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Abstract. The problem of supervised classification of the realisation of the stationary univariate
Gaussian random field into one of two populations with different means and factorised covariance
matrices is considered. Unknown means and the common covariance matrix of the feature vector
components are estimated from spatially correlated training samples assuming spatial correlation to
be known. For the estimation of unknown parameters two methods, namely, maximum likelihood
and ordinary least squares are used. The performance of the plug-in discriminant functions is eval-
uated by the asymptotic expansion of the misclassification error. A set of numerical calculations is
done for the spherical spatial correlation function.
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1. Introduction

The problem of supervised classification (discriminant analysis (DA)) is usually the pri-
mary goal of pattern recognition (see, e.g., Raudys, 2000). For example, in the weather
prediction the weather may be divided into three classes: fair, rain and possible rain; and
the problem is to classify tomorrow’s weather into one of these three classes on the ba-
sis of data from satellite, when weather masses are observed. In such area like pattern
recognition or geostatistics the data of interest are often spatially correlated. And DA of
spatially correlated data is of great importance.

When classes are completely specified, an optimal classification rule in the sense of
minimum classification error is the Bayesian classification rule. In practice, however, the
complete description of classes usually is not possible and for the estimation of proba-
bilistic characteristics of each class the training samples are required. When estimators of
unknown parameters are used, the expressions for the expected error rate are very cum-
bersome even for the simplest procedures of DA. Therefore, asymptotic expansions of
the expected error rate are especially important.

In the experimental-design literature traditionally two estimators have been discussed
when the observations are correlated, namely, the ordinary least square (OLS) estima-
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tor and maximum likelihood (ML) estimator. The OLS estimator is usually chosen be-
cause of practical considerations; it is easier to compute than ML estimator since it does
not involve the variance, which is frequently unknown. The OLS estimators are always
available and yield unbiased estimators; however they may not have minimum variances
(among unbiased linear estimators) (Anderson, 1971, p. 560). When those two kinds of
estimators are used in context of DA, it is expedient to compare the OLS estimators with
the ML estimators in a sense of the asymptotic expansions for the expected error rate.

2. Model and Problem

Let {Z(s): s ∈ D ⊂ �2} be a univariate Gaussian random field having different means
and factorised covariance matrices in populations Ω1 and Ω2. Then the model of Z(s) in
population Ωl is

Z(s) = µl(s) + εl(s), (1)

where µl(s) is a mean vector and {εl(s): s ∈ D ⊂ �2} is a zero-mean stationary Gaus-
sian random field with covariance defined by a parametric model cov

{
εl(t), εl(s)

}
=

σ(h; θl), where h = t − s, t, s ∈ D, and θl ∈ Θ is a m × 1 parameter vector, Θ
being an open subset of �m, l = 1, 2. We restrict the attention to the homoscedastic
models, i.e., σ(0; θ) = σ2, for each θ ∈ Θ . Then the spatial covariance function in
Ωl is cov

{
εl(t), εl(s)

}
= c(h; θl)σ2, where c(h; θl) is the spatial correlation function,

l = 1, 2. It is assumed that the function c(h; θl) is positive definite (Mardia and Marshall,
1984). Assume that, for all t, s ∈ D, t �= s,

cov
{
ε1(t), ε2(s)

}
= 0.

There are several possible mean models: constant mean, regression model and trend sur-
face model. Constant mean model in population Ωl is

E
{
Z(s)

}
= µl ≡ const,

for all s ∈ D, l = 1, 2. The regression model in population Ωl for all s ∈ D is defined by

µl(s) = xT (s)βl,

where x(s) =
(
x1(s), . . . , xq(s)

)T
is a q × 1 vector of non-random regressors and βl =

(β1
l , . . . , β

q
l )

T ∈ B, l = 1, 2, is a vector of large-scale variation (trend) parameters, B
being an open subset of �q. Let Xl be an Nl × q regressor matrix with j-th column
(x1j , . . . , xNlj)

T , where xαj = xj(sl
α), j = 1, . . . , q, α = 1, . . . , Nl, l = 1, 2, and

|x(s)| � M < ∞, for all s ∈ D.
Haining (1990) suggests represent mean as a polynomial function of coordinates of a

specified order, that is

µl(s) = aT (s)λl,
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where a(s) is a vector of location coordinates of the point s and their products, and λl is
a vector of trend surface parameters so that

aT (s) = (1, sx, sy, (sx)2, (sy)2, sxsy, . . . , (sx)p(sy)q),

where sx and sy define the coordinates of point s in �2, and for, l = 1, 2,

λl = (λ10
l , λ01

l , λ20
l , λ02

l , λ11
l , . . . , λpq

l )T .

