
INFORMATICA, 2002, Vol. 13, No. 2, 133–148 133
 2002 Institute of Mathematics and Informatics, Vilnius

Optimal Control of a Well-Stirred Bioreactor in the
Presence of Stochastic Perturbations

Vadim AZHMYAKOV
Institute of Mathematics and Computer Sciences, Ernst-Moritz-Arndt University of Greifswald

Jahnstr. 15a, D–17487 Greifswald, Germany
e-mail: azmjakow@uni-greifswald.de

Abstract. We study the stochastic model for bioremediation in a bioreactor with ideal mixing. The
dynamics of the examined system is described by stochastic differential equations. We consider an
optimal control problem with quadratic costs functional for the linearized model of a well-stirred
bioreactor. The optimal control is based on the optimal robust state estimates. The approximate
optimal solution is obtained as a linear feedback.
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1. Introduction

The estimation theory and optimal control of stochastic systems are the important tech-
niques of the population modeling (see Clark, 1990; Heinricher et al., 1995; Bernard and
Guy, 1988; Lenhart et al., 2001). In this paper we investigate the problem of computing
the optimal control in a linearized stochastic model based on robust recursive estimates.
We consider a setting of an industrial bioreactor (for example drug production or sewage
treatment) as a controllable process (Bailey and Ollis, 1986; Heinricher et al., (1995);
Dochainand Bastin, 1990).

An bioreactor is a bioremediation system containing bacteria in the presence of a con-
taminant. Assume that bacteria and contaminant are specified by corresponding spatially
uniform concentrations. According to A. Heinricher et al. (1995) we deal with a well-
stirred bioreactor (bioreactor with ideal mixing) described by two ordinary differential
equations

d

dτ
ξ1(τ) = q(u)ξ1(τ) −Dξm1 (τ) a.e. τ ∈ [0, T ], (1)

d

dτ
ξ2(τ) = −Kξ2(τ)ξ1(τ) a.e. τ ∈ [0, T ], (2)

ξ1(0) = ξ01 > 0, ξ2(0) = ξ02 > 0, (3)

where ξ1(τ) ∈ R+ is the concentration of bacteria, ξ2(τ) ∈ R+ is the concentration of
some contaminant, 0 � u(τ) � M, M ∈ R+ is the spatially uniform concentration of
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a nutrient, D, m, K are known positive constants and a.e. means almost everywhere.
The function u(·) plays the role of a control. We have a control process governed by
equations (1) and (2) for 0 < τ < T . By ξ01 and ξ02 we denote here respectively initial
concentrations of bacteria and contaminant. Let q(·) be an increasing function. In the
model (1)–(3) the bacteria growth rate is given by q(u)ξ1. This growth rate results from
the Michaelis–Menton formula for enzyme kinetics (see, for example, Bailey and Ollis,
1986). According to Heinricher et al. (1995) the bacteria death rate is equal toDξm1 . Note
that in the model (1)–(3) the contaminant is not needed for growth.

For the process (1)–(3) the following optimal control problem is examined in Hein-
richer et al. (1995)

minimize J(u) :=
∫ T

0

[Λξα2 (τ) + Ψuγ(τ) − Γξδ1(τ)]dτ (4)

subject to (1)− (3),

where u(·) is the measurable control function such that 0 � u(τ) � M , the constants
Λ,Ψ,Γ, α, δ are nonnegative and γ � 1. The objective functional will combine the
goals of degrading the contaminant, not overusing the nutrient, and maximizing bacte-
rial colony size.

It will readily be seen that we are concerned with the control system (1)–(3). Real
control systems in the bioscience always function under conditions of incomplete infor-
mation. This effect is caused by distinct perturbations in the biosystem. In the case of
well-stirred bioreactor we deal with the disturbances of time-varying concentrations of
bacteria and contaminant. Therefore we extend the model of bioreactor (1)–(3) and intro-
duce the following system of stochastic differential equations

dY (τ) = ã(Y (·), u(τ))dτ + b(τ)dw(τ), (5)

Y (0) = ξ0,

where Y (t) := (Y1(t), Y2(t))′ is the state vector, ã: C([0, T ])×U → R2, and b: [0, T ] →
R

2×2, U := [0,M ]. By w(τ) = (w1(τ), w2(τ))′ we denote here a Wiener process and
ξ0 = (ξ01 , ξ

0
2)

′. The admissible controls u(·) are measurable functions such that 0 �
u(τ) �M . We assume that

ã(Y (·), u(τ)) = ã(Y (τ), u(τ)),

with

ã(Y (τ), u(τ)) =
(
q(u(τ))Y1(τ) −DY m

1 (τ)
−KY2(τ)Y1(τ)

)
.

