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Abstract. The new strategy for non-uniform initial FE mesh generation is presented in this paper.
The main focus is set to a priori procedures that define the sizing function independent on the mesh
generation algorithm. The sizing function used by the mesh generation algorithm is established by
control sphere and control space concepts and fully controls mesh gradation in the complex 2D
problem domains.
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1. Introduction

The advent of modern computer technologies provided a powerful tool in numerical simu-
lations for a range of partial differential equations. One of the most frequently used meth-
ods for the discretization of physical domain is Finite Element Method (FEM). One of the
main concerns in finite element analysis is the adequacy of the finite element mesh. Since
the quality of the finite element approximated solutions directly depends on the quality of
meshes, an additional process to improve the quality of meshes is necessary for reliable
finite element approximations. In order to perform a reliable finite element simulation a
number of researches have made efforts to develop an adaptive finite element analysis
method which integrates the finite element analysis with error estimation and automatic
mesh modification (Baušys, 1999; Lee, 1993; Stupak, 2000). Traditionally adaptive mesh
generation process is started from coarse mesh, which gives large discretization error
levels and takes a lot of iterations to get a desired final mesh. This happens because the
quality of generated FE mesh is judged only from the element shape. With the grow-
ing awareness of adaptive finite element strategies much effort is devoted to improve the
speed and quality of meshes (Lee, 1999; Löhner, 1996). Usually generators do not ac-
count the boundary conditions or material properties of the domain and start from the
mesh, which requires more steps for the convergence of desired accuracy and the process
is the more time consuming.

The aim of this article is to provide an algorithm for the generation of two dimensional
(2D) initial (before the finite element analysis is started) mesh, which will be more re-
fined around the critical regions (singularities, re-entrant corners) of the problem domain.
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When incorporated into adaptive FE analysis and compared with traditional approach,
the proposed method, which starts the solution process with near optimal initial mesh,
will significantly reduce the number of iterations to get the final mesh. The main focus is
set to the grid generation of the planar multimaterial and multidomain systems by the Ad-
vancing Front technique. The concepts of control space and control sphere are applied in
order to control mesh size. Mesh generation examples will demonstrate that the proposed
method can discretize the problem domain into almost optimal initial mesh.

2. General Mesh Generation Aspects

The method used for mesh generation can greatly affect the quality of the resulting mesh.
Usually the geometry and physical problems of the domain direct the user which method
to apply. Real 2D problems involve the complex topology, distribution of the boundary
conditions. Such situation requires to use the automatic mesh generator and reduce user
influence to this process as much as possible. The Delaunay triangulation and Advancing
front method are the most popular mesh generation methods that can be used for the
adaptive FE mesh strategies.

Both methods involve the creation of points and the relevant connectivity’s. This is
usually achieved through different stages that can be summarized as follows:

Step 1. Definition of the domain boundaries;
Step 2. Specification of an element size distribution function;
Step 3. Generation of a mesh respecting the domain boundaries;
Step 4. Mesh quality enchantment (diagonal swapping, mesh smoothing, node

reposition).