Geographical coordinates such as longitude and latitude could also be considered instead
of sx and sy . The sum p + q = k represents the order of the trend surface. This is so-
called trend surface model. Let Al be an Nl × k matrix with α-th raw being aT (sl

α),
α = 1, . . . , Nl, l = 1, 2.

It is easy to see, that constant mean model and trend surface model could be consid-
ered as special cases of regression model, when q = 1, x(s) = 1 (constant mean) and
k = 1, Xl is replaced by Al (trend surface model). So, further we restrict our attention to
the regression model.

Model (1) is generally used in geostatistics, which is usually concerned with optimal
linear spatial prediction called kriging. As Cressie (1993) designates, in kriging often the
parameters of regression model (called “large-scale-variation” parameters) are of greatest
interest, assuming that the “small-scale-variation” parameters associated with error pro-
cess εl(s) are known. This is why we concentrate bigger attention on the mean model.
However, we are solving the problem of DA, and it is useful to find an estimator of
the variance as well, because the unknown variance is often the case in practice. Here
factorised model of covariance (Mardia, 1984) will be used. More information on the
structure of covariance functions can be found in, e.g., Raudys (2000).

Consider the problem of supervised classification (Jain et al, 2000) of the observa-
tion Z(r) with r ∈ D0 ⊂ D into one of two populations specified above. Under the
assumption, that the classes are completely specified and for known prior probabilities of
populations π1(r) and π2(r) (π1(r)+π2(r) = 1), the Bayesian classification rule (BCR)
dB(·) minimising the probability of misclassification (PMC) is

dB

(
z(r)

)
= arg max

{l=1,2}
πl(r)pl

(
z(r)

)
, (2)

where πl(r) is a prior probability of Ωl, l = 1, 2.
Denote by P r

B the PMC of BCR, usually called the Bayesian error rate.
As it was already mentioned in the introduction, in practical applications the parame-

ters of density function are usually not known and must be estimated. Then the estimators
of unknown parameters are found from the training samples T1 and T2 taken separately
from Ω1 and Ω2, respectively. When estimators of unknown parameters are used, the
plug-in version of BCB is obtained. The performance of the plug-in version of the BCR
when parameters are estimated from training samples with independent observations is
widely investigated (see, e.g., Okamoto, 1963). However, it has been founded that the
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assumption of independence is frequently violated. Lawoko and McLachlan (1985) in-
vestigated the performance of sample linear discriminant function (LDF) when training
samples follow a stationary autoregressive process. In this paper we shall consider the
performance of the plug-in linear DF when the parameters are estimated from training
sample following a Gaussian random field model described above. The ML and OLS
procedures for the estimation of unknown means and variance, assuming the spatial de-
pendence parameter is known, are used.

Suppose in region D1 ⊂ D, D1 ∩ D0 = ∅, we observe the training sample T =
{T1, T2} with Tl = {Zl1, . . . , ZlNl

}, where Zlα = Z(sl
α) denotes the α-th observation

from Ωl, l = 1, 2, α = 1, . . . , Nl. Assume that D1 is beyond the range (or the zone of
influence) of D0. Then Z(r) is independent on T .

Let µ̂l(r) and σ̂2 be the estimators of µl(r) and σ2, respectively, based on T . The
plug-in rule dB

(
z(r); µ̂1(r), µ̂2(r), σ̂2

)
is obtained by replacing the parameters in (2)

with their estimators. Then the corresponding plug-in LDF Ŵ r (McLachlan, 1974a), for

g(r) = ln
(

π1(r)
π2(r)

)
, is

Ŵ r =
(
z(r)− 1

2
(
µ̂1(r) + µ̂2(r)

))(
µ̂1(r)− µ̂2(r)

) 1
σ̂2

+ g(r).