Let b(·) be a continuous function. The matrix b(τ) has the following structure

b(τ) =
(
b11(τ) 0

0 b22(τ)

)
.
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The equation (5) is considered on the probability space (C([0, T ],B, P )), where P is the
measure appropriate to the stochastic differential equation

dζ(τ) = b(τ)dw(τ).

The (stochastic) state vector Y (τ) = (Y1(τ), Y2(τ))′ is the vector of the concentrations
of bacteria and of contaminant.

It is well known that linearization is an important tool for numerical methods of opti-
mal control. Let q(·) be a continuously differentiable function. Using (5) we evaluate the
linearized model of the bioreactor

dY (τ) = (a1(τ)Y (τ) + a2(τ)u(τ))dt + b(τ)dw(τ), (6)

Y (0) = ξ0, (7)

where

a1(τ) :=
∂

∂Y
ã(ξ∗(τ), u∗(τ)) =

(
q(u∗(τ)) −mD(ξ∗1 )

m−1(τ) 0
−Kξ∗2(τ) −Kξ∗1(τ)

)
,

and

a2(τ) :=
∂

∂u
ã(ξ∗(τ), u∗(τ)) =

(
d
dτ q(u

∗(τ))
0

)
.

The pair (ξ∗(·), u∗(·)), with ξ∗(τ) := (ξ∗1 (τ), ξ
∗
2 (τ))

′, is an optimal solution of the de-
terministic optimal control problem (4) (see Heinricher et al., 1995). The equation (6)
is considered on the same probability space (C([0, T ],B, P ). According to the general
existence results (Liptser and Shiryayev, 1977) we obtain the existence of the unique
continuous solution Y (·) of the equation (6) for every admissible control function u(·).

For the linear model (6)–(7) we formulate the following stochastic optimal control
problem with quadratic costs functional

minimize J(u) =
1
2
E
(∫ T

0

[(Y ′(τ), u(τ))Θ(τ)(Y ′(τ), u(τ))′]dτ
)

(8)

subject to (6)− (7), (9)

where u(·) is the measurable control function such that 0 � u(τ) � M and Θ(τ) ∈
R

3×3. Now we present the following existence theorem.

Theorem 1. Let q(·) be a continuously differentiable function and b(·) be continuous.
Then there exists an optimal solution u(·) of (8)–(9).

The proof is found in Liptser and Shiryayev (1977). The Bellman’s equation for the
problem (8)–(9) may be written as

min
u∈U

[ ∂
∂τ

S(τ, ξ) + 〈a1(τ)ξ + a2(τ)u,
∂

∂ξ
〉S(τ, ξ)
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+
1
2

(
b11(τ)

∂

∂ξ1
+ b22(τ)

∂

∂ξ2

)2

S(τ, ξ) + (ξ′(τ), u(τ)) Θ(τ) (ξ′(τ), u(τ))′
]

where ξ(τ) = (ξ1(τ), ξ2(τ))′ and S(·, ·) is the Bellman function.
The remainder of the paper is organized as follows. In Section 2 we deal with dis-

cretized optimal control problem in presence of non-Gaussian perturbations. In Section 3
we formulate an auxiliary optimization problem for computing an optimal robust estima-
tion and obtain a new minimax robust estimator of the Kalman type. In the fourth Section
we establish the conditional normality of innovations. In the fifth Section we present a
solution of the discrete optimal control problem based on the obtained estimation and on
the Bellman’s optimality principle.

2. Problem Formulation

In this section we introduce a discrete-time approximating problem to the continuous-
time optimal control problem (8)–(9). We consider the approximating problem under
conditions of incomplete information and extend the model under the assumption that the
state vector is observed.

