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Abstract. Five methods for count data clusterization based on Poisson mixture models are de-
scribed. Two of them are parametric, the others are semi-parametric. The methods emlploy the
plug-in Bayes classification rule. Their performance is investigated by making use of computer
simulation and compared mainly by the clusterization error rate. We also apply the clusterization
procedures to real count data and discuss the results.
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1. Introduction

In the paper, we consider the clusterization problem of count data of the following type. A
pair of random variables (Kj, Nj) is observed, whereKj is the number of cases (individ-
uals) having a featureA, say, in the jth subsample (subpopulation) Ωj andNj is the total
number of its elements, j = 1, . . . , r. Rather freaquently occur such data in medical, bi-
ological, social, and economical studies. Typical examples are as follows: the number of
infected individuals among tested in various regions or medical institutions, the number
of recaptured among the captured animals of some species in various inhabitats, the num-
ber of fatal cases in road-accidents in various towns, the defective portion of the whole
production at various plants, etc. Our aim is to classify subpopulations Ωj , j = 1, . . . , r
according to the spread of the feature A in them.

The Bayes approach leads to different mixture-models of classification depending
on the way we treat the totals Nj, j = 1, . . . , r. In the present paper we compare the
performance of three mixture-models. The first model assumes that the observations
Nj , j = 1, . . . , r, are non-informative. They are regarded as either nonrandom (inciden-
tal or selected in advance) parameters or independent and identically distributed random
variables. In the second and third models the distribution of Nj depends on the unknown
class number and, in the latter model, it is supposed that this distribution belongs to a
parametric distribution family. As a compromise between flexibility and computational
simplicity, the family of discretized normal distributions is chosen. No parametric struc-
ture is imposed on the distribution of Nj in the second model, and thus the model has
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a nonparametric part. As noted in (Sušinskas and Radavičius, 1998), when r is small in
comparison to the totalsNj , j = 1, . . . , r, the maximum likelihood estimator of this case
is significantly biased. The bias is reduced by smoothing the nonparametric part. Two
smoothing procedures based on the EM algorithm are considered in the paper. The first
one was proposed in (Sušinskas and Radavičius, 1998).

The Poisson mixture models for count data classification and the two smoothing pro-
cedures are compared by means of computer simulation and their impact on clusterization
quality is evaluated mainly by the clusterization error rate. We also apply them to real data
and discuss their performance. For a wider discussion of the applications of Poisson mix-
tures, we refer to (Van Dujin and Bockenholt, 1995; Everitt and Hand, 1981; Lindsay and
Lesperance, 1995; McLacklan and Basford, 1988).

In the next section detailed description of the models is given. Section 3 is designated
to the theoretical background of cluster analysis based on mixture-models and some com-
putational aspects. In particular, the smoothing procedures of the nonparametric part are
outlined and clusterization procedures to be compared are presented. Section 4 contains
the results of the computer experiment and cluster analysis of real data. In the last section,
some conclusions are drawn.

2. Mixture-Models for Clusterization

We assume that the following assumptions hold:
(a) The subsamples Ωj , j = 1, . . . ,m are sampled from m classes (populations)

which differ from one another in probability of having the feature A. Let Zj be an unob-
servable class (population) number of the jth subsample Ωj . Under the condition that the
class number Zj = i and the total Nj = n, the random variableKj has the binomial dis-
tribution with the parametersNj and θi, where j = 1, . . . , r, θi ∈ (0, 1), i = 1, . . . ,m.

(b) The random vectors (Kj , Nj , Zj), j = 1, . . . , r, are independent and identically
distributed (i.i.d.).

(c) The probabilities {θi} are small: θi � ρ0 � 1, i = 1, . . . ,m.
Denote by Γ(· | i) the conditional distribution of the total Nj given that the class

number Zj = i, i.e.,

Γ(n | i) def= Pr{Nj = n | Zj = i}, n ∈ N, i = 1, . . . ,m, (1)

where N denotes the set of all positive integers.
The Bayes approach and assumptions (a), (b) and (c) lead to the following probabilis-

tic model

f(k, n) def= Pr{Kj = k,Nj = n}

= fS (k, n | λS(m)) def=
m∑

i=1

piΠk(θin)Γ(n | i), (2)
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where k ∈ N0
def= N ∪ {0}, n ∈ N. Here pi is a prior probability of the ith class

(population),

pi
def= Pr{Zj = i} > 0, i = 1, . . . ,m,

m∑
i=1

pi = 1,

the functions

Πk(t) = tke−t/k!, k ∈ N0,

are the Poisson probabilities obtained from the Poisson approximation to the binomial
distribution (justified by (c)),

Πk(θin) ≈ Pr{Kj = k | Nj = n,Zj = i} = Ck
nθ

k
i (1− θi)n−k,

k = 0, . . . , n, n ∈ N, the conditional distribution Γ(· | i) is introduced in (1), λS(m) =
{pi, θi,Γ(· | i), i = 1, . . . ,m} is a set of the unknown parameters of the model.

