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Abstract. The objective of expert systems is the use of Artificial Intelligence tools so as to solve
problems within specific prefixed applications. Even when such systems are widely applied in
diverse applications, as manufacturing or control systems, until now, there is an important gap in
the development of a theory being applicable to a description of the involved problems in a unified
way. This paper is an attempt in supplying a simple formal description of expert systems together
with an application to a robot manipulator case.
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1. Introduction

Expert Systems are usually developed for specific applications (Georgeff, Firschein,
1985; Davis, 1985; Antonelli, 1983; Hinchman, Morgan, 1983) in a wide class of systems
including free-dynamics systems (as, for instance, computing systems, transport-storage
problem, etc.) and dynamical systems (like, for instance, physical systems or control pro-
cesses). Their main characteristic is their ability to give a solution for a given problem,
belonging to its competence domain, without an exhaustive interaction with the system’s
manager. The decision is taken based on the automatic evaluation of the process data by
the so-called knowledge base. The knowledge base is a set of rules organised in a hier-
archical way and derived by both the knowledge engineer and the system itself from the
evaluation of the heuristic and/or analytical knowledge supplied by human experts. The
main basic parts of the expert system are (see, for instance, De la Sen, Miñambres, 1987;
Jackson, 1999; Veloso, Wooldridge, 1999):

• Database: Data set fixed from the particular environment for a given problem.

• Knowledge base: Set of rules and their crossed relationships which process the
initial and intermediate data towards the achievement of a result.

*This work has been supported in part by the Spanish Ministry of Science and Technology through research
project code DPI 2000-0244 and by the University of the Basque Country through research project code
1/UPV/EHU 00I06.I06-EB-8235/2000 and through the Ph.D. studies of Mr. Garrido.
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• Knowledge acquisition: It consists of obtaining new rules from the initial ones, the
environment and the experience of the previous system from similar problems. A
parallel possibility of modifying the former rules, when necessary, must be also
allowed. The knowledge acquisition implies a diagnostic analysis of the experi-
mented situations.

• Process monitoring to the user: Information about the taken decisions and the fol-
lowed “reasoning process” to the users.

• Result of the evaluation procedure: From the analysis of each problem at hand, the
process gives a result to the users, which may be matched from the monitoring pro-
cess. Theoretically, for a well-posed expert system and an admissible experiment,
the supplied solution should be the optimal feasible one within the set of possible
solutions. It turns out that such an expert system is only built after processing a set
of admissible experiments within a learning context.

It may be clearly deduced from the above exposition that it is extraordinary difficult
to state a mathematical formulation being valid to describe both the development process
and the evaluation of performances that the admissible examples dealt with. Our main
purpose in this paper is to give some preliminary theoretical solutions for the existing
gaps from a logic formal viewpoint.

To organise the subsequent developments towards their applicability while taking into
account the above characteristic of an expert system, the main requirements on the for-
mulation are now stated.

1) The expert systems will be able to analyse a finite or infinite set of experiments
belonging to a given family, namely, the set of possible (i.e. admissible/non-
admissible) experiments.

2) Since expert systems are designed for specific applications they should be able
to be organised in hierarchical structures, by applicability constraint reasons. In
this context, a “master expert system” addresses each evaluation process within a
coordination context with other specific expert systems of a lower hierarchy level.
The number of expert systems being available for each analysis process should be
finite. The hierarchy levels may be changed according to the process evolution and
the knowledge stored in the database and knowledge base. Each expert system may
be designed with its own database for access time saving reasons within the overall
structure. The involved databases may have common parts. A finite string of states
describes the system evolution for each example. The change of state is due to any
system’s operation.

For the sake of a coherent formalism, it is convenient for each expert system to have
a (attainable or not in finite or infinite time) final state in which the knowledge
base remains invariant (old rules are not modified and no new rule is added) so
that the optimal solution for any new admissible experiment is found (De la Sen,
Miñambres, 1987). The final state describes the stationary system and it is not
assumed to be attainable for each experiment but, at most, after a finite number of
experiments. In such a case, the final state is attainable in finite time.
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3) The knowledge base may be split into a number of parts, one for each level of
hierarchy of each expert system, and each of them must have its own rules. The
rules may be of different types, according to specific tasks. For instance: data ad-
mission, connection between another rules, rules of matching of conditions within
the hierarchical structure, output decisions, etc. The rules within each level should
be ordered in a priority context and this order should allow the possibility of being
changed according to the analysed process evolution and the “experience” of the
expert system from previously processed similar examples of the first admissibility
class. When the knowledge base is invariant, each rule is invariant. This also occurs
when no change occurs in the knowledge base.

4) A scalar nonnegative quality index of each level (in fact each expert system which
operates in the process) is introduced in order to evaluate the degree of achievement
of the requested specifications. In the case of joint analysis or different performance
measurements, a vector quality index could be used instead.

The system evolves such that, by adding knew knowledge, at least for each exper-
iment (if repeated), the quality index diminishes. There is and asymptotic upper-
bound of the index for each family of admissible experiments which indicates the
stationary state of the network of expert systems and the knowledge base. The over-
all network of expert systems works as an “expert network” addressed by a master
coordinator which depends on each experiment.

5) The solution found for an example and the evaluation of the quality index must
be able to modify the knowledge basis (namely, a part of the associated rules).
This is addressed by the learning functions, so as to use the experience to solve
new examples. This kind of information treatment disappears in the stationary state
commonly defined in practice as time tends to infinity.

6) A set of information functions which depends on the learning functions, on the
state evolution and on the experiment and data is available to the rules.

The original contribution of the paper is that the expert system treats the systems
under operation classified into classes with appropriate databases and knowledge bases
obtained from appropriate partitions of the whole databases. In control systems, for in-
stance, the classifications may be performed according to the plant type, its eventual
discretization strategy, parametrization, control strategy and environment. In contrast to
most of the work oriented to the formal study of intelligent systems, see for instance
(Veloso, Wooldridge, 1999; Milne, Trave-Massuyes, 1995; Gaul, Schader, 2000; Ben-
jamin, 2000), this paper establishes a thorough theoretical formalism applicable to dy-
namic systems. The main theoretical ideas rely on the partition into classes for data and
knowledge bases, “admissible” and “non-admissible” experiments, and the admissible
ones into equivalence classes. The classification is performed during a learning phase of
the expert system when testing experiments are computed. Also, the expert system may
be ruled by a “master” governing subordinated expert systems subject to priority hierar-
chies. The formalism is developed in an axiomatic context. The axioms have an intuitive
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interpretation which is briefly explained when proposed. The set of axioms is consistent
for the set of given theorems in the sense that if a necessary axiom in the hypothesis
of a theorem fails, then the theorem fails (i.e., Axiom A⇒Theorem A and —Axiom A
⇒—Theorem A, where—≡negation). The set of axioms is complete for the set of given
theorems since no extra axiomatic hypothesis out of the given set is introduced to prove
any of the given theorems. It is well known that consistency and completeness are re-
quired for an axiomatic formulation to be a priori well-posed, see, for instance (De la
Sen, Almansa, 1999).

The paper is organised as follows. Section 2 states the mathematical notation in a logic
formalism context to be used later. Section 3 develops a first axiomatic formalism with
ideal hypothesis of existence of no interaction on system and environment and no failures
that modify the knowledge performance (Wertz, 1985; Brown et al., 1977; Burstall, 1968;
Charniak et al., 1980; Georgeff, Firschein, 1985; Davis, 1985; Antonelli, 1983; Hinch-
man, Morgan, 1983). Section 4 points out some extensions to results of Section 3 giving
also a summary of the presented results. A supervisor, built with the given ideas, which
improves the performance of a planar robot during the adaptation transient, jointly with
a stability proof, are given in Section 5. Some comments about the use of the formalism
are provided in Section 6, and finally conclusions end the paper.

The main simplifications and hypothesis made are:

• the modification time (access time for evaluation of data, etc.) is instantaneous
although the evaluation processes last a finite non-zero time interval;

• the modification of rules (knowledge acquisition) is not discussed in detail although
it is pointed out.

2. Notation and Mathematical Preliminary Axioms

2.1. Fundamental Notation

• x
∆ Cartesian product of sets. �(�+) is the set of real (positive real) numbers.

• Card (S)∆ Cardinal of the set S.

• χ0
∆ Cardinal of a set being infinite and numerable.

• Hα
∆ Set of admissible experiments H of class α;α ∈ A with Card(A) � χ0 (i.e.,

finite or infinite numerable). In the experiments, a time argument means a fixed
time instant as in H(t); two time arguments means a time interval for the operation
of the experiment, like H(t′, t); and time is irrelevant if the time argument is sup-
pressed. The same conceptual framework extends to concepts like data, knowledge
base and expert system.

