Models Using Java

In this case study, we demonstrate the explicit separation of concerns in VHDL models.
We separate the concerns “control” and “functionality”. By “control” we mean the control
signals (clock, enable, reset) of a model. We use Java as an external language in order
(1) to analyse the concern “functionality”, and (2) generate VHDL code for the concern
“control”.

In this case study, Java constructs act as ML constructs with respect to TL (VHDL)
constructs, which are at a lower level of abstraction. We use Java class and method decla-
rations as a generic interface, Java method calls for the instantiation of TL components,
loop statements for repetitive generation, conditional statements for conditional genera-
tion, and standard I/O statements for TL code generation.

We have implemented a mini-generator in Java, which uses a VHDL parser to analyse
a user-supplied VHDL component, and generates a wrapper component using the exter-
nal MPG techniques. Here we demonstrate the automatic insertion of the enable signal
(Fig. 5). Note that the generated TL statements are shown in bold. The enable signal al-

Fig. 5. Insertion of the enable signal into a VHDL model: (1) the modification scheme, (2) entity of a given soft
IP, (3) a modified entity, and (4) the generated architecture.



268 R. Damaševičius, V. Štuikys

Fig. 6. Synthesis results of the third-party IPs with respect to the insertion of enable signal.

lows saving power when designing low power components. The component can be turned
off when it is not used.

Suppose, we have obtained a third-party component X . We accept that X is already
validated and qualified. Our aim is to add the enable signal to the model, thus allowing
turning on/off a model on demand. After modification, component X is wrapped with
wrapper logic (registers).

In Fig. 6, we present the synthesis results1 from the experiments performed with a
variety of the third-party soft IPs as follows. (1) Chang’s ALU (Chang, 1997), (2) ALU
from “Ans RISC8 Core” (Kook et al., 2000), (3) ALU from i8051 micro-controller (Gi-
vargis, 2000), (4) ALU from DLX processor (Gumm, 1995), (5) Wallace Tree multiplier
(Hollreiser et al., 1994), and (6) Booth multiplier (Booth, 2001). The results show a slight
overhead in area, and a decrease in power consumption for the generated VHDL models.

5.2. Generalisation of VHDL FIR Filter Using Open PROMOL

FIR (Finite Impulse Response) filters are widely used in DSP. We obtained a third-party
implementation of FIR filter in VHDL from (Iwata, 2001). It consists of ROM, SRAM,
multiplier, accumulator, divider and memory controller (Fig. 7).

We have identified the generic parameters of a FIR filter as follows: data width, coeffi-
cient width, FIR filter coefficients, and tap count. These parameters represent the specific
concerns in FIR filter design. The problem is that these concerns (1) are scattered across
the design, and (2) are not expressed explicitly, therefore, require the error-prone work
to modify a component, if needed. These features make the available FIR design poorly
reusable in other applications.

1we use Synopsys tools



Separation of Concerns in Multi-language Specifications 269

Fig. 7. FIR filter architecture and its parameters.

To make a FIR filter design more reusable, we generalise it as follows. (1) We separate
the identified concerns from the common concerns related with the implementation of
functionality (such as multiplier type), which we do not consider here. (2) We describe
these concerns at a higher level of abstraction (using an EL). (3) We assemble the generic
parameters and isolate them in a generic interface.

As an external language, we use Open PROMOL (Štuikys et al., 2000; Štuikys et al.,
2002), which is a functional language and consists of an open set of external functions.
All modifications in the specification are represented as a specific composition of the
external functions with the TL code to be modified.

The implemented generic specification of a FIR filter (Fig. 8) is a two-language speci-
fication as follows. (1) Higher-level specification (in Open PROMOL; shown in bold) ex-
presses the FIR filter design concerns explicitly via the generic parameters, glues lower-

Fig. 8. Generic FIR filter specification: (1) PROMOL interface, (2) gluing of the external PROMOL specifica-
tions, (3) a composition of VHDL code and PROMOL functions (a fragment).



270 R. Damaševičius, V. Štuikys

Fig. 9. Synthesis results of FIR filter.

level components of a FIR filter together, and performs the necessary TL code modifi-
cations to obtain a specific FIR filter design. (2) Lower-level specification (in VHDL)
implements the functionality of the FIR filter.

In Fig. 9, we present the synthesis results for the generated FIR filter instances. We
specified the values of the generic parameters as follows: the coefficient width is 8 and
16 bits, the tap count is 90, and the data width is 4, 8, 12, or 16 bits.