DEFINITION 1. The actual error rate for dB

(
z(r); µ̂1(r), µ̂2(r), σ̂2

)
is defined as

P r
(
µ̂1(r), µ̂2(r), σ̂2

)
=

2∑
l=1

πl(r)
∫
Z

L
(
l, dB

(
z(r); µ̂1(r), µ̂2(r), σ̂2

))
pl

(
z(r);µl(r), σ2

)
d z(r).

In our case the actual error rate for dB

(
z(r); µ̂1(r), µ̂2(r), σ̂2) is defined as

P r
(
µ̂1(r), µ̂2(r), σ̂2

)

=
2∑

l=1

πl(r)Φ

(
(−1)l

(
µl(r)− 1

2

(
µ̂1(r)+µ̂2(r)

))(
µ̂1(r)−µ̂2(r)

)
+σ̂2g(r)

σ

√(
µ̂1(r) − µ̂2(r)

)2
)
,

where Φ(·) is standard normal distribution function.

DEFINITION 2. The expectation of the actual error rate with respect to distribution of T
designated as ET

{
P r
(
µ̂1(r), µ̂2(r), σ̂2

)}
is called the expected error rate (EER) for the

dB

(
z(r); µ̂1(r), µ̂2(r), σ̂2

)
.

The goal of this paper is to find asymptotic expansions of EER associated with plug-
in LDF for different estimators. The case of normally distributed observations in training
sample from the one of two classes with equal feature vector covariances was firstly
considered in Okamoto (1963). Dučinskas (1997) has been made the generalization for
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the case of arbitrary number of classes (l � 2) and regular class-conditional densities.
McLachlan (1974b) presented EER for the case of equicorrelated Gaussian observations.
Mardia (1984) considered similar problem of classifying the spatially distributed Gaus-
sian observations with constant means, but he did not analyse the EER of PMC. In this
paper we present the asymptotic expansion up to the orderO(N−2), whereN = N1+N2,
for the EER of classifying spatially distributed Gaussian observation with different means
and common spatially factorised covariance. Terms of higher order are omitted from the
asymptotic expansion since their contribution is in generally negligible (Schervish, 1981).
The ML and OLS estimators of means and the bias-adjusted ML and bias-adjusted OLS
estimators of the covariance are used in the plug-in version of the BCR. A set of calcu-
lations for a certain neighbourhood structure and spherical spatial correlation model is
performed in order to estimate the plug-in BCR.

3. Asymptotic Expansion

The expectation vector and the covariance matrix of the vectorised training sample Tl

defined by T V
l = (Zl1, . . . , ZlNl

)T are

µV
l =

(
µl(sl

1), . . . , µl(sl
Nl
)
)T

and ΣV
l = σ2Cl,

respectively, where Cl is the spatial correlation matrix of order Nl × Nl, whose αβ-th
element is c(sl

α − sl
β), α, β = 1, . . . , Nl, l = 1, 2. Suppose, that Cl is known, and µ̂υ

l (s)
and σ̂2

υ are the estimators of µl(s) and σ2, respectively, based on T ; here υ can take the
value ML or OLS, l = 1, 2.

When the regression model of mean is used, the estimator of mean is of the form
µ̂υ

l (s) = xT (s)β̂υ
l , where β̂υ

l is the estimator of the corresponding regression parameters,
l = 1, 2.

Lemma 1. For l = 1, 2, the maximum likelihood estimators of µl(s) and σ2, based on T
are

µ̂ML
l (s) = xT (s)(XT

l C
−1
l Xl)−1XT

l C
−1
l T V

l x(s), (3)

σ̂2
ML =

1
N

2∑
l=1

(
T V

l − µ̂ML
l (s)

)T
C−1

l

(
T V

l − µ̂ML
l (s)

)
. (4)

Proof. The log-likelihood of Tl, l = 1, 2, is

lnLl = const− 1
2
(Nl lnσ2 + ln |Cl|)−

1
2σ2

(T V
l − µV

l )
TC−1

l (T V
l − µV

l ).