Time-index arguments like, for instance, H(t), H(t′, t), etc. denote the time in-
stants in which data are available in the database with the joint time arguments
denoting the time interval they define.
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Hα(t′, t),H(t′, t), etc. denote, respectively, classes of experiments or sets of admis-
sible experiments taking place at time t′ � t0, whose results are available in the
database at time t � t′ � t0. The time t is in fact taken as a continuous argument
with time intervals including operation or execution times as well as intermediate
times located between execution times (i.e., those that imply data processing).

The cardinality may be infinity since the experiment varies with the change of any
data input and different kinds of experiments may deal with it.

• Hα (the complement to Hα) is the set of experiments that are not of class α; i.e.,
Uα = Hα ∪ Hα.

• The universe of possible (admissible or not) experiments is U = H ∪ H, where
H = ∪

α∈A
Hα is the set of admissible experiments.

• Ei
jk is an expert system of hierarchical level i = i(t); order j = ji(t) (within the

hierarchical level i), and state k = kij(t); where i, j and k are real-valued functions
of time of positive integer values, j may be a function of i and k may be a function
of the i and j indices.

• If some index is deleted in E
(.)(.)
(.)(.) , as for instance, Eiα

j means that the state is

irrelevant and one is referring to the expert system itself. Similarly, Ei
jk means that

the class is irrelevant. At time t, this may be denoted by Eiα
j (t) with k = k(t).

• The master expert system at time t in a hierarchical structure is denoted by E∗(t) =
Eiα

jk (t), some positive integers α, i, j and k being values of sets A, I , J and K .
The index α denotes the expert system irrespectively of its hierarchical level, order
within this level and state.

• DB,KB,R and C denote the database, knowledge base, set of rules and set of
connection rules, respectively.

• A datum d ∈ Sd is a mapping d : (t,Hd, Sd, R) → �, some Hd ∈ H , with the

ordered string of data Sd
∆
{
Ei

jk; i ∈ I, j ∈ J, k ∈ K,α ∈ A : d ∈ Sd

}
, I , J , K

and A being subsets of Z+, where d ∈ Sd means in the formalism that d is pro-
cessed by a set Sd of expert systems of a hierarchy i, order j, state k and numeration
(an integer number being fixed independently of i, j and k). A set of rules for Sd

is Rd
∆ {Rk, k ∈ K,Rk ∈ Sd}, with R denoting rules of a knowledge base and H

being a subset of Z+; Rk ∈ Sd means that the rule Rk is evaluated by a subset of
expert system Sd which process the datum d.

• The rules R are mappings R : (t, IR) → OR where IR and OR are, respectively,
the input and output sets of the rule R (i.e., data or actions like a direction of
another rule). Each rule may be active or not within a given time interval but it is
not considered in the subsequent formulation.

In our formalism the rules are classified as: Those of admittance (a) or rejection (r)
of arbitrary data (applicable to rules that accept or not data from the database DB
only).
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– Rules for connection (c) between expert systems.

– Rules for connection (c) with other rules.

– Evaluators of matching conditions of an expert system.

– Those that put out data to the database DB.

– The learning capability require the definition of:

– the rule-evaluation modification function m(t) is m: �+ → M ,

– the rule-hierarchy modification function mh: �+ ×M → Mh,

– the rule-order modification function m0: �+ ×M ×Mh → M0,

where M is difficult to generically specify for arbitrary admissible experiments.
For instance, in logical rule, M may be an evaluation set consisting of two ele-
ments (evaluation, non-evaluation). In an analytical rule, M may be a Cartesian
product like {(evaluation)× (real-valued function in �n)}, etc. Mh and M0 are
sets of positive integers denoting respectively orders between hierarchies or prior-
ities within a hierarchy.

Each rule R: (t, IR) → OR is defined by six fields: R(t, hierarchy, type, m(t),
mh(t), m0(t)), where:

– hierarchy is a mapping h: DBα1 × Cα2 ×KBα3 → (0, 1)× (0, 1)× (0, 1),

– type is a mapping ty: DBα1 × Cα2 ×KBα3 → (0, 1)× (0, 1)× (0, 1),

and DBα1 ⊂ DB, Cα2 ⊂ C, KBα3 ⊂ KB for some α1 ∈ A1, α2 ∈ A2,
α3 ∈ A3, with A1, A2 and A3 being bounded subsets of Z+. αi (i = 1, 2, 3)
denote, respectively, the overall set of disjoints sub-databases, sub-connection rules
and sub-knowledge bases which one is dealing with. In theory, each DB(.), C(.)
or KB(.) is a component of its respective set; such that

DB = ∪
α1∈A1

(DBα1); C = ∪
α2∈A2

(Cα2 ); KB = ∪
α3∈A3

(KBα3);

• DBα1 , Cα2 and KBα3 are subsets of the database, the connection between expert
systems and the knowledge basis, being accessible from a given rule.

Each rule Rk (k ∈ K) is characterised by its code rule Rk =(string of data admis-
sion Sd, string of data admission Sd) × (no connection with string SE of expert
systems, connection with string SE of expert systems)× (no connection with string
SR of rules, connection with string SR of rules), where

Sd
∆
Sd(t, Rk) is an ordered sequence string of data admitted by the rule Rk at

time t;

SE
∆
SE(t, Rk) is an ordered string of connected expert systems in which, con-

ditions like SE(t, Rk) = Ei
jkc1(t)E

i′

jk′ or Ei
jkc2(t)E

i′

jk′ mean that rule R connects

Ei
jk with Ei′

jk′ at time t, if c1 is matched (i.e., it is “active”) at time t or, respectively,
if c2 is matched at time t. The general form of the string is matched at time t.
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The general form of the string is

SE(t, Rk)
∆ ∪

∩
i,j,k,l,l′

Ei
jk (c1(t), o1(t))Ei′

jk′

(∪
∩

means union and/or intersection of sets),

where i, i′ ∈ IR, j, j′ ∈ JR, k, k′ ∈ KR, l ∈ LR and l′ ∈ L′
R, being IR, JR, KR,

LR and L′
R subsets of Z+, and where c(.) is a subset of matching conditions and

o(.) is a set of logical or analytical evaluation rules.

In the same way, a string of rules is given by:

SR(t, R)∆ ∪
∩

i∈IR,k∈KR

R
(
t,DBα(R) × Cα(R) ×KBα(R) → (0, 1)× (0, 1)× (0, 1)

)
,

(ci(t), oi(t))R
(
t,DBα(Rk) × Cα(Rk) ×KBα(Rk) → (0, 1)× (0, 1)× (0, 1)

)
,

i ∈ IR, k ∈ KR (I , K being finite subsets of Z+), with the same interpretations
for oi(.) and ci(.).

The code set (0, 1) × (0, 1) × (0, 1) is a set of three binary ordered pairs which
have the usual Boolean interpretation (no – yes).

• The database and knowledge base which are associated with an expert system Eiα
jk

are denoted, respectively, by DBiα
jk and KBiα

jk . The set of connection rules of Eiα
jk

is Ciα
jk .

• The database used by the rule R is denoted abbreviately as
DB(R) = ∪

α∈A(R)
(DBα(R)) where DBα(R) are possible sub-databases attain-

able (i.e., to be potentially used) by the set of rules R.

• Consider the expert system Eiα
jk (t) with its pair (Dα, ζα)(t);

D(t) =
(
DBiα

jk (t)αKBiα
jk(t)

)
and ζα = (i ∈ I, j ∈ J, k ∈ K,α ∈ A).

The quality index at time t of the expert system Eiα
jk (t) for the experiment H is

a scalar (or vectorial) function which takes nonnegative values (or nonnegative
valued components) Q(t,H(t), Eiα

jk (t)) = Q1(t,H, DBiα
jk (t),KBiα

jk (t), C
iα
jk (t))

for the current hierarchy, order and state of the expert system.

(When details are unnecessary, the notation will be simplified as, for instance,
Q(t,H(t), Eiα

jk (t)) → Q(Eiα
jk (t))).

• If possible, a similar quality index at time t may be defined for the subsets of rules
R as follows:

Q (t,H(t), Rk(t)) = Q1 (t,H, DBα(Rk),KBα(Rk), Cα(Rk)) ,

∀α ∈ A(R), ∀Rk ∈ R.



184 M. de la Sen, J.J. Miñambres, A.J. Garrido, A. Almansa

• The function of hierarchy, order within that hierarchy, and state of the expert system
of class α, Elα

jk(t) are defined by


i = i(t) = i

(
t, Q(t,Hα(t′, t), Eiα

jk (t))
)
, V t′ � t,

j = j(t) = j
(
t, i(t), Qi(t,Hα(t′, t), Eiα

jk (t))
)
, ∀t′ � t, ∀i ∈ I ⊂ Z+, ∀α ∈ Z+,

k = k(t) = k (t, i(t), j(t)) .

• The overall network of expert systems of master E∗(t) at time t is S(E∗(t)) ={
Eiα

j (t), i ∈ I, j ∈ J, k ∈ K
}

. The corresponding set of rules is R [S(E∗(t))].