5.3. Generalisation of SystemC Buffer Using C++ Templates and CPP

To demonstrate the implementation of the separation of concerns in SystemC models, we
decided to implement a generic buffer model. We use a FIFO buffer from (Swan, 2001)
as a third-party IP. We identified the buffer concerns as follows: buffer size, data type of
buffer elements, and buffer type (FIFO or LIFO). We have implemented these concerns
at a higher-level of abstraction and expressed via generic parameters. We derived two im-
plementations of a generic buffer using C++ templates (internal MPG) and CPP (external
MPG) (Fig. 10, (1) & (2), respectively; note that constructs, which are used to separate

Fig. 10. Generalising a buffer in SystemC (a fragment): (1) using CPP; (2) using C++ templates, and (3) its
instantiation (an example).



Separation of Concerns in Multi-language Specifications 271

Fig. 11. Modelling results of the generic buffer instances: FIFO (above) and LIFO (below).

different concerns, are shown in bold). Both implementations allow the explicit separa-
tion of concerns, however the template-based one is not yet synthesizable by available
synthesis tools. On the other hand, in the CPP-based implementation only one instance
of the buffer can be used in a design.

In Fig. 11 we present the modelling results of the generic buffer instances. We speci-
fied values of the generic parameters as follows: buffer type is FIFO or LIFO, data type
is bv<8> (i.e., 8-bit vector), and buffer size is 8.

6. Conclusions

The separation of concerns is a usual way to deal with complex problems in a system de-
sign. The multi-dimensional separation of concerns (MDSoC) paradigm handles multiple
dimensions of concern simultaneously, as well as overlapping and interacting concerns.
The MDSoC can be used as a general framework to better understand the well-known
programming technologies such as meta-programming (MPG) and scripting, as well as
adopting other new technologies such as generative, intentional, aspect-oriented program-
ming, etc. The evolution of the MPG paradigm is the multi-language design.

The multi-language design introduces a clear separation of concerns in a design by
using different languages for different purposes. When generalisation and generation is
concerned, MPG (especially, the external one) allows the explicit separation of domain
functionality from the generalisation and composition issues.



272 R. Damaševičius, V. Štuikys

We have demonstrated the application of the MDSoC and MPG techniques for devel-
oping the multi-language specifications of HW models, thus achieving higher flexibility,
customisability and reusability.

Acknowledgements

Authors thank to the anonymous reviewer whose comments served for improving the
paper.

References

Achermann, F., S. Kneubuehl, O. Nierstrasz (2000). Scripting coordination styles. In Proceedings of the Coor-
dination’2000, Lecture Notes in Computer Science, Vol. 1906. Springer–Verlag, 19–35.

Agliada, N., A. Fin, F. Fummi, M. Martignano, G. Pravdelli (2001). On the reuse of VHDL modules into
systemC designs. In Forum on Design Languages FDL’2001, Lyon, France.

Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, C., Sangiovanno–
Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B. (1997). Hardware–Software Co-Design of Embedded
Systems – The POLIS Approach. Kluwer Academic Publishers.

Batory, D. (2000). Refinements and separation of concerns. In Second Workshop on Multi-Dimensional Sepa-
ration of Concerns, International Conference on Software Engineering, Limerick, Ireland.

Batory, D., S. O’Malley (1992). The Design and implementation of hierarchical software systems with reusable
components. ACM Transactions on Software Enginnering and Methodology, 1(4), 355–398.

Booth multiplier (2001). http://www.cs.umbc.edu/help/VHDL/samples/
Chang, K.C. (1997). Digital Design and Modeling with VHDL and Synthesis, IEEE Computer Society Press,

The Institute of Electrical and Electronic Engineers, Inc., Los Alamitos.
Chen, P., K. Keutzer (2001). Fast integration of EDA tools and scripting language. In 8th IEEE/DATC Electronic

Design Processes Workshop, Monterey, California, USA.
Cordy, J.R., T.R. Dean, A.J. Malton, K.A. Schneider (2001). Software engineering by source transformation –

experience with TXL. In Proc. IEEE 1st International Workshop on Source Code Analysis and Manipulation
(SCAM 2001), Florence, Italy, IEEE CS Press, 168–178.

Czarnecki, K., U. Eisenecker (2000). Generative Programming: Methods, Tools and Applications. Addison–
Wesley.

Ernst, R., J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Herrmann, and M. Trawny (1996). The COSYMA
environment for hardware/software cosynthesis of small embedded systems. Microprocessors and Microsys-
tems, 20(3), 159–166.