In general, good quality meshes cannot be obtained directly from the meshing tech-
niques. An additional step is required to optimize the mesh with respect to the element
shape. To describe all model features without generating huge numbers of elements, large
transitions in element sizes may be required. Many authors have described the use of
some form of element size control in the literature (Owen, 1992; Owen, 2000 ). This
is often done in the context of the presentation of the specific meshing algorithm. A
background mesh, made from the set of vertices selected from the geometry, is the most
commonly used to define an element sizing function. For the Delaunay triangulation the
sizing information at all vertices are provided directly from the user input or from the
heuristic criteria based on surface curvature, feature size, or physically based phenomena
such as boundary layers or error norms from the previous finite element solution. The
recent work by Borouchaki et al. (1998) uses the modified form of the Delaunay algo-
rithm. In this work a continuous field of element sizing tensors or metric is interpolated
throughout planar or three-dimensional domain. Metric ability to take into account the
error norms from the previous solution is also demonstrated. For the Advancing Front
technique Peraire (Peraire et al., 1987; Peraire, 1988) introduce the concept of the back-
ground mesh in the context of the adaptive re-meshing. They describe the background
mesh consisting of only few elements or take the actual finite element mesh which has
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been previously used for analysis. Interpolation of the additional mesh parameters is also
discussed. Numerical improvements of mesh sizing function for the AFT were proposed
first by R. Löhner and P. Parikh (1988), more recently by J. Frykestig (1994). Both gen-
erators (Delaunay triangulation and Advancing front technique) provide good quality
meshes, but using Dealunay triangulation ill-shaped elements can be constructed along
the boundaries. The Advancing Front technique tends to produce high quality elements
and nicely graded meshes in whole region. In contrast to other techniques, boundary in-
tegrity is always preserved, as the discretization of the domain boundary constitutes the
initial front, which is not the case for some other mesh generation methods.

3. Sub-optimal Initial Mesh Generation

The efficiency of the adaptive finite element strategies straightforward depends on the
number of iterations until optimal mesh is constructed. Traditionally mesh generation
process starts with a coarse user-constructed background mesh and mesh sizing function
is defined manually by giving its value for each element of the background mesh and
is judged only from element shape without any information about boundary or loading
conditions. During the finite element meshing process the target element size at the new
point is defined commonly from a linear interpolation. After that a corresponding solution
is computed and the discretization error estimate analysis is performed so as to redefine
mesh sizing function from a posteriori error estimate. This process is the most time con-
suming and requires a lot of steps for the convergence to the desired accuracy. Some
weakness has been noted with the linear interpolation method also (Owen, 2000). Poor
results can arise when the triangles of the background mesh are tessellated and skinny.
As a result, abrupt changes in element size are common resulting in less than desirable
element quality and transitions. To overcome these difficulties either the more perfect ini-
tial mesh should be taken as a covering triangulation ∆ or the linear interpolation method
should be changed.

The best mesh for a given finite element analysis problem can be defined as compro-
mise between the need for accurate results ant the desire for the computational efficiency.
Accuracy can be equated with the size and number of elements in the mesh. As ele-
ment size decreases, the geometry of the problem region is more closely approximated.
However, the increased number of elements causes an increase of the cost of the compu-
tational expenses. The compromise between accuracy and efficiency is usually achieved
by grading the mesh, but in this place we have one problem – the solution gradients are
unknown in the first iteration step of the adaptivity strategies and a tools of estimating
mesh density requirements is needed before the automatically graded meshes can be pro-
duced. In order to overcome this difficulty, a new method for controlling mesh gradation
is presented in this section. An automatic mesh generation procedure uses all information
about the object geometry, boundary conditions and material distribution data to generate
a priori mesh, which is more refined around regions, where high stress concentrations are
expected. This approach incorporated into adaptive FE analysis will result in less time
and less computational cost.
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Fig. 1. Construction of control space: the size H(P ) at point P is obtained by linear interpolation between
sizes H(A), H(B) and H(C) at A, B and C respectively.

Mesh gradation control usually is performed using control space (Frey, 2000) notion.

DEFINITION 1. (∆, H) is a control space for the mesh T of a given domain Ω if

• Ω ∈ ∆, where ∆ covers the domain Ω,
• a mesh sizing function H(P ) is associated with every point P ∈ ∆ and obtained

from the linear interpolation

H(P ) =
2∑

i=0

wiH(Pi), (1)

where wi are the respective area or barycentric co-ordinates of P within the triangle.

The control space includes two related ingredients: first a covering triangulation ∆ is
defined, and then a function H is posed (Fig. 1). The proper selection of this pair allows
to determine specific geometric or physical properties for mesh elements.