• The modification functions for rule Rk ∈ R are:



mh(t) = mh

(
t, Q (t,Hα(t′, t), R) , Qβ(t,Hβ(t′, t), E

iβ
jk(t)

)
,

∀α ∈ A(R), ∀β ∈ S(E∗(t));

m0(t) = m0

(
t,mh(t), Q (t,Hα(t′, t), R) , Qβ(t,Hβ(t′, t), E

iβ
jk(t)

)
,

∀α ∈ A(R); ∀Rk ∈ R, ∀β ∈ S(E∗(t));

m(t) = m (t,mh(t),m0(t)) .

These functions may be, in fact, new rules.

2.2. Axiomatic Settings

From a structural viewpoint, well-posededness of the above formulation requires, at least,
the following structural axiomatic requirements by purely computational reasons.

The number of expert systems, i.e., the cardinality of the expert network addressed by
the master expert system E∗(t) at time t and the number of related rules is finite; namely

2.2.1. Card(S(E∗(t))) < χ0 (i.e., the expert network has a numerable and fi-
nite number of expert systems); card(R(S(E∗(t)))) < χ0 for all t � t0 (initial
time)→card(I) < χ0, card(J) < χ0 for the hierarchy and order subsets of Z+.
2.2.2. For each admissible class of experiments H(t′, t) ⊂ H at time t (i.e., sup-
plying evaluation results at most at time t), the computer supplies results at time t

with a finite number of operations, i.e., for each Eiα
jk (t), i ∈ I, j ∈ J, k ∈ K,α ∈ A

and for each experiment in the class H(t′, t) as subset of admissible experiments,
card(K) < χ0.
2.2.3. The database has finite size for each experiment H ∈ H(t′, t) ⊂ H , so that:

Card(DB(H(t)) < χ0 ⇒



Logical Formal Description of Expert Systems 185

⇒
{

Card(DBiα
jk ) < χ0; ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K, ∀α ∈ A,

and


Card(KBiα
jk) < χ0; ∀i ∈ I; ∀j ∈ J ; ∀k ∈ K; ∀α∈A(S(E∗(t)));

Card(DB(Rk)) < χ0; ∀R ∈ R [S(E∗(t))];

Card(Ciα
jk ) < χ0; ∀i∈I, ∀j∈J, ∀k∈K, ∀α∈A(S(E∗(t))).

2.2.4. All the strings Sd(t, R), SE(t, R) and SR(t, R) have a finite number of ele-
ments.

The above requirements are introduced in order to process a finite number of data,
experiments, rules, etc. which are addressed in the subsequent axiomatic formulation.

3. Axiomatic Formulation

Main Axiom. The expert system Eiα
jk (t); i ∈ I , j ∈ J , k ∈ K , α ∈ A is fully defined at

each t � t0 by the pair (Dα, ζα)(t), where Dα(t) = (DBiα
jk (t),KBiα

jk (t), C
iα
jk (t); i ∈ I ,

j ∈ J , k ∈ K , α ∈ A).

That is, for each time instant t, all the information is contained in (Dα, ζα).
This motivates the following definitions.

DEFINITION 3.0.

(1) The pair (Dα(t), ζα(t)) is called the information pattern of the α-expert system
Eiα

jk (t) at time t � t0.

(2) The triple Dα(t) = (DBiα
jk (t),KBiα

jk(t), C
iα
jk (t)) and the quadruple ζα(t) =

(i, j, k, α) ∈ ζ = (I, J,K,A) are called, respectively, the data pattern and the
configuration pattern of Eiα

jk (t) at time t � t0.

The information pattern and the configuration pattern (namely, the set of indexations)
are the original information about data and primary rules, plus the rules derived from
the knowledge base together with connecting relations, which are necessary to solve the
learning problem. In this section, we introduce a set of axioms together with related
results so as to join and relate the formulation of Section 2 with standard requirements
for expert systems.

3.1. The admissible experiments of the same type are considered distinct when a datum
or a set of data change. The set of data involved at each experiment uses a finite number
of initial and intermediate data. Then,

Axiom 3.1. Card(H(t′, t))<χ0 for each element H in the class Hα(t′, t); card(Hα(t′, t))
� χ0; and card(H(t′, t)) � χ0; card(Hα(t′, t)) � χ0 for each element H in the class
Hα(t′, t) ⇒ card(H) � χ0, for each t � t0.

This axiom basically means that the number of data in an experiment is finite while
the number of data in a class of experiments may be finite or infinite. This last cardinality
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is infinity when the number of (potential) distinct experiments is infinity (each one with
a finite number of data). An example is when the set of admissible data takes values in
an infinite set. For instance, suppose that a scalar control signal in a control problem is
allowed to belong to the admissibility interval [−1, 1].

Theorem 3.1. The first part of Axiom 3.1:
Card(H(t′, t)) < χ0; t � t0, for each H in H(t′, t) is a Corollary of the structural

axiomatic requirements 2.2.1 to 2.2.3.

Proof. Trivial from axiomatic requirements 2.2.1 to 2.2.3 since

Card (DB(H)) < χ0, card (DB(R(H))) < χ0, card
(
DB(Eiα

jk (H))
)
< χ0,

where i ∈ I , j ∈ J , k ∈ K , α ∈ A, and card (S(E∗(t))) < χ0.

3.2. Each part of a system expert must have a specific task. Each expert system addressed
by the unique master E∗(t) (see Axiom 3.2.2 below) at time t has an objective. Besides,
it is very convenient to distinguish between datum, rule and expert system as different
objects (see Axiom 3.2.3 below). This eliminates ambiguities and superpositions in the
involved notation. Two expert systems, addressed by the same unique master, are differ-
ent. Then,

Axiom 3.2. For each H(t) ∈ H(t′, t) ⊂ H:

(1) Eiα
jk (t) �= Ei′α′

j′k′ (t′) if one of the following matching conditions are fulfilled: i �= i′,
j �= j′, k �= k′, α �= α′, t �= t′ for each i, i′ ∈ I; j, j′ ∈ J; k, k′ ∈ K; α, α′ ∈ A;
t, t′ ∈ [t0,∞) ∩ �+.

(2) E∗(t) = Eiα
jk (t) for unique i ∈ I , j ∈ J , k ∈ K , α ∈ A at each t ∈ [t0,∞) ∩ �+

(and E∗(t) = φ for each H(t) ∈ H(t′, t) ⊂ H).

(3) DBiα
jk (t) ∩KBiα

jk(t) ∩ Eiα
jk (t) = φ (i.e., the empty set) for all time.

3.3. It is necessary to endow the concept of “master” with an independence of the hierar-
chy and the state, in such a way that it only depends on the α-index. Each master operates
like such during a finite or infinite time interval. Then, one has

Axiom 3.3. E∗(t′, t) = E∗(t) for t � t0, some finite or infinite t′ > t and some α ∈ A.

3.4. The concepts of hierarchy, order and state indicate privileges between systems of
different level, within a level or between sequences of operations. Also, relations of partial
order may be introduced using the above concepts. These features are addressed in the
result below.

Theorem 3.4.1. The concepts of hierarchy, order and state of a family of expert systems
(or network) S(E∗(t)) of master E∗(t) at time t, formally introduce associate relations
(Rel) of total order, namely Eiα

jk (t)Rel Ei′α′

j′k′ (t), where Eiα
jk (t), Ei′α′

j′k′ (t) ∈ S(E∗(t));
i, i′ ∈ I; j, j′ ∈ J; k, k′ ∈ K and α, α′ ∈ A, being these relations defined by Rel k :=
i � i′ or i � i′; Rel i

0 := j � j′ or j � j′ (for each i ∈ I) and Rel ij
k := k � k′ or

k � k′ (for each i ∈ I , j ∈ J).
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Proof. Any pair of experts systems Eiα
jk (t), E

i′α′

j′k′ (t) ∈ S(E∗(t)) as above may be or-
dered through relations Rel h, Rel i

0, Rel ij
s satisfying the properties reflexive, antisym-

metric and transitive since by virtue of Axiom 2.2.1 and Axiom 3.3, the master exist over
a time interval with card (S(E∗(t))) < χ0, for all t � t0, and those properties stand
directly. Furthermore, if the expert network has infinite cardinal or no master exists, then
the result fails since the calculations cannot be hierarchized or, even, performed.

Theorem 3.4.2. The above relations may be defined as partial order relations.

Proof. It is trivial since any subset S′(t) of S(E∗(t)) of cardinality greater than or equal
to two may be totally ordered (since it satisfies Zorn’s Lemma (Blum, 1971)).

DEFINITION 3.4. The bounded subsets A1(t), A2(t), A3(t) of Z+ such that DB(t) =
∪

α1∈A1

(DBα1(t)); C(t) = ∪
α2∈A2

(Cα2(t)); KB(t) = ∪
α3∈A3

(KBα3(t)) with the unions

being formed of disjoint subsets are called, respectively, database, connection base, and
knowledge base indices at time t (abbreviated by DB(t)-index, C(t)-index and KB(t)-
index).