One can see from (2) that in the model proposed the random variables {Nj} may
carry some information about unobserved class numbers {Zj}. If this is the case, we say
that {Nj} are informative. The following condition makes {Nj} non-informative.

(d) The conditional distribution Γ(· | i) of the total Nj , given that the class number
Zj = i, is independent of i, i.e.,

Γ(·) = Γ(· | i), i = 1, . . . ,m. (3)

Then we have

f(k, n) = Γ(n) f(k | n), k ∈ N0, n ∈ N, (4)

f(k | n) def= Pr{Kj = k | Nj = n}

= fN (k | n, λN (m)) def=
m∑

i=1

piΠk(θin), (5)

where λN (m) = {pi, θi, i = 1, . . . ,m} is a set of unknown parameters of the non-
informative model (model (N) for short). Note that the distribution Γ is not included in
the list of the unknown parameters as it is not involved in (5) and thereby is redundant
for the clusterization (for details see the next section). Since in this case {Nj}r

j=1 and
{Zj}r

j=1 are mutually indepenent (see (3) and condition (b)), the totals {Nj}r
j=1 can be

treated as (incidental) model parameters (in a similar way as independent variables in
regression models).

In mixture-model (2) we do not impose any parametric structure on the probability
distributions Γ(· | i), i = 1, . . . ,m. Thus the model is semiparametric, i.e., includes both
the parametric piΠk(θin) and the nonparametric Γ(n | i) parts. Therefore it is refered to
as model (S).
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Assuming some parametric form for Γ(· | i) we obtain some kind of intermediate
model between (2) and (4, 5). As a quite reasonable compromise between model flexi-
bility and computational simplicity, we choose the family of discretized normal distribu-
tions.

(d’) The conditional distribution Γ(· | i) is given by the following equality:

Γ(n | i) = ΓP (n | ai, σi)
def= Pr {ξi ∈ [n− 1, n) | ξi � 0} , n ∈ N, (6)

where ξi is a normal random variable with the parameters ai > 0, σi > 0, i = 1, . . . ,m.
A model resulting from (d’) takes the form

f(k, n) = fP (k, n | λP (m)) def=
m∑

i=1

piΠk(θin)Γ(n | ai, σi), (7)

where k ∈ N0, n ∈ N, and in the sequel is referred to as parametric (model (P)). In this
model the unknown parameters are listed in λP (m) = { pi, θi, ai, σi, i = 1, . . . ,m}.

The three models obtained, namely, non-informative (4, 5), parametric (7), and semi-
parametric (2), represent mixtures of Poisson distributions. We stress that the first two
models are special cases of model (S) and are obtained from it by assuming (3) and (6),
respectively, valid. Further examples and applications of Poisson mixtures can be found
in (Van Dujin and Bockenholt, 1995; Everitt and Hand, 1981; Lindsay and Lesperance,
1995; McLacklan and Basford, 1988).

3. Theoretical Background

3.1. Bayes Classification Rule (BCR)

For brevity, set

f(i)(k, n)
def= Pr {Kj = k,Nj = n | Zj = i} = Πk(θin)Γ(n | i), (8)

i = 1, . . . ,m (j = 1, . . . , r).

According to the Bayes formula, the posterior probability

πi(k, n)
def= Pr {Zj = i | Kj = k,Nj = n} , j = 1, . . . , r,

i.e., the conditional probability that the class number Zj of the jth observation (Kj, Nj)
equals i, under the condition (Kj , Nj) = (k, n), is given by

πi(k, n) = πi(k, n | λS(m)) = pif(i)(k, n)/f(k, n), i = 1, . . . ,m. (9)

For parametric model (7), the unknown parameters λS(m) should be replaced by
λP (m). If the non-informative model is assumed, we have by (4), (5), (8), and (9) that

πi(k, n) = pi Πk(θin) / f(k | n), (k, n) ∈ N0 × N, i = 1, . . . ,m. (10)
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Hence the posterior probabilities are independent of Γ(·), and we conclude that πi(·, ·) =
πi(·, · | λN (m)), i = 1, . . . ,m.

The minimal classification error is obtained by the Bayes classification rule (BCR)
(Aivazyan et al., 1989; Everitt and Hand, 1981; McLacklan and Basford, 1988): assign
the observation (Kj, Nj) to the i∗th cluster if i∗ = dB(Kj , Nj) where

dB(Kj , Nj)
def= arg max

1�i�m
{πi(Kj , Nj)} = arg max

1�i�m

{
pif(i)(Kj , Nj)

}
(11)

is the Bayes decision function, j = 1, . . . , r. Thus, the clusterization problem reduces
to estimation of the posterior probabilities. We estimate πi = πi(·, ·) by the maximum
likelihood (ML) method.