Linear interpolation problems and coarse covering triangulation obligates us to seek
an improved mesh generation method. In order to overcome these difficulties the extended
control space is implemented in the proposed method. In contrast to the Definition 1, the
mesh size function is assigned not to the every point of ∆, but with the most critical
region of the given domain Ω. This improvement allows us reflect more precisely all
topological and physical domain features to the resulting finite element mesh and gives
us more flexibility in mesh gradation control.

For the mesh size determination around each critical region we propose to use the
control sphere concept:

DEFINITION 2. The sphere

S(P,R) = {x| ‖P − x‖ = R} (2)

is a control sphere for any critical point P if radius R is defined as follows:

R =
n∑

i=1

(1.2)ikh′, (3)

where h′ is the largest desirable mesh size. 0 < k � 1 is a factor for the controlling the
smoothness of the node distribution and involves an information from loads, materials
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and boundary. Low values of k result in smoother meshes, while higher values produce
coarse meshes. n is the number of spheres from a critical point P , the number n can be
determined as the integer part from the expression d

h′ , where d is the diagonal length of
the problem region. Radius R defines the spacing between any two consecutive spheres,
generated from this point P .

In the same manner we can define control sphere for segment AB:

S(AB,R) = (1 − t)S(A,R) + tS(B,R), t ∈ [0, 1], (4)

where S(A,R) and S(B,R) are control spheres for the begin and end points of segment
AB respectively.

The control sphere definition could be simply extended to the general case.

DEFINITION 3. The set of spheres{
S

(
γ(t), R

)
=

n∑
i=0

ϕiS(Pi, R)

}
(5)

is said to be the control sphere along the curve γ(t) =
∑n

i=0 ϕiPi, if the centers of all
spheres lies on this boundary curve and the radius are defined by Definition 2.

The last control sphere definition involves previously defined control spheres around
points and segments can be used to define mesh sizes around any free form curve.

In the proposed approach control space is defined as follows (see Fig. 2).

DEFINITION 4. (∆, S) is a control space for the mesh T of a given domain Ω if

• Ω ∈ ∆, where ∆ covers the domain Ω,
• S is a control sphere, associated with every critical region of a given domain Ω.

In practice the control sphere for a point is used to define mesh size around singular-
ities or re-entrant corners, and control sphere for a segment or a curve is useful for the
boundary and loading conditions.

Fig. 2. Construction of control space: control spheres around critical points A and B, covering triangulation
and the mesh.
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Generating sets of spheres from each critical region, we can fully control smoothness
of the node distribution. From the intersection of these spheres with region boundary
we obtain a boundary segments, which are used as an initial front for Advancing Front
triangulation procedure. The covering triangulation ∆ is determined from this modified
initial front and completes the control space (∆, S) construction. Mesh generation proce-
dure continues with the field point creation designed in accordance with the information
encoded in this control space.

The control sphere concept allows us fully control mesh grading, but we still have
one problem left. An additional check on mesh quality should be performed to avoid
poorly shaped triangular elements. Engineers commonly access the shapes of triangles
via aspect ratios, determined by dividing length of edges, altitudes, etc. Different mea-
sures (Babuska, 1976; Field, 2000) have been independently discovered numerous times
and clearly identify perfect or degenerated mesh elements. In the proposed strategy the
element shape measure, reported in (Bank, 1996; Bhatia, 1990) is implemented. This
measure has a circular contours and is compatible with the proposed control sphere defi-
nition:

q(Ti) =
4
√

3Ai

l2i1 + l2i2 + l2i3
, (6)

where Ti is the ith triangle of the mesh T, li1, li2 and li3 are the edges of the triangle
Ti, Ai – area of the triangle Ti. This measure allows us to eliminate ill shaped elements
and rapid changes of the resulting mesh size.

So, the pair (∆, S) contains the global information related to different aspects: geom-
etry of the domain, material properties and loading conditions and allows us to construct
sub-optimal initial mesh, which is more refined around areas where high solution gradi-
ents are expected. In such case adaptive FE strategy is started with almost optimal initial
mesh and results in lower levels and better estimates of errors and in less iterations num-
ber.