3.5. Each expert system Eiα
jk (t) of S(E∗(t)) at time t � t0 must have a non-empty

database DB(Eiα
jk (t)) and a non-empty knowledge base KB(Eiα

jk (t)) since, by virtue of
Axioms 3.2, an expert system is not a set of data or a knowledge sub-base. The connection
C(Eiα

jk (t)) may be understood as a knowledge sub-base of the master E∗(t) and any non-
admissible experiment has no master expert system to process it. In practice, that means
that if a set of data is detected to be not valid, it is rejected for processing. This can occur
when the data from the database enter for processing or at any time when the knowledge
base detects that the experiment is not admissible. These features are addressed in the
subsequent result.

Theorem 3.5. The following propositions hold for a class of experiments H(t′, t) ⊂ H

and for S(E∗(t)).

(1) If DB(Eiα
jk (t)) ∩ DB(Ei′α′

j′k′ (t)) = ∅, at some time t � t0 for all i, i′ ∈ I;
j(i), j′(i′) ∈ J and k(i, j), k′(i′, j′) ∈ K , then DB(t) = ∪

α∈A1

DB(Eiα
jk (t)) with

α1 being the DB(t)-index.

(2) A proposition similar to (1) may be stated for KB(Eiα
jk (t)) and KB(Ei′α′

j′k′ (t)).

(3) If C
(
Eiα

jk (t)
)

= ∅ at t � t0, for all i ∈ I , j ∈ J , k ∈ K , then for each

H(t) ∈ H(t′, t) ⊂ H , it holds that E∗ (t,H(t)) = Eiα
jk (t0), for one and only one

i ∈ I , j ∈ J , k ∈ K , α ∈ A. Also, E∗(t,H(t)) = ∅ for each H(t) ∈ H(t′, t) ⊂ H .

Proof. Propositions (1)–(2) are followed trivially from Definition 3.4, and Proposition
(3) follows from Axiom 3.2(2) since if there are no connection rules, then the master is
one of the expert systems on [t0, t]. There is no master for a non admissible experiment
and Axiom 3.2(2) is consistent for this result.
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3.6. It is important to give an axiomatic differentiation between the design phase of
“building an expert system” (in which examples are submitted, and the expert system
takes an admissible or non-admissible solution leading to the modification of the knowl-
edge base), and the “stationary phase” of an expert system. In this last one, any admissible
example leads to an admissible solution of the expert system. The “admissibility” char-
acterisation is outlined through the quality indices defined in Section 2. The values of the
quality index diminish as the expert system building is in progress.

It must be pointed out that the action of processing a rule modifies at least the index
k and perhaps i and j. The subsequent axiom is then used to obtain new formal results:

Axioms 3.6. For a given S(E∗(t)) and all t � t0:

1. Q
(

H(t), Eiα
jk (t)

)
= ∞ if H(t) ∈ H or H(t) is not processed by Eiα

jk (t), namely,

Eiα
jk (t,H(t)) = Eiα

jk (t
′,H(t′)), all t′ � t � t0, all i ∈ I , j ∈ J , k ∈ K and α ∈ A.

2. Otherwise to conditions in (1), Q(H(t), Eiα
jk (t)) < ∞, all i ∈ I , j ∈ J , k ∈ K

and α ∈ A.

3. Q(H(t), Eiα
jk (t)) � Q(H(t′), Ei′α′

j′k′ (t′)) < ∞ for all H(t) ∈ H(t′′, t) ⊂ H ,
H(t′) ∈ H(t′′′, t) ⊂ H , any i, i′ ∈ I; j, j′ ∈ J; k, k′ ∈ K , α ∈ A and t′ � t,
any t′′′ � t′′. Furthermore, a fixed bounded scalar (or vector of finite nonneg-
ative components, depending on the problem dimension) Q(H(t)) exists for each
H(t) ∈ H(t′, t) ⊂ H , which upperbounds Q(.) and each i ∈ I , j ∈ J , k ∈ K ,
α ∈ A.

Also, there exists lim
t→∞

(
Q(H(t), Eiα

jk (t))
)

� Q
[
lim

t→∞
(H(t), Eiα

jk (t))
]
= Q0(H)

< ∞.

4. The processing of any rule R(Eiα
jk (t)) implies that Eiα

jk (t) �= Ei′α′

j′k′ (t′), ∀t′ � t �
t0, any i, i′ ∈ I; j, j′ ∈ J; k, k′ ∈ K; α, α′ ∈ A. Also, Q(H(t), Eiα

jk (t)) �
Q(H(t′), Eiα

jk (t
′)), ∀t′ � t � t0 being finite if Eiα

jk (t) processes a rule R(Eiα
jk (t)),

any i ∈ I; j ∈ J , k ∈ K and α ∈ A; and Q(H(t), Eiα
jk (t)) = Q(H(t′), Eiα

jk (t
′)) if

no-processing holds.

5. The quality indices fulfill the following relationships:

Q(Eiα(t)) �
∑
j∈J

Q
(
E

(i−1)
j (t)

)
⇒ Q∗(t) = Q(E∗(t)) �

∑
j∈J

Q
(
Eiα

j (t)
)

⇒ Q(E∗(t)) �
∑
i∈I

∑
j∈J

Q(Eiα
j (t)) =

∑
α∈A

∑
j∈J

Q(Eiα
j (t))

and Q(Eiα(t)) �
∑
k<i

∑
j

Q(Ekα
j (t))

for all appropriate indices i, j, k, α, any H(t) ∈ H(t′, t) ⊂ H , and all time.
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Axioms 3.6 (1)–(2) mean that the quality index is infinity for a non-admissible or
non-processed experiment and finite for any processed any admissible experiment. Ax-
iom 3.6(3) means that the quality index becomes minimised (i.e., improved) as any new
particular experiment not previously processed is performed along time. The second part
of this axiom means that the quality indices become asymptotically stationary and finite
for admissible processed experiments. Axiom 3.6(4) means that if a rule is active and
the time is finite then the quality index is improved with time. This occurs according to
the preceding axiom until the steady-state is reached. Finally, Axiom 3.6(5) means that
the master expert system (then also called “the expert network”) has for all time non
less “accumulated” quality index than the overall contribution of all the expert systems.
The subsequent result is directly obtained from the above axioms. It is concerned with
the boundedness of the existing limits and with the fact that a limit admissible experi-
ment as time tends to infinity is itself an admissible experiment which may be processed.
The consistency of the above theorems follows since infinity quality index is assigned to
non-admissible (or non-processed) experiments. A finite quality index is assigned to each
expert system corresponding the highest one corresponding to the master since it contains
information of the whole expert network. The existence of finite limits relies on the fact
that theoretically the learning process ends in finite time.

Theorem 3.6. The following propositions hold for all S(E∗(t)), all t, t′ � t0.

(i) Q (H(t′), E∗(t′)) = lim
t→∞

Q (H(t), E∗(t)) = ∞,

any H(t′) ∈ H(t′′, t′) ⊂ H;

(ii) ∞ > Q
(
lim

t→∞
(H(t), E∗(t))

)
� lim

t→∞
(Q(H(t), E∗(t)))

�
∑

k<card(I)

∑
j∈J

Q
(
lim

t→∞

(
H(t), Ek

j (t)
))

�
∑

k<Card(I)

∑
j∈J

lim
t→∞

(
Q (H(t)) , Ek

j (t)
)
.

Proof. Proposition (i) follows from Axiom 3.6(1) and Proposition (ii) follows from Ax-
ioms 3.6(3) and 3.6(5). Note that trivially Theorem 3.6(i) does not hold for admissible
experiments, while Theorem 3.6(ii) does not hold for non-admissible or non-processed
experiments, from the consistency of Axioms 6.3(1), (3) and (5).

3.7. In the mathematical preliminaries of Section 2, a set of modification functions have
been introduced. This functions m0(.), mh(.) and m(.) remain yet unspecified. On the
other hand, the subset (I, J,K) of the configuration pattern (Definition 3) is, in general,
time-varying. The set A is a subset of Z+ of maximum cardinality that of S(E∗(t)) at
time t � t0. If, for some experiment H∈ H , a specific expert system does not work,
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it may be located at the end of the string of the subset (I, J,K), namely, it has mini-
mum hierarchical priority, last order within this priority and empty connection with its
preceding elements Eiα

jk (t); i ∈ I , j ∈ J , k ∈ K , α ∈ A. Proceeding in this way,
Card(A) =Card(S(E∗(t))) =constant, ∀t � t0; i.e., the experts systems that do not
perform at some time are assembled in the expert network with empty connections with
the remaining elements of the expert network. The empty connections together with mini-
mum priority mean in fact that such an expert system is kept out within the whole network
for that particular experiment.

Also, it seems to be logical to store the information of previous experiments to the cur-
rent one belonging to the same equivalence classes (stated using similarities of observed
type, data and quality performances), and to use this information in the next examples
of the same class in order to modify the pattern (I, J,K)(t), t � t0, as well as m0(t),
mh(t) and m(t) for the knowledge base. The D previously acquired knowledge should
be stored in databases of the expert network.

