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Abstract. This paper is concerned with the derilvation of
open-loop Stackelberg (OLS) solutions of a class of continuous-
time two-player nonzero-sum differential games characterized by
quadratic cost functionals and linear singular systems. By applying
the calculus of variations, necessary conditions are derived under
which the opén-loop Stackelberg solution of the leader exists. Un-
der the transformation by which the matrix E has diagonal form,
we derive a matrix Riccati differential equation from the necessary
conditions. An example is given to illustrate the results of the
paper.
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I. Introduction. A great deal of attention has been
paid to methods of design and analysis of Stackelberg strate-
gies in nonzero-sumn dynamic games, e.g., Chen and Cruz
(1972), Simaan and Cruz (1973), Cruz (1978), Basar and Ols-
der (1982), Ho et.al.(1982).

In the recent years, there has been a growing interest

in the system-theoretic problems of singular systems due to
the extensive applications of singular systems in large scale
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systems, control theory, and other areas (Luenberger, 1977;
Cobb, 1984; Bender and Laub, 1987; Liu and Zhang, 1989
etc.). Because the state-variable description does not always
exit in modelling large scale systems (Luenberger, 1977), the
dynamic game theory based on that has not satisfied the needs
of the practical applications. Consequently, it is important to
extend the dynamic game theory to singular systems. The
purpose of this paper is to introduce the Stackelberg solution
‘concept to singular systems.

In section II, Stackelberg game problems characterized by
quadratic cost functions and linear time-invariant continuous
singular systems are considered. In section III, by using the
calculus of variations, necessary conditions for the existance
of open-loop Stackelberg strategies are given. In section IV,
under the transformation by which the matrix E has diagonal
form, the matrix Riccati differential equation is derived. An
example is given to illustrate the results of the paper in section

V.

II1. Problem formulation. Consider a Stackelberg game
for a linear singular system

Ei(t) = Az(t) + B'u'(t) + B*2(¢),  Ex(0) = Ezo (2.1)

with associated cost functional for each decision maker P;
(where P; denotes the follower; P;, the leader)

T

2

Ji(ut,u?) :1/2/ [z(t)' Q'x(t) + Z w () RV ()] dt

0 5=1
+1/2¢(TYE'Q(T)Ex(T), i=1,2,(2.2)

where E is a square matrix with rank(E) = n; < n, and
det[sE — A] # 0, z(t) is an n-dimensional descriptor vec-
tor, u/(t) is an r; — vector control function of P;, Q! > 0,
QYT) >0, RY >0, i,j =1,2.
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Within the framework of the linear-quadratic singular
game problem (2.1) and (2.2), the open-loop Stackélberg (OLS)
solution concept can be introduced as follows:

DEFINITION. For the singular differential game posed
above, a strategy 4 constitutes an open-loop Stackelberg (OLS)
strategy for the leader if

sup Jo(u',@?) < sup Jo(ul,u?) (2.3a)
ul€R(a?) ul €R(u?)

for any u?, where R(u?) is the rational reaction set of the

follower which is defined by
R(u?®) = {a': Ji(a',u?) < Ji(u',u?), for any u'}. (2.3b)

For simplicity in the later notation, let us assume that
the matrices E, A, and B’ take the form:
{E|A|B}=
]. 0 | A11 A12 ] B{ (24&)
= | N
0 O | A21 A22 | Bé

Both @’ and Q’(T) have the corresponding form

(@lemy= | |
{( 11 {2) {( 1(T) Q'fz(T))} (2.4b)
(@) Q) | \(QL(T)) Q4,(T)
REMARKS 1.

(a). In fact, for any n x n matrix E with rank(E) = n; <
n, there exist n X n nonsingular matrices U amd V" and ny xn,



236 ‘ Stackelberg Strategies

unit matrix I such that UEV = diag{I,0}. So when U and
V are applied to the singular system (2.1), we have

UEVV™Yi(t) = UAVV ™ a(t) + UB'u!(t) + UB*u*(t)

If we define V'2(t) = [z1(t)', z2(¢)']’ and the following ma-

trices
Ain A o B{
UAV = , UB’ = 1,
Az Ag B

then the system equation of notion (2.1) becomes

:i)l(t) = Au:cl(t) + Alz;tz(t) + Bllul(z‘) + B%UQ(t)
z1(0) = 2y (2.5a)