4. Intelligent Initial Mesh Generation Procedure

In this section we present an algorithm, which performs good quality sub-optimal initial
mesh for a given 2D problem. This algorithm starts working from the analysis part, which
prepares data for the AFT procedure, i.e., decompose initial domain Ω into more simple
substructures, then constructs control spaces from the geometry, boundary conditions
or material properties encoded in these substructures. After that the sub-optimal initial
meshes are generated for each part separately and general mesh is obtained combining
these generated mesh parts.

The main algorithm steps can be summarized as follows:

Step 1. Preliminary definitions: object geometry, boundary conditions and material
data input.
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Step 2. Analysis part:

(a) Object geometry check: analysing all consecutive geometric feature or
primitive (line, segment, arc, etc.) identify ’candidate’ regions (points,
segments, curves), that could be detected as critical. This includes regions
with holes, notches, cracks or re-entrant points, in which significant stress
gradient may be developed. Form a list {CR1, CR2, . . . , CRn}, where CRi

identifies ‘candidate’ critical region and n is the total number of these
regions.

(b) Boundary condition analysis: check all candidate critical regions CRi on
load influence, remove CRi from a list if there is no load, which produce any
stress concentration to this critical region.

(c) Domain subdivision: decompose the original structure (or domain) into
several substructures (or standart cases) for which an aproximate stress
calculations can be performed. Each substructure contains only one critical
region. Form a list

{
{D1, CR1}, {D2, CR2}, . . . , {Dm, CRm}

}
, where Di

identifies current substructe and CRi is the corresponding critical region for
this Di, m � n the number of realy critical regions.

(d) Control space definition: using Definition 4, determine control spaces for
each substructure Di. Form a list{
{D1, CR1, CS1}, {D2, CR2, CS2}, . . . , {Dm, CRm, CSm}

}
, where

control space CSi determines mesh size distribution in domain part Di and
incorporates information about critical region CRi.

Step 3. Mesh generation: using Advancing Front Technique, perform sub-optimal
initial mesh Ti for each substructure Di:

(a) Using information encoded in control space CSi, define the initial front Fi

for the AFT triangulation.
(b) Analyze front Fi: select the front entity f (based on a specific criterion).

Create an optimal point Popt based on the entity. Determine whether a mesh
vertex V exists that should be used instead of Popt. If such point exists, set V
to Popt. Form a new element K with f and Popt. Check for element
intersection, element size, to validate the above choice.

(c) If front is not empty, return to (b).

Step 4. General mesh generation: from the obtained set of initial meshes
{T1, T2, . . . , Tn} determine the general initial mesh T , which covers initial
domain Ω.

The general framework of intelligent initial mesh generation procedure is shown is
shown in Fig. 3.

5. Numerical Examples

Two mesh generation examples are given to test and demonstrate the proposed mesh gen-
eration scheme. User interaction is limited to providing the necessary object description,
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Fig. 3. Outline of the algorithm.

boundary and loading conditions. To illustrate the mesh generation possibilities two 2D
domains with different topologies and complexity are analyzed. For each domain pure tri-
angular and quadrilateral meshes are generated. The mesh generator uses extended con-
trol space notion to generate a priori sub-optimal initial mesh. Element size information is
obtained from control spheres around point and a segment. For each problem we take dif-
ferent isotropic materials. First material is described by Young’s modulus E = 2.06 · 105

MPa and Poison’s ratio ϑ = 0.3. To define the second material we take E = 2.2 · 105

MPa and ϑ = 0.28. The essential boundary condition p = 1000 kN is set at the top of the
both structures. The outline of dimensions and applied natural boundary conditions are
shown in Fig. 4.