According to this feature, we state a new axiomatic statement. First, we extend some
of our former concepts to the overall system.

DEFINITIONS 3.7.1.
1. The set S(E∗(t)), ∀t � t0 is called the expert net of master E∗(t) at time t.

For the following definitions, review Definitions 3.0.

2. The pair (D(t), J(t)) = {(Dα(t), Jα(t)) ;α ∈ A} is called the information pat-
tern of the expert set S(E∗(t)) at time t, where → is the pair wise-order relation of
hierarchy and priority within S(E∗(t)). {J→

α (t)} is the set of pairs together with
the order relation.

3. The data pattern of S(E∗(t)) is the set D(t) = {Dα(t); α ∈ A, t � t0}.

4. The configuration pattern of S(E∗(t)) is the set ζ(t) = {ζα(t); α ∈ A, t � t0} =
{I, J,K,A} (t).

Then, from Main Axiom 3 and Definitions 3.7.1, the following results stands.

Theorem 3.7.1. The expert set S(E∗(t)) addressed by the master expert system E∗(t) is
fully defined for each t � t0 by the information pattern as defined in Definition 3.7.1(2).

It is now interesting to ensure axiomatically that the configuration pattern is asymp-
totically invariant for the classes of the admissible experiments. A logical way to proceed
is to make it vary using the quality-indices of S(E∗(t)) through the appropriate rules of
the knowledge base, that place the evaluation results in the appropriate database in order
to be evaluated.

Axioms 3.7.

1. The only way to modify the configuration pattern ζ(t) is through the evaluation
of the quality indices available at time t and the configuration pattern at previous
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times, i.e., ζ(t) = ζ
(
t−, Qs(H(t), S(E∗(t))

)
, ζ(t−)

)
, ∀H(t′, t) ∈ H , ∀t0 < t. The

sequence Qs(.) denotes the set {Qα, α ∈ A}, i.e., Q
(

H(t), Eiα
(.)(t)

)
∀t0 � t′ � t.

2. There exist classes H(t′, t) ∈ H , ∀t0 � t′ � t, containing each one at least one
admissible experiment H(t), such that

H(t) = {Hn(t′, t) : H1(t),H2(t) ∈ H(t′, t)⇒ζ(t,H1(t)) = ζ(t,H2(t))}
at time t � t0,

i.e., the information pattern of S(E∗(t)) stands simultaneously for both H1(t) and
H2(t).

This motivates the following definition.

DEFINITION 3.7.2. An information pattern is invariant for two admissible experiments
H1(t), H2(t) processed by an expert set S(E∗(t)) if and only if the two experiments have
such a pattern.

From Axiom 3.7(2), the following result stands directly.

Theorem 3.7.2. The relation β in (H,S(E∗(t))), for some t � t0 defined by H1(t)βH2(t)
if ζ(t,H1(t)) = ζ(t,H2(t)), is an equivalence relation which induces de quotient set of
equivalence classes {[h]} = H/β.

From Axiom 3.7(1) and Theorem 3.7.2, the following result is directly obtained.

Theorem 3.7.3. If H1(t)βH2(t) in (H,S(E∗(t))) at time t � t0 and the quality-index
sequence of S(E∗(t)) is constant on [t, t′] ∩ �, then H1(τ)βH2(τ), ∀τ ∈ (t, t′] ∩ �+.

REMARKS 3.7.

1. Theorem 3.7.2 classifies the admissible experiments by the expert set S(E∗(t)) into
categories or equivalence classes which accomplish with the configuration pattern
at t � t0.

2. Theorem 3.7.3 states that the configuration pattern remains constant within an in-
terval of time if the quality-index sequence in that interval is constant. In particular
the master that addresses the expert set is the same in this interval.

A previous comment at the end of Section 3.7 states that if the information pattern
suffers a change in its state, it is motivated by modifications in the database originated
from previous analysis of admissible experiments. Axiom 3.7.1 states that the information
pattern is changed only by changes in the quality-index string of the expert network.

3.8. It has been introduced axiomatically in the formulation in such a way that each
modification of a rule in a class of experiment implies a flag in the database. Thus, we
have the following
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dependence chain:

D → Q → ζ

↑ ↗
KB

so that Qα is evaluated directly from Dα. The following axiom concerns with the logic
fact that a modification in the knowledge basis at some time keeps such a base modified
during a nonzero length time interval.

Axiom 3.8. Each change in KBiα
jk (t), where the quadruple (i, j, k, α) ∈ ζα; at time

t � t0 implies that KBiα
jk(t) �= KBiα

jk(t
′) for all t′ ∈ (t, t + ε], some real constant

ε > 0.

Now, Main Axiom of Section 3, Axiom 3.2(3), Axiom 3.8 and Definitions 3.0 and
3.7.1(2) together with Theorems 3.7.2 and 3.7.3 lead to the following result, where two
new equivalence relations δ and ψ are introduced to define equivalence classes of exper-
iments and information patterns. Those equivalence classes appear in a natural way after
defining the equivalence relation β for “equivalent” experiments.

Theorem 3.8. The following propositions hold.

1. The data pattern D(.) fulfills the subsequent proposition: D(t)δD′(t) in (H,

S(E∗(t))) at time t � t0 if H(t)βH′(t) at time t � t0 for some equivalence
relation δ.

2. If H(t)βH′(t) (β := no relation β), then D(t)δD′(t) at time t � t0.

3. Proposition 1 implies that the information pattern (D(t), ζ(t)) verifies another
equivalence relation ψ under the hypothesis of Theorem 3.7.3 as follows:

(D(t), ζ(t))ψ (D′(t), ζ′(t)) in (H,S (E∗(t))) at time t � t0 if H(t)βH′(t) in
(H,E∗(t)) at time t � t0.

Proof (outline). Propositions 1 and 2 follow directly with δ defined as follows D(t)δD′(t)
in (H,S(E∗(t))) if H(t)βH′(t).

In Proposition (3), ψ is defined as follows: (D(t), ζ(t))ψ (D′(t), ζ′(t)) if D(t)δD′(t)
and H(t)βH′(t) in (H,S(E∗(t))). That is, (D(t), ζ(t))ψ (D′(t), ζ′(t)) if H(t)βH′(t) in
(H,S(E∗(t))).

4. Some Extensions and Summary of Results

The extensions which could be made are concerned to the use of the quality indices in
the modifying functions of the knowledge base rules m(.), mh(.), m0(.), and the use of
the asymptotic lower bounds for the quality indices so as to state the nominally optimal
expert network.
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Expert systems are usually designed from a practical viewpoint without the existence
of a theoretical formalism, so that it is very difficult for a designer to implement the
system. The difficulties are aggravated by the fact that an expert system modifies its
inner structure as the number of examined examples increases. The preliminary results
which have been stated in this paper about the logical formalism of expert systems are
an attempt to close the gap between the practical and the theoretical design of expert
systems, in order to facilitate the task of the designer when taking the necessary steps
to carry out the system. Thus, an interesting objective is the introduction of a formalism
which allows:

• The design of the ‘usual’ experimental steps.

• The capacity to introduce modifications in the data/knowledge basis, which is of
interest in the learning context to build and improve an expert system.

• The distribution of complex problems into networks consisting in several simplified
problems (expert networks as a set of specialised expert systems addressed by a
master expert system, to which the orders for analysis are addressed).

• To give an axiomatic formulation which specifies the main hypothesis and the way
to deal with it in a systematic and non-redundant fashion.

The axioms we have introduced consists mainly of the following considerations:

1. An expert network consists of a set (of at least one element) of expert systems
addressed by one “master expert system”.

2. There is a set of admissible experiments which are grouped into equivalence
classes. For each class, the master expert system of the expert network is time-
asymptotically unique (namely, under the theoretical hypothesis that no additional
knowledge must be asymptotically added for learning through new rules or modi-
fication of the existing ones).

3. There is a hierarchical distribution of the expert systems within their whole expert
network. For each of the above class of admissible experiments, the hierarchy is
asymptotically stationary.

4. The topological connections within the hierarchy are implemented through con-
nection rules which may be made to belong to both (or one of) the knowledge base
of the “local master expert system” and to that of “local slave expert system”. The
concept of state of the expert system has been introduced to distinguish expert sys-
tems belonging to the same hierarchy and priority but with different performance
objectives.

5. Modifications of the hierarchies and priorities between the various expert systems
of the network and the rules of each knowledge base are made via modifications in
the knowledge bases through evaluation of quality-indices for performed results on
the current and former admissible experiments of the same class. This is assumed
to be the only way to deal with the above modifications. These quality indices are
also used as direct arguments in the modification functions of the rules.
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The axioms and their theoretical conclusions have been introduced in the logical order
following the well-known experimental steps that are usually implemented in the appli-
cations. Future work may address the improvement of the on-line updating of the mod-
ification functions of the rules according to the registered values of the quality indices
when the expert system is in operation.