Solving the equations
∂ lnLl

∂µl(s)
= 0, l = 1, 2, and

2∑
l=1

∂ lnLl

∂σ2
= 0, we complete the proof

of lemma.
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Lemma 2. For l = 1, 2, the ordinary least squares estimators of µl(s) and σ2, based on
T are

µ̂OLS
l (s) = xT (s)(XT

l Xl)−1XT
l T

V
l x(s), (5)

σ̂2
OLS =

1
N

2∑
l=1

(
T V

l − µ̂OLS
l (s)

)T (
T V

l − µ̂OLS
l (s)

)
. (6)

Proof. The proof of lemma is similar to that of Lemma 1. Only the difference is, that the
classical (non-spatial) assumptions of iid errors, i.e., Cl = I , l = 1, 2, is used.

Since E{σ̂2
ML}=

N − 2q
N

σ2 and E{σ̂2
OLS}=

N − ω

N
σ2, where ω=

2∑
l=1

(XT
l Xl)−1

×XT
l ClXl, further we will use the bias-adjusted ML and OLS estimators of σ2:

σ̃2
ML =

N

N − 2q
σ2 and σ̃2

OLS =
N

N − ω
σ̂2

OLS . (7)

It can be easily shown that µ̂υ
l (s) for finite N have known exact distributions

µ̂ML
l (s) ∼ N

(
xT (s)βl, δ

ML
l

)
, where

δML
l = σ2xT (s)(XT

l C
−1
l Xl)−1x(s), (8)

and µ̂OLS
l (s) ∼ N

(
xT (s)βl, δ

OLS
l

)
, where

δOLS
l = σ2xT (s)(XT

l Xl)−1XT
l ClXl(XT

l Xl)−1x(s). (9)

Define

γML =
2(σ2)2

N − 2q
, (10)

γOLS =
2(σ2)2

(N − ω)2

2∑
l=1

(
trC2

l − 2tr
(
(XT

l Xl)−1XT
l C

2
l Xl

)
+tr
(
(XT

l Xl)−1XT
l C

2
l Xl

)2)
. (11)

For simplicity we omit the superscript “r” in P r(·). Put ∆µ̂υ
l (r) = µ̂υ

l (r) − µl(r),
∆σ̃2

υ = σ̃2
υ − σ2. Let ϕ(·) denotes the standard normal density function.

Denote by

P
(1)
l =

∂P (·)
∂µ̂υ

l (r)
, P

(2)
k,l =

∂2P (·)
∂µ̂υ

k(r)∂µ̂
υ
l (r)

, P
(1)
σ̃2

υ
=

∂P (·)
∂σ̃2

υ

,

P
(2)
(σ̃2

υ)2 =
∂2P (·)
∂(σ̃2

υ)2
, P

(2)
l,σ̃2

υ
=

∂2P (·)
∂µ̂υ

l (r)∂σ̃2
υ

the partial derivatives of P
(
µ̂υ

1 (r), µ̂υ
2 (r), σ̃2

υ) up to the second order with respect to the
corresponding parameters evaluated at µ̂υ

l (r) = µl(r) and σ̃2
υ = σ2, l = 1, 2.
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Let λ(Cl) be the largest eigenvalue of Cl, l = 1, 2.
ASSUMPTION 1. Assume, that rank (Xl) = q, for l = 1, 2.
ASSUMPTION 2. Suppose, that λ(Cl) < κl, 0 < κl < ∞, l = 1, 2.

ASSUMPTION 3. Assume, that
N1

N2
→ τ , as N1, N2 → ∞, 0 < τ < ∞.

Theorem 1. Suppose that assumptions 1–3 hold for training samples T1, T2. Then the
asymptotic expansion of the expected risk for the dB

(
z(r); µ̂υ

1 (r), µ̂
υ
2 (r), σ̃

2
υ

)
, where υ

can take the value ML or OLS, is

ET

{
P
(
µ̂υ

1 (r), µ̂
υ
2 (r), σ̃

2
υ

)}
=

2∑
l=1

πl(r)Φ
(
− ∆(r)

2
+ (−1)l g(r)

∆(r)

)

+
π1(r)
2∆(r)

ϕ

(
− ∆(r)

2
− g(r)
∆(r)

) 2∑
l=1

(
δυ
l

(
− ∆(r)

2
+ (−1)l g(r)

∆(r)

)2

+g2(r)γυ

)

+O(N−2),

with δυ
l defined in (8), (9) and γυ defined in (10), (11).