Let N be a sufficiently large positive integer number and ∆τ := T/N be the fixed
step size. We define the equidistant mesh {τ0, ..., τN}

τ0 < ... < τN , τt = t∆τ,

where t = 0, ..., N is the “discrete time”. Denote β̃t := Y (τt), ut := u(τt). Using
Euler-type discretizations one can deduce the approximating state equation

β̃t = F̃tβ̃t−1 + H̃tut + ṽt, (10)

β̃0 = ξ0, t = 1, ..., N, (11)

where F̃t := (I − ∆τa1(τt))−1, H̃t := (I − ∆τa1(τt))−1a2(τt). We assume that
the corresponding matrices are invertible. By ṽt we denote here independent, identically
distributed Gaussian random variables with values in R

2 such that

E(ṽt) = 0, E(ṽtṽ′s) = Q̃tδts, t, s = 1, ..., N ,

ṽt ∼ N (E(ṽt),E(ṽtṽ′s)),

where δts is the Kronecker delta and Q̃ := b2(τt).
In parallel with the state equation (10) we consider the linear observation model for

the state vector β̃ in (10)

ỹt = Z̃tβ̃t + ε̃t, t = 0, ..., N (12)

where Z̃t ∈ R2×2 ∀t = 1, ..., N , and

E(ε̃t) = 0, E(ε̃tε̃′s) = Ṽtδts, t, s = 1, ..., N.



Optimal Control of a Well-Stirred Bioreactor in the Presence of Stochastic Perturbations 137

Moreover, ṽt are to be independent of any ε̃s for s � t and, equally, ε̃t are independent of
any ṽs for s � t. Note that the assumption of linear observations is the characteristically
assumption of the estimation theory. This state-observation model finds wide application
in the practice. Our goal is to estimate the state vector β̃t given observations ỹ1, ..., ỹt.
This estimates are bound to be optimal from the standpoint of robustness. Using the
obtained robust estimate we will solve the following optimal control problem

minimize J :=
1
2
E
[N−1∑

t=0

(β̃′t, ut)Θt(β̃′t, ut)′
]

(13)

subject to (10)− (12), (14)

where Θt := Θ(τt). Given the linear observation equation (12) the discrete optimal con-
trol problem (13)–(14) approximates the original optimal control problem (8)–(9).

3. Optimal Robust Estimation

Now we examine the problem of optimal robust estimation of the state vector more gen-
erally.

For t ∈ N let vt be independent, identically distributed (i.i.d.) random variables with
values in Rp , and, similarly, let εt ∈ Rq be i.i.d.. These vt are to be independent of any
εs for s � t and, equally, εt independent of any vs for s � t. Furthermore, let β0 be
an initial random variable in Rp, independent of any vt, εt. Given some sequences of
matrices Ft ∈ Rp×p and Zt ∈ Rq×p for t ∈ N, we introduce, again for t ∈ N, a discrete
dynamic system as

βt = Ftβt−1 +Htut + vt, (15)

yt = Ztβt + εt, t ∈ N, (16)

where

E(vt) = 0, E(εt) = 0, u0 = 0, E(β0) = a0, E(β0β
′
0) = Q0,

E
(
vt
εt

)
( v′k ε′k ) =

(
Qtδtk 0
0 Vtδtk

)
, k = 1, 2, ...,

and δtk is the Kronecker delta. LetHt ∈ Rp×m. By ut ∈ Rm, t ∈ N we denote a control
vector. The matrices Ft, Zt, Ht, Qt, Vt are supposed to be known. Let us consider the
following optimal control problem

minimize J :=
1
2
E
[N−1∑

t=0

(β′t, u
′
t)
(
At Bt

B′
t Ct

)
(β′t, u

′
t)

′ + β′NPNβN

]
(17)

subject to (15)− (16), (18)
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where PN , At ∈ Rp×p, Bt ∈ Rp×m, Ct ∈ Rm×m. Under the usual assumptions of
normality β0 ∼ N (a0, Q0), vt ∼ N (0, Qt), εt ∼ N (0, Vt), the solution of (17)–(18) is
given in the form of linear feedback (Bryson and Ho, 1975)

u∗t = −k1
tβ

0
t|t, t = 1, ..., N

where k1
t is an amplification factor and β0

t|t := E(βt|y∗t ), y∗t := (y′1, ..., y
′
t)

′ is the
Kalman estimate of the vector βt.