5. A Simple Expert Network for Improving the Adaptation Transients in Adaptive
Control

5.1. Process to Be Controlled

A planar robot with three articulations is considered. For modeling simplification, the
masses of the two first articulations are assumed concentrated at the distal end of each
link while the mass center of the third element is assumed located at the center of mass
of the second link with its inertia tensor assumed diagonal. If the robot parametrization
is not fully known then the mechanical torque is assumed to be given by:

τ = M̂(Θ)
(
Θ̈d + kvĖ + kpE

)
+ V̂ (Θ, Θ̇) + Ĝ(Θ) + F̂ (Θ̇), (1)

where M̂ , V̂ , Ĝ and F̂ are the estimates of M , which is the mass matrix, V groups
centrifugal and Coriolis forces, G is a gravitation force while F models the friction and
Coulomb effects, Θ is the vector of relative position angles of each arm, with first and
second time-derivatives Θ̇ (angular velocities) and Θ̈ (angular accelerations) referred
to the previous one. The particular expressions for M,V,G and F are time-varying
and non-linear including products of angular velocities and positions and some related
trigonometric-type functions sin(·) and cos(·) as well as similar coupling terms between
the various angular variables. Note that this plant is nonlinear and time-varying. However
form small variations of Θ, it may be considered as a second order linear one. Details of
that parametrization are provided, for instance, in (De la Sen, Almansa, 1999). It has been
assumed that four process parameters are unknown, namely, m1, m2 +m3 (masses); Izz

(third component of the inertia tensor of the third link), and v1 (first friction coefficient).
Kv and Kp are proportional and derivative controller gains. Those parameters are as-
sumed unknown and then estimated while the remaining parameters are assumed known.
The principal objective of this section is to provide an adaptive controller for this robot
which uses supervision techniques to improve the adaptation transients.

5.2. The Expert System

The expert system uses an adaptive controller at the highest hierarchical level with a least-
squares estimation algorithm with time-varying free-design parameter and a sampling law
with small sampling period variations at the third hierarchical level. The second level is
a coordinator of the actions at level 3. The basic scheme for the first control-estimation
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Fig. 1. Basic scheme of the first control-estimation levels.

levels is displayed in Fig. 1. The other two levels are devoted to properly supervise the
basic level by taking necessary correcting actions when necessary.

The fixed parameters are taken as follows: T0 (nominal sampling period)=0.6 msec.,
c (free-design gain of the estimation algorithm) = 5 × 10−3 and forgetting factor
λ = 1 (i.e., no forgetting factor is used). The fixed part of the controller in Fig. 2
is given by the proportional and derivative gain matrices: Kp = Diag (100, 100, 100),
Kv = Diag (20, 20, 20). The parameters of the robot are: m1 = 4.6Kg; m2 = 2.3Kg;
m3 = 1Kg; Izz = 0.1Nm2; vi = ki = 0.5 (i = 1, 2, 3). Li = 0.5m (i = 1, 2) are
the arm lengths. The initial estimates for the four unknown parameters are: m̂1 = 9.2;

̂m2 +m3 = 6.6; Îzz = 0; v̂1 = 0.
Now, the whole expert network based on the main parts of the given formalism is

organised as follows:

E1
1 : Unsupervised Adaptive Controller

M̂ , V̂ , Ĝ and F̂ are the estimates obtained from the estimate p̂ of the unknown (and
then estimated) parameter vector p = (m1,m2+m3, Izz , v1)T and the known parame-
ter vector p′ = (v2, v3, k1, k2, k3, kp1, kp2, kp3)T . The corresponding regressor matrices
are W and W ′, containing the various signals obtained from Θ, Θ̇ and Θ̈d which affect
to each component of p and p′. The estimate of p is obtained from a least-square type
estimation algorithm with covariance matrix Fk updating and free-design adaptation pa-
rameter ck given at each k-th sample by:

p̂k+1 = p̂k +
FkW

T
k Eτ

ck +
∥∥WkFkWT

k

∥∥ , (2)

Fk+1 =
1
λ

(
Fk − FkW

T
k WkEτ

ck +
∥∥WkFkWT

k

∥∥
)

, (3)

with the adaptation error being Eτ = M̂−1(Ëd + kvĖ + kpE) for all time and M̂ being
parametrized for all time from the estimation p̂ of p and the known p′ (detailed relations
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are provided in (De la Sen, Almansa, 1999)) and F0 = FT
0 > 0. The basic adaptive

controller implements equations (1)–(3).

E3
2 : Updating Rules for ck

A loss function is defined at each sampling instant by:

Jc
k = δ1k

k∑
i=k−Nk

σk
i E

T
i QEi + δ2k

k+Mk∑
i=k+1

σk
i Ê

t
iQÊi, k � 0. (4)

The ck-parameter is on-line adjusted for each k-th sample according to the improve-
ment of Jc

k related to Jc
k−1. In (6), δ1k ∈ [0, 1] and δ2k = 1 − δ1k ∈ [0, 1] are relative

weights for each of the two right-hand-side terms, and [k −Nk, k) is a “correction hori-
zon” in the sense that c(·) and then Ei, since previously occurred, cannot be modified
at the current kth-sample but its associate contribution to (4) is a measure of the recent
registered transient performance. [k + 1, k + Mk] is a “prediction horizon” in the sense
that the error tendency through predicted values Ê(·) of future E(·) contributes to Jc

k .

The predictions Ê(·) are computed through direct extrapolation of the last few measured
tracking errors E(·). The expert system becomes as follows. First calculate

ck = ρk

∥∥WkFkW
t
k

∥∥+ c̄ (c̄ > 0), (5)

so that ck is mainly adjusted via regressor contributions if ρk >> 1, it is almost negligible
if ρk << 1 and it is close to ‖WkFkW

t
k‖ in (1) if ρk ≈ 1 and c̄ is small. c̄ > 0 is used

to avoid ck = 0, which would violate the scheme’s stability constraints, and also the
algorithm to fail if simultaneously Fk = 0. Thus, the main idea is to design ck through
(5) and a rational empirical on-line choice of ρk according to the evolution of the relative
loss J̃c

k =
∣∣Jc

k − Jc
k−1

∣∣ / |Jc
k| at each k sample:

Rule 1. For ∆ρk � 0,

i) ρk+1 = ρk +∆ρk if ρk < ρk−1 and Jk+1 > Jk or if ρk > ρk−1 and Jk+1 < Jk.

ii) Then calculate ck from (7). The heuristic explanation is:

“Progress by doing identical action by increasing ck if the relative cost is being
improved when increasing ck−1. Otherwise, modify the supervision strategy and
decrease ck if ck−1 was increased and the relative cost was worsening.”

Rule 2. i) ρk+1 = ρk−∆ρk if ρk < ρk−1 and Jk+1 < Jk or if ρk > ρk−1 and Jk+1 > Jk.

ii) Calculate ck from (5).

Rule 2 is interpreted similarly: ck is decreased if decreasing is improving the rela-
tive cost or if it was increased in the previous step and now the cost is detected to be
worsening.



Logical Formal Description of Expert Systems 197

Rule 3. ck = ck−1 if Jk = Jk−1.

Since ck ∈ [cmin, cmax] ⊂ (0,∞), with prefixed cmin > 0 and cmax > cmin, then
∆ρk = lk∆ρ with lk integer such that ∆ρ = 0.05ρ0 and lkMk � ck � lk+1Mk, where
Mk = 0.05Jk. The initial c0 = (cmin + cmax)/2.

E3
1 : Sampling Period Updating Law

A commonly used one is

Tk =
CTk−1

‖Ek − Ek−1‖R

(C = 5× 10−4),

if Tk ∈ [Tmin, Tmax], otherwise either Tk = Tmin or Tk = Tmax, with some T ∈
[Tmin, Tmax] being a nominal constant running sampling period suitable in the applica-
tion. The constant C is set arbitrarily so that the adaptation is typically a bang-bang rule
with mutual switches between Tmin and Tmax at the beginning of the adaptation tran-
sient. After a set of samples, values within the admissibility interval for the sampling
period are also found. R = RT � 0 is a (at least) positive semidefinite matrix so that
‖X‖R = (XtRX)1/2 is the generalized Euclidean norm of X . Since large variations
of the sampling period are not allowed in an adaptive scheme-based for systems with
constant or slowly time-varying parameters, the sampling period has to be slowly varying
and to converge to some T0 ∈ [Tmin, Tmax] in a neighbourhood of the nominal T . T0 may
be typically identical to the nominal sampling period T . Thus, we proceed as follows.

Prefix ∆Tα and ∆Tβ such that Tmin = T0 − ∆Tα and Tmax = T0 + ∆Tβ , so that
[T0 −∆Tα, T0 +∆Tβ] ⊂ [Tmin, Tmax].

Rule 4. For the current ∆Tαk and ∆Tβk compute the trial current sampling period

T̄k =
CTk−1

‖Ek − Ek−1‖R

if Ek �= Ek−1 and T̄k = T +∆Tβk, (6a)

otherwise; then choose using (6a) the sampling period as

Tk = T̄k if T̄k ∈ [T −∆Tαk, T +∆Tβk] ,

Tk = T −∆Tαk if T̄k < T −∆Tαk

Tk = T +∆Tβk if T̄k > T +∆Tβk.