3.2. Maximum Likelihood Estimator (MLE)

Let us consider model (S). First we will specify a range of the unknown parameters.
Given ρ ∈ (0, ρ0/m) (recall that ρ0 was introduced in condition (c)), set

ΛS(m) def=
{
λS(m) =

(
θi, pi,Γ(· | i), i = 1, . . . ,m

)
:

θi−1 + ρ � θi < 1, pi � ρ, i = 1, . . . ,m
}
, (12)

where θ0
def= 0. The log-likelihood function takes the following form

L
(
λS(m)

)
=

r∑
j=1

ln f
(
Kj , Nj | λS(m)

)
=

r∑
j=1

ln
( m∑

i=1

piΠKj (θiNj)Γ(Nj | i)
)
.

It follows from (Sušinskas and Radavičius, 1998) that the semiparametric MLE λ̂S(m),

λ̂S(m) def= arg max
λ∈ΛS(m)

L(λ), (13)

is a consistent estimator of λS(m) as r → ∞. It is worth noting, however, that this result
is not of great value for many applications since rather frequently Nj , j = 1, . . . , r,
are of the same order or even much greater than r which sometimes is more natural to
regard as being fixed. The problem of classifying districts of Lithuania according to the
rate of still-borns, considered in the last section, is just a problem of this type. When all
Nj , j = 1, . . . , r, are different the nonparametric MLE of piΓ(· | i), i = 1, . . . ,m, for
model (S) is determined by

p̂iΓ̂(n | i) = δk i δNj n /m,

where δki is the Kronecker symbol and k
def= argmax1�i�m{ΠKj(θ̂iNj)} is the maxi-

mum likelihood classification rule for classifying the observationKj drawn from one of
m Poisson populations with the parameters θ̂iNj, i = 1, . . . ,m, respectively.
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Thus, for strongly overlapping populations (classes) the semiparametric MLE of
λS(m) is significantly biased. The simulation results presented in the last section con-
firm this observation and give additional insight of the degree of bias. In order to reduce
the bias we apply a smoothing technique (see subsection Smoothed EM algorithm).

Now let us turn to the parametric models (N) and (P). The parametric set ΛN (m)
for model (N) is defined in the same way as (12) except that the nonparametric part
Γ(· | i) is omitted. In this case, the probability distribution of the observationKj depends
on the (incidental) parameter Nj , and hence Kj, j = 1, . . . , r are independent but not
identically distributed random variables. For model (P), we suppose that

ΛP (m) def=
{
λP (m) =

(
θi, pi, ai, σi, i = 1, . . . ,m

)
: θi−1 + ρ � θi < 1,

pi � ρ, ai � 0, σi � ρ1, i = 1, . . . ,m
}
,

where θ0 = 0, 0 < ρ < ρ0/m, and ρ1 > 0. Model (P) satisfies the usual regularity
conditions for independent and identically distributed observations (see, e.g., (Ibragimov
and Khasminskii, 1981)). Consequently, the MLE in this case is not only consistent,
but also asymptotically efficient as r → ∞. The same statement holds for independent
nonidentically distributed observations satisfying model (N), provided 1 � Nj � C <

∞, j = 1, . . . , r. Again, as mentioned above, to treat r as an asymptotic parameter and
the parametersNj , j = 1, . . . , r, bounded or the parametrs ai, σi, i = 1, . . . ,m, fixed, it
is not natural for some (possible) applications.

3.3. The EM Algorithm

Let λ (Λ) denote any of the unknown parameters λN (m), λP (m), and λS(m) (respec-
tively, parameter sets ΛN(m), ΛP (m), and ΛS(m)), the number of mixture components,
m, being fixed. For computing the MLE λ̂ of λ we apply the EM algorithm (Aivazyan
et al., 1989; Bohning, 1995; Everitt, Hand, 1981; McLacklan and Basford, 1988; Sušin-
skas and Radavičius, 1998). The EM algorithm is an iterative procedure which, given
an initial value of the parameter, calculates a new improved value that increases the log-
likelihood function. The parameter values obtained converge to a stationary point. If the
initial value is close enough to the MLE, the EM algorithm converges to the MLE. Each
iteration of the EM algorithm consists of two steps: expectation (E) and maximization
(M). In the E-step, the conditional expectation of the log-likelihood for the complete data
(Kj , Nj , Zj), j = 1, . . . , r, given the incomplete data (Kj , Nj), j = 1, . . . , r, is calcu-
lated with the current (initial) parameter value λ̂(0) taken as a true value of the unknown
parameter λ. In our case, this conditional expectation, denoted by L(λ|λ̂(0)), admits a
simple expression in terms of the posterior probabilities πi(·, ·|λ̂(0)) (see (9)):

L(λ|λ̂(0)) def=
r∑

j=1

ln [f(Kj, Nj |λ)] πi(Kj , Nj |λ̂(0)), λ ∈ Λ.
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In the M-step, a new value λ̂(1) of λmaximizingL(λ|λ̂(0)) is found. The parameter value
λ̂(1) obtained is the current value in the next iteration of the EM algorithm. The process
is repeated until the convergence.