0= Aglxl(t) + A22£L‘2(t) + B;ul(t) + B%uz(t) (25b)

in which the matrices E, A, and B’ have taken the form
(2.4a), where z19 = (1 0)V ' z,.
(b). For the singularly perturbed system

$1(t) = AF o1 (t) + Alxa(t) + Birul(t) + By (1),
z1(0) = 19

pra(t) = A3 x1(t) + A a(t) + By*u'(t) + Bi*u(t),
22(0) = 720

the following slow subsystem can be obtained by letting p =0

(Khalil and Medanic, 1980).

r1(t) = AT 21(t) + ATpxa(t) + Bll*ul(z‘) Bi*u®(t)
v1(0)

0= A% (¢t )-I—Azr;l'z(f)—l—B]*Ll(f) B3*u*(t)

) =

r2(0

=TIy

= I'yp
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which is the same as (2.5) in the form. As far as the authors
know, Stackelberg strategies for singularly perturbed linear-
quadratic problems have been dealt with in the continuous-
time systems (Khalil and Medanic, 1980). But, all of the
previuos results about the singularly perturbed Stackelberg
problems were obtained with the assumption that Az, is non-
singular. But the method of this paper can be used to solve the
slow Stackelberg problems of singularly perturbed continuous-
time games without such assumption.

With the possibility of impulses in z(t) (and u’(t)), we
immediately face the question of how to- interpret the cost
integral (2.2). We do this in the following assumption.

AssUMPTION 1. The integral (2.2) is assumed to be de-
fined in the same way as in Bender and Laub (1987); that
is as a distributional integral. This type of integral has the
property that

T T
/H 8(t) |l dt < o0 but /n §(t) |12 dt = oo

where 6(t)v is the impulse function along v defined by

< &(t)v, £(t) >= f(0)
Thus an impulse function is integrable but its square is not.

III.Necessary conditions for the existance of OLS
solution. In order to derive the open-loop Stackelberg solu-
tion of the leader, we must first determine the rational reaction
of the followerP; to control u? which is declared by the leader
P,. Since the underlying information pattern is open-loop, the
optimization problem faced by the follower P; is reduced to
the following optimal control problem.

min Ji(ut,u?) (3.1)
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subject to (2.1) for each fixed u?.

In fact, the optimization problem (3.1) is an optimal con-
trol problem of singular systems and was solved in Jonckheere
(1988) and Bender & Laub (1987). By extending the analysis
of Jonckheere (1988), one can obtain the following conclusion.

Lemma. Assume that
(1) (2.1) is controllable at infinity by the follower;
(2) @, >0, R > 0.
Then, the rational reaction of the fo]]ower to u? exists, is
unique and continuous, and is defined by the unique solution
to the following two-point boundary value problem.

Ei(t) = Az(t) + B*u'(t) + B*u?(t),

Ez(0) = Exy (3.2a)
E'p(t) = —Q'z(t) — A'p'(2),

E'pN(T) = E'Q*(T)Ez(T) (3.2b)
0 = R'u!(t) + BY pl(t) (3.2¢)

Proof (Sketch). If u?(t) = 0, then the problem (3.1) is
the same one as in Bander and Laub (1987), and Lemma has
been proven in Jonckheere (1988). But, it doesn’t influence
the second-order variation of the cost functional whether u?(t)
is zero or not. Therefore, by extending Jonckheere's proof, it
follows that sufficient and necessary condition for the exis-
tence of optimal control u!(#) is (3.2) under the assumption
of Lemma.

In addition, by extending the analysis of Bander and
Laub (1987), it is easy to prove that for any given continu-
ous u?(t) there exists a unique continuous solution to (3.2).

QE.D.

REMARK 2. (2.1) is controllable at infinity by the fol-
lower if all its impulsive modes can be excited from zero initial
conditions by an input u'(t) containing no impulse. (2.1) is
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controllable at infinity by the follower iff there exists a feed-
back I such that (sE — A — B'K)~! has no dynamic modes
at infinity. Further. iff (2.1) is controllable at infinity by the
follower. { Ayy. B} ) has full row rank.