Proof. . Without loss of generality we use the convenient canonical form of σ2 = 1 and

µ1(r) =
∆(r)
2

, µ2(r) = −∆(r)
2

(see, e.g., McLachlan, 1992). By a Taylor expansion of

the P
(
µ̂υ

1 (r), µ̂
υ
2 (r), σ̃

2
υ

)
, for υ = ML or OLS, about the true values of parameters we

have

P
(
µ̂υ

1 (r), µ̂
υ
2 (r), σ̃

2
υ

)
= PB +

2∑
l=1

P
(1)
l ∆µ̂υ

l (r) + P
(1)
σ̃2

υ
∆σ̃2

υ

+
1
2

( 2∑
k,l=1

P
(2)
k,l ∆µ̂

υ
k(r)∆µ̂

υ
l (r) + P

(2)
(σ̃2

υ)2(∆σ̃
2
υ)

2

+
2∑

l=1

P
(2)
l,σ̃2

υ
∆µ̂υ

l (r)∆σ̃
2
υ

)
+O3, (12)

where

PB =
2∑

l=1

πl(r)Φ
(
− ∆(r)

2
+ (−1)l g(r)

∆(r)

)
,

and O3 is the third and higher order terms of ∆µ̂υ
l (r) and ∆σ̃2

υ and their products. Since

P
(
µ̂υ

1 (r), µ̂
υ
2 (r), σ̃

2
υ

)
is minimised at µ̂υ

l (r) = (−1)l+1∆(r)
2

(l = 1, 2) and σ̃2
υ = 1, then

P
(1)
l = 0 and P

(1)
σ̃2

υ
= 0. (13)
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Using (1)–(11), for l = 1, 2, under the independence of estimators µ̂υ
l and σ̃2

υ , for υ =
ML or OLS, we have

E{∆µ̂ML
l }=E{∆µ̂OLS

l }=E{∆µ̂υ
1∆µ̂

υ
2}=E{∆σ̃2

υ}=E{∆µ̂υ
l ∆σ̃

2
υ}=0, (14)

E
{
(∆µ̂ML

l )2
}
= xT (r)(XT

l C
−1
l Xl)−1x(r), (15)

E
{
(∆µ̂OLS

l )2
}
= xT (r)(XT

l Xl)−1XT
l ClXl(XT

l Xl)−1x(r). (16)

E
{
(∆σ̃2

ML)
2
}
=

2
N − 2q

, (17)

E
{
(∆σ̃2

OLS)
2
}
=

2
(N − κ)2

2∑
l=1

(
trC2

l − 2tr
(
(XT

l Xl)−1XT
l C

2
l Xl

)
+tr

(
(XT

l Xl)−1XT
l C

2
l Xl

)2)
(18)

Note that

P
(2)
l,l =

π1(r)
∆(r)

ϕ

(
− ∆(r)

2
− g(r)

∆(r)

)(
− ∆(r)

2
+ (−1)l g(r)

∆(r)

)2

(19)

and

P
(2)
(σ̃2

υ)2 =
π1(r)
∆(r)

g2(r)ϕ
(
− ∆(r)

2
− g(r)

∆(r)

)
. (20)

By substituting the estimators (3)–(7) into (12), taking the expectation of the right
side of (12) and using (13)–(20) we complete the proof of the theorem.

As the contribution of higher order terms in the presented asymptotic expansion is in
generally negligible (Scherwish, 1981), for the evaluation of the performance of LDF the
asymptotic expected error regret (AEER)

AEERυ =
π1(r)
2∆(r)

ϕ

(
− ∆(r)

2
− g(r)

∆(r)

) 2∑
l=1

(
δυ
l

(
− ∆(r)

2
+ (−1)l g(r)

∆(r)

)2

+g2(r)γυ

)

for υ = ML or OLS, is used. Minimum of AEER could also be used as a criterion for
optimal training sample design.

The numerical comparison of these two regrets is given in the example below.