Suppose λ̂(0) ∈ Λ. Then a solution of the maximization problem

L(λ|λ(0)) −→ max
λ∈Λ

is given by the following equations. The equations for the prior probabilities πi and the
parameters θi, i = 1, . . . ,m, are the same for all the three models:

p̂
(1)
i =

1
r

r∑
j=1

πi

(
Kj , Nj|λ̂(0)

)
, (14)

θ̂
(1)
i =

∑r
j=1Kj πi

(
Kj, Nj |λ̂(0)

)
∑r

j=1Nj πi

(
Kj, Nj |λ̂(0)

) , i = 1, . . . ,m. (15)

For the parameters ai, σi, i = 1, . . . ,m, we have

â
(1)
i =

1

rp̂
(1)
i

r∑
j=1

Nj πi

(
Kj , Nj|λ̂(0)

)
, (16)

(
σ̂

(1)
i

)2

=
1

rp̂
(1)
i

r∑
j=1

N2
j πi

(
Kj, Nj |λ̂(0)

)
−

(
â
(1)
i

)2

. (17)

Finally, for model (S), the current estimate Γ̂(1)
S of the nonparametric part Γ of the model

is recalculated simply by taking normalized averages of the corresponding posterior prob-
abilities:

Γ̂(1)
S (n | i) = 1

rp̂
(1)
i

r∑
j=1

πi

(
Kj , Nj|λ̂(0)

)
δNjn, i = 1, . . . ,m. (18)

3.4. The Smoothed EM Algorithm (EMS)

As noted above, the MLE of the unknown parameter λS of model (S) is significantly
biased when r is small in comparison with Nj , j = 1, . . . , r, and clusters are strongly
overlapping. To reduce this bias, we apply the smoothing technique to the nonparametric
MLE Γ̂S of the conditional distribution Γ. To be more precise, the improved estimator
of λS , called a smoothed (semiparametric) MLE, is calculated iteratively by the EM
algorithm with an additional smoothing step (S-step) for Γ̂S at the beginning of each EM
iteration.

Since the totals Nj , j = 1, . . . , r, are assumed to be large, we ignore their discrete
character and treat them as continuous. Because of this, we apply the usual kernel smooth-
ing (Nadaraya–Watson method for nonparametric regression) with Epanechnikov’s ker-
nel function W (t) = 0.75 (1− t2)1(|t| < 1) and variable bandwidth b = b(n), n ∈ N,
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selected by the nearest neighbor method. Since the conditional variance of Kj/Nj ,
given Nj (i.e., accuracy of information about the parameter θ for jth observation), is
proportional to 1/Nj, j = 1, . . . , r, weights of the observations are assumed to be
wj = Nj , j = 1, . . . , r.

Two alternative procedures were implemented. The first one, (S1), for a given centre
point Nc and the number of neighbors k, calculates the bandwidth b(Nc) = b(Nc | k)
by the formula b(Nc) = |N∗ −Nc|, where N∗ is the kth nearest neighbor to Nc among
Nj , j = 1, . . . , r. Then

Γ̂(1)
S1 (Nc | i) = 1

W

r∑
j=1

Γ̂(1)(Nj | i)W
(
Nj −Nc

b(Nc)

)
wj , (19)

where i = 1, . . . ,m and

W =
r∑

j=1

W

(
Nj −Nc

b(Nc)

)
wj . (20)

The smoothing procedure of this type but with the weightswj ≡ 1 was used in (Sušinskas
and Radavičius, 1998).

The second, procedure (S2), finds the kth nearest neighbor of Nc among Nj , j =
1, . . . , r, for each cluster separately. This is performed in the following way. Let
(j1, . . . , jr) be a permutation of (1, . . . , r) in increasing order of distances |Njl

−Nc|, l =
1, . . . , r. Set

l∗i
def= min

{
l � 1:

l∑
s=1

πi

(
Kjs , Njs |λ̂(0)

)
� k

}

(although other reasonable definitions of l∗i are possible naturally) and take bi(Nc) =
bi(Nc | k) = |Nl∗

i
−Nc|, i = 1, . . . ,m. Then, just like in (19) and (20), we get

Γ̂(1)
S2 (Nc | i) = 1

W i

r∑
j=1

Γ̂(1)(Nj) W
(
Nj −Nc

bi(Nc)