(6b)

Rule 5. Decrease ∆Tαk and ∆Tβk if k � k0 (finite), so that Tk → T0 as k → ∞.
Otherwise, (if k < k0, some finite integer k0 > 0) then choose ∆Tαk < ∆Tα,k−1,
∆Tβk < ∆Tβ,k−1 unless the transient performance is being worsened.

REMARK 5.2. The decrease in the increments ∆Tαk, ∆Tβk may be overcome with
time exponentially decreasing rules, or less drastically, with functions converging to
zero slower than exponentially with time. In the example discussed in this section, the
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choices are simplified to ∆Tαk = ∆Tβk = ∆Tk � ∆T with T = T0 = Tmin+Tmax
2 and

∆Tk = m∆T0e −k, m > 0 being small, decreases at slow exponential rate.

E2
1 : Supervisor of E3

1 and E3
2

The main objectives of this supervisor are:

i) To modify the values of the weights δ1k, δ2k of the correction or prediction horizons
according to the registered performance and to modify when necessary the sizes of
the correction and prediction horizons of sizes Nk and Mk in E3

2 .

ii) To switch when necessary to another adaptive sampling law from the current one
or to decide to use one of the two supervisions only to improve the system perfor-
mance.

One has proceeded as follows for E3
1 and E3

2 :
– Choice of the weights and correction/prediction horizons. The variations ranges for

δ1k, δ2k have been chosen within [0, 1] with a small reduced admissible variation interval
from a set of admissible experiments in H . The correction and prediction horizons have
been fixed around the values Nk

∼= 3, Mk
∼= 2. The size of the correction horizon is

large since it deals with real values of the tracking error, while in the prediction one
they have to be calculated using interpolation. Since it turns out that the final effect of
this supervision is the on-line adjustment of ck, it is seen from (4) that the effects of
variations in the values of Nk and Mk may lead to qualitatively similar performances
than properly chosen variations in the weights δ1k and δ2k, respectively. As a result in
the numerical example below in this section, they have been taken sample-independent
as Nk = 3, Mk = 2 (∀k � 0) and δ2k ∈ [0.85, 1], δ1k = 1 − δ2k (both adjusted on-line)
for all k � 0.

– Choice of the sampling law. The following set of adaptive sampling laws are ob-
tained from those proposed in (De la Sen, Almansa, 1999) and (De la Sen, 1984), after
approximating the error time-derivatives by the finite difference method with evaluations
at sampling instants:

Law 1

T̄k =
TmaxT

2
k−1

C ‖Ek − Ek−1‖2
R + T 2

k−1

, a = 1, b = 2; C = 1/3AB2;B = 1/Tmax in (1).

Law 2:

T̄k =
CTk−1

‖Ek − Ek−1‖R

, a = 0, b = 2; C = (AB)1/2.

Law 3:

T̄k = Tmax −
C ‖Ek − Ek−1‖R

Tk−1
, a = 1, b = 1; C = 1/2AB2; B = 1/Tmax.

Law 4:

T̄k =
TmaxTk−1

C ‖Ek − Ek−1‖R + Tk−1
, a = 0, b = 1; C = 1/AB2; B = 1/Tmax.
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Table 1

Database

Robot parameters:

m1 = 4.6kg, m2 = 2.3kg, m3 = 1kg, Izz = 0.1kgm2,

vi = ki = 0.5 (i = 1, 2, 3), L1 = L2 = 0.5m

Nominal sampling period:

T = T0 = 0.6msec, Tmin = 0.5msec, Tmax = 0.7msec

Initial conditions:

Θ
∣∣
t
= 0 = (0, 30,−50)T ; Θ̇

∣∣
t=0

= Θ̈
∣∣
t=0

= (0, 0, 0)T ; F
∣∣
t=0

= Diag (103).

Final reference conditions:

Θd = (10,−50,−10)T .

Gain matrices:

Kp = Diag (1, 0, 0).

Initial conditions of estimates:

m̂1

∣∣
t=0

= 9.2, m̂23

∣∣
t=0

= 6.6, where m23 = m2 + m3; Îzz

∣∣
t=0

= 0, v̂1

∣∣
t=0

= 0.

Saturation of the estimation algorithm for all time from “a priori” knowledge:

0.01 � m̂1 � 20, 0.01 � m̂23 � 20, 0.01 � Îzz � 1, 0.01 � v̂1 � 1.

Nominal value of ck (= c0) = 5 × 103; λ = σ = 1(constant);

minimum value of c̄k is c̄ = ∆ρ = 0.1.

Correction and prediction horizon sizes:

N � 3, M � 2; δ1k = 1 − δ2k , δ2k ∈ [0.85, 1].

Weighting matrix for supervision of ck: Q = I .

Weighting matrix for the sampling laws: R = Diag (0, 0, 1).

Table 2

Percentages of performance improvement under adaptive sampling

Law 1 Law 2 Law 3 Law 4

39% 29% 16% 26%

The database used by the expert network is displayed in Table 1.
In Table 2, the percent of improvement of the time-integral of the quadratic tracking

error is quantified over fifty samples for each of the four given sampling laws evaluated
separately without supervision of the ck-parameter. The percentages are computed related
to the unsupervised situation of nominal constant sampling period Tk = T = T0 =
0.6msecs, for all k � 0 and R = Diag (0, 0, 1).

5.3. Closed-loop Stability

The following result proves that the basic supervision-free system and the supervised
ones are both stable.

Theorem 5.3 (Stability results). The following two items hold:
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(i) In the absence of supervision, the estimated parameters are bounded if their ini-
tial conditions are bounded and the initial adaptation covariance matrix is positive
definite. Also, the closed-loop system is globally Lyapunov’s stable so that the out-
put, input, estimation error and tracking error are all bounded provided that the
reference trajectory is bounded.

(ii) If only the algorithm free-parameter ck (or, alternatively, the forgetting factor) is
supervised by the given rule while respecting its positivity and boundedness (while
belonging to the range (0, 1]) for all sample, then (i) holds. If the sampling period
is supervised (with the free-parameter being supervised or not) during a finite time
interval within its admissibility domain, then (i) still holds.

Sketch of Proof: (i) Direct calculations with (1)–(3) yield for all sampling instants:

Eτk = M1kP̂k + M̂kΘ̈k = MkΘ̈k + E′
τk −M1kP̃k,

E′
τk = WkP̃k = Mk −MkΘ̈k = Mk(KvΘ̈k −KpΘ̈k),

(7)

where P̃k = P − P̂k is the parametrical error for the auxiliary parameter vector P . Thus,

Eτk = (Wk −M1k)Pk +MkΘ̈k. (8)

On the other hand, one gets from the estimation algorithm and the above error expression:

λkFk+1F
−1
k =

(
I − FkW

T
k Wk

ck + ||WkFkWT
k ||

)
; λkF

−1
k P̃k = F−1

k+1P̃k+1. (9)

If the Lyapunov’s-like sequence Vk = P̃T
k F−1

k P̃k is defined then it follows that Vk+1 �
λkVk � Vk � V0 since

Vk+1 − λkVk = − λk

ck + ||WkFkWT
k || P̃

T
k WT

k WkP̃k � 0 (10)

for the free-design parameter of the estimation algorithm ck ∈ (0,∞) and the forgetting
factor λk ∈ (0, 1], all integer k � 0 with

P̃k+1 − P̃k =
(
I − FkW

T
k Wk

ck + ||WkFkWT
k

||
)

P̃k − P̃k =
FkW

T
k WkP̃k

ck + ||WkFkWT
k ||

. (11)

Since the sequence {Vk}∞0 is nonnegative and bounded for V0 bounded and non strictly
monotonically decreasing, then it has a finite nonnegative limit so that

∞ > V0 � Vk � λmax(F−1
k )||P̃k||2E . (12)

This implies that the parameter error P̃k and its associate estimate are bounded for all
sample since the above maximum eigenvalue of the covariance inverse is always strictly
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positive. As a result, all the estimates of the direct parameters used in the calculations
in (2)–(3) are bounded. If the regressor is bounded then Eτk and the auxiliary one E′

τk

are also bounded from the initial identities of this proof and then the estimated and error
torques τ̂k and τ̃k are bounded and WkP̃k converges asymptotically to zero. It follows
that the output and the tracking error are bounded if the reference is bounded. Finally, if
the regressor fulfils a standard type of asymptotic persistent excitation condition then the
parametrical error converges asymptotically to zero. This proves item (i). The proof of (ii)
follows in the same way since the free parameters of the basic estimation scheme always
belong to their admissibility domains compatible with stability if the supervisor scheme
for any of the free-parameters is in operation. Finally, assume that the sampling period is
on-line updated within its admissibility domain during a finite time interval and then it is
fixed to a constant value within such an interval. Thus, the overall system becomes time-
invariant after a finite time which may be set as initial time for analysis and the above
stability results still hold.