According procedure, proposed in Section 4, the sub-optimal initial meshes are per-
formed for both structures A and B (see Fig. 5). For the structure (a) we have 490 elements
and for structure (b) the total number of elements is 415. For the sake of comparison we
generate uniform meshes for these structures with the same number of elements by the
traditional meshing approach (see Fig. 6).
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Fig. 4. Structure A and structure B with different materials.

Fig. 5. Triangular sub-optimal meshes for structure A and B.

Fig. 6. Triangular uniform meshes for structure A and B.

Fig. 7. Quadrilateral sub-optimal meshes for structure A and B.
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Fig. 8. Structure A: stress distribution for triangular uniform and sub-optimal meshes.

Fig. 9. Structure B: stress distribution for triangular uniform and sub-optimal meshes.

The corresponding solutions are computed and presented in Figs. 8–9. Comparing
results from the sub-optimal and uniform meshes we detect that stress distribution areas
are quite different for these two samples. The von Misses stresses, obtained from the sub-
optimal mesh, are more concentrated around critical regions than the results, obtained
from the uniform mesh. For example, for the structure A we obtain such stresses: σmax =
0.197e7 Pa by the sub-optimal mesh and σmax = 0.227e7 Pa by the uniform mesh. For
the structure B the von Misses stresses are σmax = 0.213e7 Pa and σmax = 0.250e7 Pa
by the sub-optimal and uniform meshes respectively. It means that in the first adaptive
analysis step we have significantly reduced error and can expect that the optimization
stage will take less number of iterations to complete mesh generation.

In order to study a full class of finite elements we do the same procedure with quadri-
lateral element mesh. The sub-optimal meshes are shown in Fig. 7, stress distribution for
the structure A is shown in Fig. 10 and for the structure B in Fig. 11 respectively. As in
the previous sample, the stress values are more concentrated for the sub-optimal meshes.

Presented examples show that proposed mesh generation procedure gives us more
flexibility in mesh gradation control around areas with different topological incompati-
bilities and allows us to choose the most suitable mesh size for them.
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Fig. 10. Structure A: stress distribution for quadrilateral uniform and sub-optimal meshes.

Fig. 11. Structure B: stress distribution for quadrilateral uniform and sub-optimal meshes.

6. Conclusions

In this article a new strategy for non-uniform initial FE mesh generation have been pre-
sented. This strategy enables us to control element sizes for different areas. The main
focus is set to a priori procedures that define the sizing function independent on the mesh
generation algorithm. The sizing function used by the mesh generation algorithm is es-
tablished by control sphere and control space concepts and fully controls mesh gradation
in the complex domains. Also the new methodology for the developing the automatic
sub-optimal initial mesh in adaptive FE strategy is presented. It is not difficult to observe
that proposed method allows good quality mesh generation with the minimum number
of ill-shaped elements. Constructed initial meshes are expected to be a good start for the
adaptive FE analysis.
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Pagerintas pradinio optimalaus baigtini ↪u element ↪u tinklo
generavimas sprendžiant 2D uždavinius

Lina VASILIAUSKIENĖ, Romualdas BAUŠYS

Šiame straipsnyje pagrindinis dėmesys skiriamas pagerinto pradinio nestruktūrinio baigtini ↪u
element ↪u tinklo generavimui naudojant Plintančio fronto metod ↪a. Tikslui pasiekti, ↪ivedamos kon-
trolinės erdvės ir kontrolinės sferos s ↪avokos, leidžiančios kontroliuoti tinklo element ↪u tankum ↪a
tokiose kritinėse srityse kaip singuliarūs taškai, kampai ar skirting ↪u medžiag ↪u s ↪alyčio sritys. Ly-
gindami gautus pagerintus tinklus, matome, kad jau po pirmos iteracijos gaunamas beveik opti-
malus tinklas, todėl galima konstatuoti, kad toks pusiau optimalus tinklas sumažins kompiuterines
prisitaikanči ↪uj ↪u strategij ↪u s ↪anaudas.