)
wj , (21)

Wi =
r∑

j=1

W

(
Nj −Nc

bi(Nc)

)
wj , i = 1, . . . ,m. (22)

Let us stress that Γ̂(1)
S1 and Γ̂(1)

S2 as well as the entire collection λ̂S of parameters of the
model calculated by the EMS algorithm depend on the smoothing parameter k, the num-
ber of the nearest neighbors. This parameter is taken to be of the form k = 1+ [c0rα] for
(S1) and k = 1 + [c1(r/m)α] for (S2) ([x] is the integer part of the number x). Prelim-
inary simulation results show that the choice c0 = 2.8, c1 = 3.0, and α = 0.33 yields
satisfactory results.
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The nearest neighbor method is also used to bound from below the standard deviation
estimates σ̂i, i = 1, . . . ,m, for procedure (P). To avoid the degeneracy problem, we set
σ̂i = ci when σ̂i is under ci. Here ci = 2|N∗ − âi|, N∗ is the kth nearest to âi neighbor
among Nj , j = 1, . . . , r, and the number of neighbors k is the same as for procedure
(S1) (see the previous paragraph).

4. Comparison of the Poisson Mixture-Models

4.1. Clusterization Procedures

The following five clusterization procedures were investigated. All of them are BCR’s
with the estimated parameters (estimated BCR’s, for short) but differ from one another in
the underlying mixture-model or the smoothing method involved in the EMS algorithm.
By the estimated BCR, d̂B , we mean here BCR db (see (11)) in which “true” values
of the corresponding unknown parameters λ are replaced by their MLE’s λ̂ based on a
sample to be clusterized. To calculate the maximum likelihood estimates (MLe’s) the EM
(or EMS) algorithm is employed. Thus, the clusterization procedures under consideration
differ from one another only in the parametrization of mixing distribution of the Poisson
mixture and in the estimation method of this distribution.

The first three clusterization procedures correspond to the Poisson mixture-models
introduced and we retain the same notation for them. Thus, procedure (S) is based on
equations (2), (8), (9), (14), (15), (18); in procedure (N) calculations are performed using
(4), (5), (10), (14), (15), and finally for procedure (P) formulas (7), (8), (9), (14)–(17)
are applied. The last two clusterization procedures are based on model (S) (see formulas
(2), (8), and (9)) fitted to data by iterative calculations using the EMS algorithm. Proce-
dure (S1) exploits formulas (14), (15), (18), (19) and (20). Procedure (S2) differs from
(S1) only in the definition of the k-nearest-neighbor which now depends on the cluster
number i. This means that the last two formulas are replaced by (21) and (22).

To compare the clusterization procedures, we apply them to artificial data generated
by computer and to real data.

4.2. Computer Experiment

The following Poisson mixture-models were used to generate artificial data. The number
of classes (populations)m = 2,

p1 = 0.4; p2 = 0.6;
θ1 = 0.02; θ2 = 0.025; 0.0275; 0.03; 0.035; 0.04; 0.5;

(23)

Γ(1, n) = φ(n | 500, 30),
Γ(2, n) = q φ(n | 500, 30) + (1− q)φ(n | 800, 30), (24)

q = 0; 1/6; 1/3; 1/2; 2/3; 5/6; 1.
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Here φ(n | a, σ) = Pr{n− 1 < η � n}/Pr{η > 0} and η is a normal random variable
with the mean a and the standard deviation σ.

Note that two extreme cases, q = 0 and q = 1, correspond to the well-separated and
completely overlapping (with respect toN ) parametric models, respectively. Thus, in the
latter case we obtain non-informative model (N). The remaining values of q represent
various intermediate situations. As the parameter θ1 decreases closer and closer to θ2
the classification problem becomes more and more complicated. The presented set of θ1
values allows us to describe this phenomenon rather smoothly.

The models (N), (P), and the semiparametric model evaluated either by the EM algo-
rithm (marked (S)) or by the two versions of the EMS (denoted (S1) and (S2), respec-
tively) are compared by the clusterization error rate (CER) and estimating accuracy of
the parameters p1, θ1 and θ2 in a series of Monte–Carlo experiments.

Each Monte–Carlo experiment consists of the following steps.

Step 1. Generate a (complete) “teaching” sample TC
def= {(Kj, Nj , Zj), j =

1, . . . , r} of size r = 200 according to one of 42 possible mixtures of Poisson distri-
butions with the collection of parameters λS(2) presented in (23) and (24). Recall that
Zj stands for an (unobservable) class number of the jth observation.

Step 2. Using the incomplete (unclassified) “teaching” sample TI
def= {(Kj, Nj), j =

1, . . . , r} obtained from TC by dropping the class number Zj , estimate the unknown
parameters for each Poisson mixture-model by applying the corresponding procedure,
(N), (P), (S), (S1) or (S2).