Givargis, T. (2000). Intel 8051 Microcontroller,
http://www.cs.ucr.edu/∼dalton/i8051/i8051syn/

Gumm, M. (1995). DLX Processor. ftp://ftp.informatik.uni-stuttgart.de/pub/vhdl/
vlsi_course/vhdl_src/source_files.tar.Z

Harrison, W., H. Ossher (1993). Subject-oriented programming – a critique of pure objects. In Paepcke, A.
(Ed.) Conference on Object-Oriented Programming Systems, Languages, and Applications, Washington,
DC, USA. SIGPLAN Notices, 28(10). ACM Press. pp. 411–428.

Hessel, F., P. LeMarrec, C.A. Valderrama, M. Romdhani, A.A. Jerraya (1999). MCI – multilanguage distributed
co-simulation tool. In F. Rammig (Ed.), Distributed and Parallel Embedded Systems. Kluwer Academic
Publishers. pp. 191–200.

Hollreiser, M., T. Bissuel (1994). Wallace Tree Multiplier.
http://mikro.e-technik.uni-ulm.de/vhdl/vhdl_models.html

Iwata, T. (2001). FIR Filter. http://www.digitalfilter.com/
Jerraya, A.A., M. Romdhani, Ph. Le Marrec, F. Hessel, P. Coste, C. Valderrama, G.F. Marchioro, J.M. Daveau,

N.-E. Zergainoh (1999). Multi-language specification for system design and co-design. In A.A. Jerraya, J.
Mermet (Eds.), System Level Synthesis. Kluwer Academic Publishers.



Separation of Concerns in Multi-language Specifications 273

Kandé, M.M., A. Strohmeier (2000). On the role of multi-dimensional sdeparation of concerns in software
architecture. In Conference on Object-Oriented Programming, Systems, Languages and Applications OOP-
SLA’2000, Minneapolis, Minnesota, USA.

Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, J. Irwin (1997). Aspect-
oriented programming. Proceedings of the European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science, Vol. 1241. Springer–Verlag. pp. 220–242.

Kleinjohann, B. (1998). Invited talk: Multilanguage design. In Proc. of International IFIP WG 10.3/WG 10.5
Workshop on Distributed and Parallel Embedded Systems (DIPES’98). Paderborn, Germany.

Kook, I., T. Park, W. Park (2000). Ans_RISC8_Core. http://www.anslab.co.kr/goodkook/
vhdl/Document/RISC8_Core/

Leite, J.C.S.P., P.A. Freeman (1991). Requirements validation through viewpoint resolution. Transactions on
Software Engineering, 12(12), 1253–1269.

Luk, W., S. McKeever (1998). Pebble: a language for parameterised and reconfigurable hardware design. In
Hartenstein, R.W., A. Keevallih (Eds.), Field Programmable Logic and Applications. Lecture Notes in Com-
puter Science, Vol. 1482. Springer. pp. 9–18.

Meiyappan, S., K. Jaramillo, P. Chambers (1999). 10 tips for generating reusable VHDL. EDN Magazine,
August 19, 49–62.

Murphy, G.C., A. Lai, R.J. Walker, M.P. Robillard (2001). Separating features in source code: an exploratory
study. In Proceedings of the 23rd International Conference on Software Engneering (ICSE 2001), Toronto,
Ontario, Canada, IEEE CS Press, 275–284.

Neighbors, J.M. (1989). Draco: a method for engineering reusable software systems. In Biggerstaff, T.J., A.
Perlis (Eds.), Software Reusablility, Vol. I: Concepts and Models. ACM Press. pp. 295–319.

Nierstrasz, O., F. Achermann (2000). Separation of concerns through unification of concepts. In ECOOP 2000
Workshop on Aspects and Dimensions of Concerns.

Nuseibeh, B., J. Kramer, A. Finkelstein (1994). A framework for expressing the relationships between multiple
views in requirements specifications. IEEE Transactions on Software Engineering, 20(10), 760–773.

Ossher, H., P. Tarr (2000). Multi-dimensional separation of concerns and the hyperspace approach. In M. Aksit
(Ed.), Software Architectures and Component Technology: The State of the Art in Software Development.
Kluwer Academic Publishers.

Ousterhout, J.K. (1998). Scripting: higher level programming for the 21st century. IEEE Computer, 31(3), 23–
30.

Ryman, A. (1990). Requirements for a metaprogramming language. Presentation at the 24th meeting of IFIP
Working Group 2.4. Kingston, Canada.

Schneider, J.G., O. Nierstrasz (1999). Components, scripts and glue. In Barroca, L., J. Hall, P. Hall (Eds.),
Software Architectures – Advances and Applications. Springer. pp. 13–25.