Note that the closed-loop stability is also ensured if the time-varying sampling period
tends exponentially to any constant value within its admissibility domain. A particular
situation is when such a limit is its nominal value, in practice, a good tested value for
a correct operation mode in the current practical application at hand. This property may
be proved by extending directly Theorem 5.3(ii) by adding to the identification and –
parametrical error bounded and exponentially decaying additive terms. The key point to
ensure that the closed-loop stability holds under supervision is that the free-parameter of
the parameter-adaptive algorithm and the sampling period are kept within their admissi-
ble domains. Those domains are compatible with convergence of the updating algorithm
and stability. Thus, a judicious supervision of the free adaptation parameters/forgetting
factor and sampling period dictated, for instance, by the given updating supervisory rules
maintains the global stability (see Theorem 5.3(ii)) previously guaranteed in the unsuper-
vised scheme (see Theorem 5.3(i)) while may be able to improve very much the transient
behavior in the sense that large overshoots are avoided during the adaptation transient.

5.4. Numerical Results

A numerical example has been performed with the data of the above expert system. The
evolution of the arms positions is displayed in Figs. 2 for both the unsupervised and
supervised case with ck-supervision and constant sampling period. The improvement is
apparent in the second case. Estimates of the torque at the second joint is displayed in
Fig. 3, and the loss function of the time-integral of the squared tracking error and the
evolution of the ck-parameter are shown in Figs. 4.

Some related results are shown in Figs. 5 when only sampling period supervision is
used.

Results for a combined supervision of ck and Tk are shown in Figs. 6.
It is seen that the supervision improves the transient performances related to the un-

supervised case, with an apparent decrease in the value of the accumulative time-integral
of the tracking error during the transient adaptation.
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Fig. 2a. Position of the first joint.

Fig. 2b. Position of the third joint.

Fig. 3. Torque in the second joint with and without supervision of c.

6. Comments about the Use of the Formalism of Sections 2–3

The master expert system E1
1 is unique and it is implemented as the basic identification-

control scheme E1
1 where the parametrizations of the identifier (Eqs. (2), (3)) and then the

adaptive controller (Eq. (1)) are both readjusted each new sampling instant. Eq. (1) uses
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Fig. 4a. Cost function J with and without supervision.

Fig. 4b. Evolution of the supervised free-design parameter ck .

the process estimates given by (2) and (3). Note that this is the basic adaptive control
philosophy where learning is based in updating values of the adaptive controller based
in an on-line process of identification and tracking error measurement. As a result, the
control signal is re-updated at each sampling instant. This part of the scheme plays the
role of a unique master expert system (see Axioms 3.2, 3.3, and Theorem 3.4.1) which
governs the slave expert systems and acts during certain time interval, i.e., the supervision
of the free-design parameter (E3

2 ) and sampling period (E3
1 ), each having a set of rules

in the knowledge base. The basic rules are Rules 1–5 described above. The processing or
not processing of rules is basically organised for entire groups of rules concerned with
E3

2 and E3
1 where any of the two parts may be switched-off from the supervision scheme

during a set of samples. The generation of new rules has not been considered like that
in this particular design. However, through initial experimentation, it has been decided
which sampling law to use. Similarly, it has been decided which is the appropriate set
of prefixed design parameters, like λ, c̄, δ(·), C, T , T0, Tmin, Tmax, etc., to use for the
subsequent experiments to be processed. Note that each expert system within the network
has its own database and knowledge base which is not necessary disjoint of the remaining
ones (see Theorem 3.5).



204 M. de la Sen, J.J. Miñambres, A.J. Garrido, A. Almansa

Fig. 5a. Position of the first joint with constant and with supervised sampling period.

Fig. 5b. Supervision of the sampling period.

There are two main phases in the use of the formalism. The first phase is the con-
struction of the expert system by learning through a set of experiments. The “admissible”
experiments consists in processing the performance with different values of the nominal
sampling period T0 of the order of msecs, accordingly to the suitable requirements on
bandwidth, stability and application requirements, and different values of the free-design
parameter of the algorithm c (assumed to be constant) between its admissible variation
domain (0, ∞) compatible with the closed-loop stability. Other data are obtained from
the initial covariance matrix F0 = FT

0 > 0 to which the transient performance is very
sensitive. The various experiments are obtained for a wide variation of c in (0, ∞) but for
small variation of the admissible sampling period which has to be compatible with the ap-
plication and with a set of control design specifications. The reason of the small variation
for the sampling period is that for controller synthesis purposes, time-invariance or quasi
time-invariance processes are suitable, while the discrete plant becomes time-varying if
the sampling period varies.

The sets of non-admissible experiments are possible sets which are rejected because
the design requirements are not satisfied, as well as those rejected because of bad reg-
istered performances although they are initially processed. The equivalence classes are
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Fig. 6a. Position of the third joint with supervision of ck and Tk and without supervision.

Fig. 6b. Cost function J with supervision of ck and Tk and without supervision.

obtained form the various conditions p0, F0, c, T , T0 which lead to very similar per-
formances for the given second order plant. A classification of experiments for different
types of plants is not performed in this study case since the plant is a second order one
with damped oscillatory behaviour after feedback is implemented. A quality index is used
in the general formalism to evaluate the transient performance. In this case, the quality
index is a time-integral of the quadratic tracking error of the third arm position related to
the reference signal for system E3

2 and related to a generalized norm of the tracking error
variations for system E3

1 (see Eq. 4 and structures of sampling laws 1–3). The quality
indices of the basic scheme E1

1 and E2
2 may also be defined with quadratic measures of

the tracking errors so as to decide when to end the basic adaptation, switching between
sampling laws or in-between E3

1,2, or when to modify the weights in the loss function
(Eq. 4). In this example, the quality indices of the four systems in the network (i.e., the
basic adaptation scheme, the two supervisors and the coordinator) are the accumulative
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Fig. 6c. Supervision of the sampling period with combined supervision.

relative quadratic error of the third arm without weighting. The classification into exam-
ples in this particular case study has not been referred to different robot parametrizations.
Such a classification has been made to design appropriate values for the magnitudes of
the database (Kv, Kp, “a priori” modeling values for M , F , G, etc.) and to decide that
the sampling law 1 affords the best results if it has to be chosen without alternative use
of switching with another laws. Basically, this first phase is performed for the isolated
master expert system E1

1 without supervision from the other expert network components
concerned with the supervisor updating process.

The second phase is an on-line hierarchized supervision procedure of the coordinator
E2

1 (hierarchical level 2) and the hierarchical level 3 with E3
1 and E3

2 . The set of rules have
been given before by using a database (Table 1) obtained from “a priori” knowledge on
the controlled process and knowledge obtained from the phase 1 in which no supervision
was implemented. The order of the priorities of E3

1 and E3
2 was decided to be kept fixed

with the highest one for the sampling law after some experiments since the performance
is much more sensitive to the sampling period variation than to the free-design parameter
ck. In this phase, if was also decided to use the sampling law 1 since it gave the best
performances in phase 1. As explained before, it would be no difficult to incorporate
the use of the combination of the various sampling laws to the scheme including the
possibility of mutual switches, at the expense of a higher design complexity.

7. Conclusion

An axiomatic formalism has been provided for addressing the operation and performance
of sets of expert systems grouped into expert networks. The axioms proposed are valid,
in a first attempt, to distinguish between the different functions which permit to change
hierarchies and priorities in the execution of admissible experiments within a learning
context. The learning procedure is evaluated by stating quality indices to process the in-
dividual experiments entering the expert network. The axioms have been used to derive
some mathematical results concerning the theoretical improvement of the expert network
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performance when learning is in progress as a result of the incorporation and processing
of new admissible experiments. An application to improve the transient behavior of a
robot manipulator has been also given. Work is now in progress about the axiomatic ex-
tension specifically to the self-learning aspects concerned with the rules of the knowledge
base.
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Formalus ekspertini ↪u sistem ↪u aprašymas logikos priemonėmis

Manuel de la SEN, Juan J. MIÑAMBRES, Aitor J. GARRIDO, Ana ALMANSA

Ekspertinės sistemos skirtos spr ↪esti uždavinius iš anksto tiksliai apibrėžtoje dalykinėje srityje,
panaudojant dirbtinio intelekto teorijos metodus. Nors ekspertinės sistemos plačiai naudojamos
daugelyje dalykini ↪u sriči ↪u, pavyzdžiui, gamybos bei valdymo sistemose, iki šiol vis dar yra didelė
balta dėmė j ↪u kūrimo teorijoje: nepasiūlyta kaip standartizuoti sprendžiam ↪u uždavini ↪u aprašus.
Šiame straipsnyje siūloma kaip paprastu būdu sudarinėti formalius ekspertini ↪u sistem ↪u aprašus.
Pasiūlymai gali būti taikomi ir manipuliatori ↪u klasės robotams aprašinėti.