Step 3. Evaluate the deviations of the obtained estimates of the parameters p1, θ1,
and θ2 and CER for each clusteriztion procedure. CER of the clusterization procedure is
calculated simply as a relative frequency of disagreements between decisions provided
by this procedure and the true class (population) numbers Zj, j = 1, . . . , r, contained in
the complete sample TC .

Steps 1–3 were repeated M = 100 times and the overall performance of the clus-
terization methods (and the underlying models) are evaluated by average and standard
deviation of the characteristics of interest.

The results are summarized in Table 1.
To save room, the averadges and standard deviations of the CER only are presented

here. Since our goal is data clusterization, the accuracy of the parameter estimates is an
auxiliary characteristic. Typically its behavior suits well with that of the CER.

Remark. It is well known that the convergence of the EM algorithm to the MLe
depends on the starting point of the iteration process. Two collections of initial values
of the parameters were used to start EM (EMS) iterations in order to get some insight
of evaluating progress. If, for either collection, the parameter estimates obtained at the
end of the iteration process are essentially the same, this fact is a fair indication that the
MLe is actually found. The results in Table 1 correspond to the estimates with a greater
likelihood.

In the first collection, the initial values for p1, θ1, and θ2 are taken to be equal to the
corresponding true values and Γ(i, Nj) = 1/r, j = 1, . . . , r, i = 1, 2 (as if model (N)
were valid). In the second collection, the initial values of the parameters θ1, and θ2 (the
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Table 1

Monte Carlo estimates of the error rate of clusterization procedures

Theta 0.025 0.0275 0.03 0.035 0.04 0.05
q

Method ave std ave std ave std ave std ave std ave std

N 37.3 5.11 32.1 5.54 25.8 4.62 15.2 2.92 8.4 2.1 2.4 1.1
P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 S 32.8 3.64 26.8 3.38 21.3 3.44 12.8 2.71 6.9 1.85 1.8 0.87
S1 11.8 6.84 6.2 3.87 3.9 2.5 1.8 1.24 1.0 0.78 0.3 0.4
S2 3.5 6.05 1.6 2.25 1.1 1.02 0.8 0.69 0.5 0.55 0.2 0.35

N 36.9 5.09 31.9 5.53 25.5 4.51 15.1 2.89 8.6 2.09 2.5 1.1
P 9.8 2.37 9.8 2.37 9.8 2.37 9.8 2.37 9.8 2.37 5.6 3.56

1/6 S 33.0 3.53 26.6 3.29 21.0 2.99 12.7 2.34 7.3 1.78 2.1 0.95
S1 20.9 7.2 14.6 4.25 11.3 3.05 7.2 1.93 4.2 1.52 1.5 0.79
S2 15.3 6.88 11.5 4.25 9.1 2.5 6.1 1.87 3.8 1.4 1.3 0.79

N 36.5 4.78 31.5 5.19 25.4 4.81 15.1 2.88 8.7 2.1 2.7 1.14
P 19.9 2.8 19.9 2.8 19.9 2.8 19.9 2.8 17.5 5.33 2.7 1.35

1/3 S 33.6 3.46 27.2 3.29 21.4 3.01 13.2 2.41 7.8 1.87 2.3 1.01
S1 27.1 6.83 20.5 4.37 16.2 3.46 10.1 2.42 6.1 1.8 2.0 0.94
S2 23.3 5.94 18.2 3.56 14.9 3.09 9.4 2.37 5.7 1.74 2.0 0.98

N 36.6 4.73 31.2 5.73 25.5 5.25 15.2 2.69 8.7 2.09 2.8 1.15
P 30.2 3.2 30.2 3.2 30.2 3.2 30.2 3.2 20.7 8.87 3.5 1.46

1/2 S 33.9 3.49 27.5 3.25 21.8 3.1 13.8 2.45 8.3 1.9 2.5 1.08
S1 30.8 6.11 24.7 4.08 20.1 3.5 12.7 2.71 7.7 1.97 2.5 1.11
S2 29.4 5.67 23.6 4.1 19.1 4.2 11.9 2.53 7.4 1.82 2.4 1.08

N 36.5 4.9 31.1 6.24 25.6 5.7 15.4 2.73 9.0 2.1 2.9 1.14
P 40.0 3.67 40.0 3.67 40.0 3.67 39.8 3.87 26.2 10.68 4.3 1.68

2/3 S 34.4 3.53 28.0 3.3 22.3 3.19 14.3 2.64 8.7 2.02 2.7 1.09
S1 34.2 5.44 28.4 5.55 22.6 4.2 14.2 3.1 8.8 2.17 3.0 0.99
S2 33.5 5.66 27.6 5.91 22.1 4.47 13.6 2.92 8.5 2.06 2.8 0.94