Sheard, T. (2001). Accomplishments and research challenges in meta-programming. In 2nd International Work-
shop on Semantics, Application, and Implementation of Program Generation (SAIG’2001), Florence, Italy.
Lecture Notes in Computer Science, Vol. 2196. Springer. pp. 2–44.

Siegmund, R., D. Mueller (2000). A method for interface customization of soft IP cores. In R. Seepold, M.
Navidad (Eds.), Virtual Component Design and Reuse. Kluwer Academic Publishers.

Silva, A.R. (1999). Separation and composition of overlapping and interacting concerns. In First Workshop on
Multi-Dimensional Separation of Concerns in Object-Oriented Systems (at OOPSLA ’99).

Simonyi, C. (1995). The death of computer languages, the birth of intentional programming. NATO Science
Committee Conference.

Singhal, V., D. Batory (1993). P++: a language for large-scale reusable software components. In Proc. of the
6th Annual Workshop on Software Reuse, Owego, New York.

Swan, S. (2001). An Introduction to System Level Modeling in SystemC 2.0, White paper, OSCI.
Štuikys, V., R. Damaševičius (2000). Scripting language open PROMOL and its processor. INFORMATICA,

11(1), 71–86.
Štuikys, V., R. Damaševičius, G. Ziberkas (2002). Open PROMOL: an experimental language for target pro-

gram modification. In A. Mignotte, E. Villar, L.S. Spruiell (Eds.), System-on-Chip Design Languages.
Kluwer Academic Publishers.

Tarr, P., M. D’Hondt, L. Bergmans, C.V. Lopes (2000). Workshop on aspects and dimensions of concern: re-
quirements on, and challenge problems for, advanced separation of concerns. In ECOOP Workshop Reader.
pp. 203–240.



274 R. Damaševičius, V. Štuikys

Terry, P.D. (1997). Compilers and Compiler Generators: An Introduction With C++. International Thomson
Publishing Inc., UK, Oxford.

Turner, C.R., A. Fuggetta, L. Lavazza, A.L. Wolf (1998). Feature engineering. In Proceedings of the 9th In-
ternational Workshop on Software Specification and Design (IWSSD’98). Kyoto, Japan, IEEE CS Press. pp.
162–164.

VanHilst, M., D. Notkin (1996). Using role components to implement collaboration-based designs. In Procee-
dings of OOPSLA’1996. ACM Press. 359–369.

Veldhuizen, T.L. (1995). Using C++ template meta-programs. C++ Report, 7(4), 36–43.
Ward, M. (1989). Proving Program Refinements and Transformations. PhD. Thesis, Oxford University.

R. Damaševičius received MSc degree in informatics from Kaunas University of Tech-
nology, Lithuania in 2001. Currently he is Ph.D. student at Informatics Faculty, Kaunas
University of Technology. His research interests include software reuse, multi-language
design, software generation and program transformation, and hardware design with
VHDL and SystemC.

V. Štuikys received Ph.D. degree from Kaunas Politechnic Institute in 1970. Currently he
is in the position of a Professor at Software Egineering Department, Kaunas University
of Technology, Lithuania. His research interests include domain-specific reuse, high level
domain-specific languages, expert systems and CAD systems, including VLSIC design
based on high-level hardware description languages and soft IP design.

Koncepcij ↪u atskyrimas daugiakalbėse specifikacijose

Robertas DAMAŠEVIČIUS, Vytautas ŠTUIKYS

Šiame straipsnyje mes analizuojame koncepcij ↪u atskyrim ↪a projektuojant daugiakalbes sistemas
ir specifikacijas. Analizės pagrindas yra daugiadimensinio koncepcij ↪u atskyrimo paradigma, kuri
teigia, jog atskiros koncepcij ↪u dimensijos turi būti realizuojamos nepriklausomai viena nuo kitos.
Daugiakalbės specifikacijos yra specifikacijos, kuriose skirtingi sistemos aspektai yra realizuojami
naudojant skirtingas kalbas. (1) Tikslo kalbos aprašo srities funkcionalum ↪a. (2) Išorinės (arba sce-
narij ↪u, meta-) kalbos aprašo pasikartojanči ↪u sistemos bruož ↪u apibendrinim ↪a, ↪iveda variantiškum ↪a
per parametrizavim ↪a ir atlieka komponent ↪u integravim ↪a ↪i sistem ↪a. Mes pateikiame daugiakalbi ↪u
specifikacij ↪u taikymo aparatūrinės ↪irangos projektavimui tyrimus ir eksperimentinius rezultatus.