Now, to obtain the Stackelberg strategy of the leader, we
have to mmunize Jy(u'. u?). in view of the unique rational re-
action of the follower to be determined from (3.2). Therefore,
the problem faced by the leader is the following optimization
problen.

min Jo(ul, u?) (3.3)

subject to (3.2).

In fact  the optimization problem (3.3) also is an opti-
mal control problem of singular systems. But from Lemma,
it follows that for any continuous function u?(t) there exists a
unique continuous solution to the constraint (3.2). Thus, the
standard variational calculus, for example, Sage (1968, 53-66),
can be used to solve the problem (3.3). To solve this optimiza-
tion problem, let us append the constraints (3.2) to Jo(u!, u?)
by using Lagrange multipliers p?(t), n!(¢), m!(¢) and n'(T).

Jo(u' u?) =(1/2)x(T) E'Q*(T)Ex(T)
—n ( )[E'QY(T)Ex(T) — E'p'(T))

+/{<1/ (2(8)'QPa(t) + u (+Y Rl (1)

+ u?(t) R¥u%(t)]

+ p*(t) [Ax(t )+Blul (t) + B*u*(t) — E(t)]
+nl () [=Q'x(t) — A'p'(t) — E'p(t )]
+m!()[RMul(t) + B p' ()] }dt (3.4)

By using the standard variational techniques, the neces-
sary couditions that characterize u? being the optimal solution
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of optimization (3.3) take the form

Ei(t) = Az(t) + B'u'(t) + B*u?(t),

Ez(0) = Ex, (3.5a)
E'p'(t) = -Q'z(t) — A'p'(¢),

E'p\(T) = E'Q'(T)E=(T)  (3.5b)
0= R"u!(t) + BYp'(t) (3.5¢)
E'p(t) = —Q*«(t) — A'P*(¢) + Q'n'(t)

E'p*(T)= E'Q*(T)Ex(T) — E'Q'(T)En'(T) (3.5d)
Enl(t) = An'(t) — B'm'(t), En'(0)=0 (3.5¢)
0 = R?'u!(t) + B p?(t) + R''m!(¢) (3.5f)
0 = R%u?(t) + B?'p*(¢) (3.59)

IV. Characterization of optimal solution. If the
following vectors are defined

#(t) = (e1(t), —ni(t)") (4.1a)
B(t) = (p(®),pi(2)) | (4.10)
ﬂ(t)l = (pg(t)l7 _n%(t),a ml(t)’,p%(t),,

za(t), ul (1), (1)) (4.1¢)

then, under the assumption (2.3), the two-point boundary
value problem (3.5) can be rewritten in the compact form as
follows:

#(t) = Az(t) + Bu(t),

£(0)' = (}9,0) (4.20)
p(t) = —Q(t)2(t) - A'p(t) - Sa(?),
B(T) = QT)&(T)  (42b)

0 = S'#(t) + B'p(t) + Ru(t) (4.2¢)
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where:

A = dldg{All, A]l} (430)

0 A, B! B?
0A12B100 0 0

b Qh 0 0 Qo0
( 0 Ay QL 0 0 (4-3¢)

an-(GhE H) = (& G s

0 R" B
R= R_ll,' Qz, o) (4.3¢)
B 0 R®

(4.3b)

with

) .0 A4y Bj ) 0 0 0
R' = A-’z‘z, Qi 0 |, Q=10 Q% 21 ’
Bl 0 RY 0 0 R

B3
B2=10 (4.3f)
0

The system (4.2) is a singular system in its own right.
Moreover, the matrix of this system already has the form
(2.4a). In order to solve the two-point boundary problem
(4.2), it is necessary for R to be invertible. Towards this end,
we shall state some sufficient conditions for the invertbility of
R as follows:

ASSUMPTION 2.

(a). (2.1) is controllable at infinity by the follower;
(b). Q3, >0, R > 0;

(¢). @3, >0, R >0, R?? > 0.
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REMARKS 3.

(1) From Lemma 12 of Bender and Laub (1987), it fol-
lows that Assumption 2 - (a) and (b), are one possible set of
sufficient conditions for R!! to be nonsingular.

(2) If A is nonsingular, then the relation below is true.