N 37.0 5.77 32.2 6.45 26.3 6.12 15.5 2.76 9.3 2.04 3.1 1.17
P 50.1 3.88 50.1 3.88 50.1 3.88 49.8 4.16 34.9 12.4 4.4 1.77

5/6 S 34.8 3.57 28.6 3.4 22.8 3.06 14.8 2.65 9.1 1.95 3.0 1.15
S1 37.3 5.94 31.4 5.44 25.6 4.87 15.8 3.55 9.8 2.21 3.2 1.07
S2 37.5 6.3 31.3 6.61 25.1 5.85 15.2 3.45 9.5 2.29 3.1 0.99

N 36.9 6.0 32.6 7.02 26.6 6.23 15.9 2.95 9.8 1.99 3.3 1.16
P 40.3 6.69 33.9 7.58 27.5 6.94 16.2 3.01 9.9 2.17 3.3 1.14

1 S 35.1 3.6 29.1 3.4 23.4 3.14 15.3 2.76 9.8 2.11 3.3 1.17
S1 39.7 6.42 34.0 6.48 27.7 5.55 17.3 3.36 10.6 2.35 3.5 1.15
S2 39.6 6.76 33.3 6.18 26.9 5.86 16.5 3.38 10.2 2.27 3.3 1.14

prior probability p1 and the mixing distribution Γ) are taken to be equal to the MLe
(respectively, approximate MLe) based on the complete “teaching” data TC . Namely,

θ̂
(0)
i =

∑r
j=1Kj δiZj∑r
j=1Nj δiZj

, i = 1, 2, (25)



220 J. Sušinskas, M. Radavičius

p̂
(0)
1 = p̂MLE + τ (1− 2 p̂MLE), p̂MLE

def=
1
r

r∑
j=1

δ1Zj , (26)

and

Γ̂(0)(i, n) =
1

rp̂
(0)
i

r∑
j=1

[
(1− τ)δiZj + τ(1 − δiZj )

]
δnNj , n ∈ N, (27)

where p̂(0)2 = 1− p̂(0)1 and τ > 0 is a small quantity (e.g., τ = 0.1).
Table 1 shows that parametric model (P) is too sensitive to model assumptions (non-

robust). Procedures (S) and (S1) yield only a limited improvement in comparison to the
method based on non-informative model (N), the second one being slightly better. Proce-
dure (S2) outperforms (S) and (S1) and parametric clusterization methods (N) and (P) for
misspecified (parametric) probability models (i.e., if 0 < q < 1), and is quite competitive
to the latter two in the case of an adequate probability model (recall that setting q = 0 or
q = 1 yields probabilistic model (P); model (N) is adequate provided q = 1).

4.3. Application to Real Data

The real data investigated are taken from the database LIRECA maintained by the Lithua-
nian Human Genetic Centre. This database contains all registered cases of congenital
anomalies among newborns in Lithuania since 1993.

The data we deal with consist of observations {(Kj, Nj), j = 1, . . . , r}, where Nj

is the total number of newborns in the jth district of Lithuania during 1993–1997 andKj

is the number of newborns having a certain congenital anomaly. The number of districts
(some of them are amalgamated) r = 42. The problem is to classify the districts accord-
ing to the congenital anomaly rate. This problem was suggested to the first of the authors
by Prof. V. Kučinskas of Vilnius University who also provided the data. We consider here
the case where Kj is the number of stillborns.

The performance of all the five clusterization methods, (N), (P), (S), (S1), and (S2),
is to be compared visually. It should be noted, however, that visual fitness of the clusters
produced should be assessed with caution. It can be missleading in this case, since visual
interpretation of common to us Gaussian mixtures considerably differs from that of Pois-
son (see, for instance, Fig. 18; the leftmost point of the 4th cluster and the rightmost point
of the 5th cluster seem as “a mistake” of the classification procedure). The clusterization
procedure based on non-informative model (N) tends to alocate observations with small
totals Nj to the cluster with the greatest prior probability.

From the viewpoint of the applications, employment of different statistical methods
for solving the same task follows an old statistical tradition. In our case, it means that,
if all the five clusterization methods (or the major part of them) lead to (more or less)
similar results, this fact is an added reason for their reliability.

Again, two collections of starting values of the parameters were used to start the EM
(or EMS) iteration process (see Remark).
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Fig. 1. BCR error rate (q = 0). Fig. 2. BCR error rate (q = 1/6).

Fig. 3. BCR error rate (q = 1/3). Fig. 4. BCR error rate (q = 1/2).

Fig. 5. BCR error rate (q = 5/6). Fig. 6. BCR error rate (q = 1).