4. Numerical Example

Here we compare the AEERs when the ML and OLS estimators of unknown parameters
are used. Obtained results of this comparison are presented in Table 1.
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Table 1

Comparison of the asymptotic expansions (for π1 = 0.3 and t = 1)

∆ AEERML AEEROLS
AEERML
AEEROLS

∆ AEERML AEEROLS
AEERML
AEEROLS

0.4 0.3638 0.5140 0.7078 2.8 0.0782 0.1171 0.6675

0.6 0.3651 0.5461 0.6686 3.0 0.0727 0.1076 0.6761

0.8 0.2406 0.3850 0.6251 3.2 0.0667 0.0976 0.6835

1.0 0.1636 0.2773 0.5899 3.4 0.0603 0.0875 0.6898

1.2 0.1251 0.2186 0.5721 3.6 0.0538 0.0775 0.6951

1.4 0.1070 0.1871 0.5717 3.8 0.0474 0.0678 0.6998

1.6 0.0987 0.1694 0.5826 4.0 0.0412 0.0586 0.7038

1.8 0.0948 0.1583 0.5986 4.2 0.0354 0.0500 0.7072

2.0 0.0923 0.1499 0.6155 4.4 0.0300 0.0422 0.7103

2.2 0.0898 0.1423 0.6313 4.6 0.0251 0.0352 0.7129

2.4 0.0868 0.1345 0.6453 4.8 0.0208 0.0290 0.7153

2.6 0.0829 0.1262 0.6573 5.0 0.0170 0.0236 0.7174

As an example consider the integer regular 2-dimensional lattice. We use the training
samples of size 4 for each class.

Consider for both classes the spherical correlation function for observationsZ(s) and
Z(t) (Cressie, 1993):

c(|h|) =




κ1

κ0 + κ1

(
1− 3

2
|h|
η

+
1
2
|h|3
η3

)
, 0 � |h| � η,

0, |h| > η,

for nonnegative κ0, κ1, η and h = s− t. The nugget effect is κ0 and the sill is κ0 + κ1.

Fig. 1. Training sample design (locations of observations in T1 and T2 are signed as ◦ and •, respectively; �
denotes the location of r).
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For this model, observations more than η units apart are uncorrelated, so the range is η.
Assume, that there is no nugget effect, i.e., κ0 = 0, and η = 3. Let say q = 1 and

regressors are of the form xT (s) = 1
|s|2+t and xT (r) = 1

t , l = 1, 2.

Concluding Remarks

As it was expected, the AEERs are decreasing, when the distance increases. It is seen from
the table that the AEER when the ML estimators are used is smaller than that obtained
by using the OLS estimators. This difference is higher for small distances. Thus the ML
estimators would be especially appropriate for the estimation of parameters, when the
distance between classes is insignificant. When classes are more separated we can use
OLS estimators, which are easier to calculate.
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K. Dučinskas graduated from the Vilnius University in 1976 in applied mathematics,
where received doctor degree in 1983. He is a head of System Research Department and
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Maksimalaus tikėtinumo ir mažiausi ↪u kvadrat ↪u ↪iverči ↪u palyginimas
diksriminantinėje erdvėje koreliuot ↪u stebėjim ↪u analizėje

Jūratė ŠALTYTĖ, K ↪estutis DUČINSKAS

Straipsnyje sprendžiamas stacionaraus vienmačio atsitiktinio Gauso lauko stebėjim ↪u klasifika-
vimo ↪i vien ↪a iš dviej ↪u klasi ↪u su skirtingais vidurkiais ir faktorizuotomis kovariacij ↪u matricomis už-
davinys. Nežinomi požymi ↪u vektoriaus komponenči ↪u vidurkiai ir bendra kovariacij ↪u matrica verti-
nami pagal erdvėje koreliuotas mokymo imtis, laikant, kad erdvinės koreliacijos yra žinomos. Neži-
nom ↪u parametr ↪u vertinimui naudojami du metodai: maksimalaus tikėtinumo ir mažiausi ↪u kvadrat ↪u
metodas. “Plug-in” diskriminantinė funkcija vertinama klaidingos klasifikavimo tikimybės asimp-
totiniu skleidiniu. Asimptotinis klaidos prieaugis ↪ivertintas ir skaitiškai, naudojant sferin ↪e kore-
liacij ↪u funkcij ↪a.