0 A C I 0 0
Z=14 B 0}=10 I 0
cC' 0 D 0 C'4aHt 1
I 0 0
% 0 I 0
~C'(A")'BA™! 0 I
C

0 A
x| 4 B 0
0 0 D+C'(4)"'BA'C

Thus, we can get that Z is nonsingular if A is invertable,
B > 0 and D > 0. According to Assumption 2, it is easy to
prove that R 1s nonsingular.

If the Assumption 2 is satisfied, then u(t) can be uniquely
determined from (4.2¢) as:

u(t) = —R7HS'z(t) + B'p(t)). (4.4)

Substituting it into (4.2a-b) leads to
#t)\ _( A-BR7'S' . -BR'B
1)) “\~(Q-SR'S) —(A-BR15)

«G5)

with the boundary condition

2(0) = [2%4,0],  B(T) = Q(T)z(T). (4.5b)
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When introducing the linear transformation
p(t) = P(t)x(t) (4.6)

then from (4.5) and eliminating #(t), we can obtain that P(t)
satisfies the following matrix Riccati differential equation.

—P(t) =(Q — SR™'8") + P(t)(A— BR™'S")
+(A - BR™18"YP(t) — P(t)BR™'B'P(t)

P(T) = Q(T) (4.7)

According to the definitions of @, Q(T) and R, it is easy
to prove that the matrix Riccati differential equation (4.7) is
time- invariant and its solution is symmetric. Therefore, the
eigenvector method, for example, Vaughan (1969), can be used
to solve (4.7).

From (4.4) if the solution of (4.7) exists and is unique,
then the optimal solution to (3.5) exists, is unique, and can
be determined by

i(t) = R™'[S' + B'P(t))#(¢) (4.8a)
where Z(t) satisfies

z(t) ={A — BR™'[S' + B'P(t)]} z(¢).
2(0) = [x},0] (4.8b)

Now we shall conclude the discussion above with the fol-
lowing theorem.

Theorem. Cousider the linear-quadratic singular Stack-
elberg game problem (2.1) and (2.2) together with Assumption
1-2. Then, if the solution to the matrix Riccati differential
equation (4.7) exists and is unique, then there exists a unique
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solution to the necessary conditions (3.5), and this solution is

given by (4.8).

Proof. The proof has been given prior to the statment of
the Theorem.

V. Illustrative example. Consider the following Stack-
elberg game problem

(6 0) (26) -
(1 5)(20)+ (1) ww+(3)we

J; = / {1/22(t)' 2(t) 4 1/2[u ()] }dt

+1/2[x1(3)]?, j=1,2,

where 11(0) = 210 and 2(t) = [z1(2), z2(1)].
In this example, the necessary conditions for existance of
OLS solution are as follows:

:i:l(t) 1 0 0 1 (1)
—h{(t) 10 1 1 -1 —-n}(t)
pi(t) 1 2 -1 0 pi(t)
Pi(t) 2 -1 0 -1 pi(t)
21(0) 10
-nl(0) | _ 0
piT) | | «(T) —n¥(T)
pi(T) a1 (T)

By using eigenvector method, for example, Abou-Kandil
and Bertrand (1985), this two-point boundary value problem
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has a unique solution, where the optimal controls u!(¢) and
u?(t) are

u'(s) =(—3.303 + 10.75e° — .2341e™*°%%* — 2.269¢>°%%)
/(14 35.51e™° + .0704e™*%0% — 7.495¢~%:60%%)

ul(s) =(2.303 — 46.26e™° 4 .1620e™*-%5" 4 9.765¢~3:60%¢)
/(1 +35.51e™° + 070445067 _ 7 495,73-606%)

with s = 3 — ¢t. It should be noted that u!(t) and u?(¢) are
only candidates for OLS strategies which satisfy the necessary
conditions.

VI. Conclusion. This paper discussed OLS strategy
for Stackelberg games characterized by linear continuous-time
singular systems and quadratic cost functionals. By using the
calculus of variations , necessary conditions for the existance
of OLS strategy were given. With the Riccati transforma-
tion, the matrix Riccati differential equation has been derived
from the necessary conditions of the existance of QLS strat-
egy. The results of the paper can be straightforward extended
to multi-level Stackelberg problems. Iu addition, when E is
nonsingular, the singular system will become the state-space
system. So the results of the paper include the corresponding
results of all previous papers.
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