The initial values in the first collection were obtained by formulas (25)–(27). In these
formulas, instead of the unobserved cluster numbers {Zj, j = 1, . . . , r}, cluster numbers
resulting from the visual clusterization of the data were used (Fig. 7). Six initial clusters
were distinguished.

The second collection of parameter values was obtained by an automatic cluster sepa-
ration procedure described in (Sušinskas and Radavičius, 1998). In the sequential cluster
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Fig. 7. Visual initial clusterization. Fig. 8. Clusterization by method (S).

Fig. 9. Clusterization by method (S1). Fig. 10. Clusterization by method (S2).

Fig. 11. Clusterization using model (P). Fig. 12. Clusterization using model (N).

separating process we used the usual (i.e., without smoothing) EM algorithm trying to
get the same number of clusters as in the first collection (Fig. 13).

We proceeded further in the same way as in the case of simulated data. The results are
presented in Figs. 7–18. In general, they are similar to that in the case of simulated data.

The clusterization results produced by procedure (S) are the same as the initial ones
(Figs. 7, 8, 13, and 14). While for the second initial clusterization this is natural, since the
underlying models are the same and the only difference is in number of EM iterations,
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Fig. 13. Automatic initial clusterization. Fig. 14. Clusterization by method (S).

Fig. 15. Clusterization by method (S1). Fig. 16. Clusterization by method (S2).

Fig. 17. Clusterization using model (P). Fig. 18. Clusterization using model (N).

for the visual initial clusterization this fact indicates some extent of rigidity and hence
biasedness of the method. Clusterization procedure (S) ignores the totals Nj and takes
into account only ratiosKj/Nj = 1, . . . , r, which is seen best when comparing with pro-
cedure (N). For the latter, the lesser the totalNj the greater impact of the prior probability
upon the observation allocation. This is evident in broader allocation regions for massive
clusters and narrower ones for small clusters as the total Nj decreases (see Figs. 8 and
12, 14 and 18).
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Figs. 11 and 17 confirm the sensitivity of procedure (P) to the model assumptions.
The picture is rather typical for the clusterization based on the bivariate Gaussian mixture
model.

Procedure (S1) demonstrates irregular behavior assosiated with non-homogeneity of
the clusters with respect to the totals. Clusters of high density of the totals in some places
tend to “rob” elements from clusters with low density at these places even though these
elements have quite different, from the typical elements of the former clusters, empirical
rate Kj/Nj (Figs. 9 and 15). One can find some similarity of the partition produced by
procedure (S1) with that of procedure (P).

The partitions of the data presented in Figs. 10 and 16 are, in a sense, intermediate
between the alternative partitions considered. It seems that procedure (S2) yields the most
reasonable clusterization results and is most flexible although the lefmost point of the 3rd
cluster in Fig. 10 and the 5th cluster in Fig. 16 seems to be “suspicious”.

None of the procedures gives the same clusterization results for both starting parti-
tions. One can interpret this fact as the lack of clear cluster structure in the data.

5. Conclusions

The simulation results show that the procedure (P) based on the parametric model is
too sensitive to model assumptions (nonrobust). Procedures (S) and (S1) yield only a
limited improvement in comparison to the method based on non-informative model (N),
the second being slightly better. Procedure (S2) outperforms (S) and (S1) and parametric
clusterization methods (N) and (P) for misspecified (parametric) probability models and
is quite competitive with the latter two in the case of an adequite probability model.

The clusterization procedures under investigation were also applied to real data. The
data consist of the number of stillborns among newborns in various districts of Lithuania
during 1993–1997. In general, the results are similar to that in case of simulated data.
Each of all the five clusterization procedures gives different results for two different start-
ing partitions. This fact can be interpreted as lack of clear cluster structure in the data.
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problem and data provided.
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Puasono mišini ↪u modeli ↪u, skirt ↪u diskreči ↪u duomen ↪u klasterizacijai,
palyginimas

Jurgis SUŠINSKAS, Marijus RADAVIČIUS

Darbe aprašyti penki diskreči ↪u duomen ↪u klasterizavimo metodai, kurie remiasi Puasono skirs-
tini ↪u mišini ↪u modeliu. Du iš j ↪u yra parametriniai, o likusieji pagr ↪isti semiparametriniu mode-
liu. Klasterizavimui taikoma Bajeso klasifikavimo taisyklė su nežinom ↪u parametr ↪u reikšmėmis,
pakeistomis j ↪u didžiausio tikėtinumo ↪iverčiais (’plug-in’ taisyklė). Aptariam ↪u metod ↪u veikimas
ištirtas naudojant kompiuterin ↪i modeliavim ↪a, ir jie palyginti tarpusavyje pagal klasifikavimo klai-
dos dažnum ↪a. Metodai taip pat yra taikomi reali ↪u medicinini ↪u duomen ↪u klasterizacijai ir aptariami
gauti rezultatai.