It is well known that Kalman filtering is one of the most important developments of
the linear estimation theory. It is a useful instrument for recursively treating of control-
lable dynamic systems (Anderson and Moore, 1979; Bryson and Ho, 1975; Polyak and
Tsypkin, 1979). The Kalman recursion is widely used for control of discrete stochastic
systems (Bryson and Ho, 1975; Polyak and Tsypkin, 1979; Liptser and Shiryayev, 1977).
The standard Kalman filter is given by the following recursion.

• Initial step:

β0
0|0 = a0, Σ0

0|0 = Q0.

• Prediction:

β0
t|t−1 = Ftβ

0
t−1|t−1 +Htut−1,

Σ0
t|t−1 = FtΣ0

t−1|t−1F
′
t +Qt, t ∈ N

where β0
t|t−1 = E(βt|y∗t−1), Σ

0
t|t−1 = Cov(βt − β0

t|t−1), Σ
0
t|t = Cov(βt − β0

t|t).
• Correction:

β0
t|t = β

0
t|t−1 + M̂t(yt − Ztβ

0
t|t−1),

Σ0
t|t = Σ0

t|t−1 − M̂tZtΣ0
t|t−1,

where M̂t = Σ0
t|t−1Z

′
t[ZtΣ0

t|t−1Z
′
t + Vt]−1.

The Kalman filter assures optimal least-squares estimation of a process only under the
assumption that the random perturbations are Gaussian (Anderson and Moore, 1979). If,
however, the measurement or state errors contain outliers, a Kalman filter estimator may
be quite inaccurate. The corresponding solution of the optimal control problem (17)–(18)
can be ill-defined. Therefore, we use a robust version of the Kalman filter for effective
solving the optimal control problem (17)–(18) in the non-Gaussian case.

Assume that β0 ∼ G0(a0, Q0) and E(β0) = a0, E(β0β
′
0) = Q0, where G0 is a

distribution function of β0. Let

εt ∼ G ∈ P(0,Wt) :=
{
G |

∫
Rq

εtG(dεt) = 0,
∫

Rq

εtε
′
tG(dεt) �Wt <∞

}
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and

vt ∼ G ∈ P(0, Rt) :=
{
G |

∫
Rp

vtG(dvt) = 0,
∫

Rp

vtv
′
tG(dvt) � Rt <∞

}
,

where Wt, Rt are symmetric, positive semi-definite matrices, and G is a distribution of
vector εt or vt. For the sequel let us introduce the expressions

∆βt := βt − βt|t−1, βt|t−1 := E[βt|y∗t−1],

∆yt := yt − E[yt|y∗t−1], t = 1, 2, ...,

and note that ∆β1 = F1(β0 − a0) + v1, ∆yt = Zt∆βt + εt. The random variables
∆βt, t = 1, 2, ... are called innovations. By xt we denote the vector (∆β′t,∆y

′
t)

′ with
covariance matrix

Cov(xt) =
(

Σt|t−1 Σt|t−1Z
′
t

ZtΣt|t−1 ZtΣt|t−1Z
′
t + Vt

)
.

Suppose that Cov(xt) � St <∞, whereSt is a symmetric, positive semi-definite matrix.
Here the purpose is to estimate the state βt given observations y∗t . The corresponding
estimate will be called βt|t. Using this estimate we solve the optimal control problem
(17)–(18). The desired estimate βt|t must be defined as a robust estimate.

A formal definition of robustness can be found in Huber (1981). We assume that the
observed data is contaminated. One of the most frequent types of contaminated data is
ε-contaminated normal data with distribution

G = (1 − ς)N (a, σ) + ςH, 0 � ς � 1,

whereH is a symmetric distribution. Note that the sets P(0,Wt) andP(0, Rt) don’t spec-
ify any topological neighborhood in the space of distributions (Huber, 1971). In practice,
however, contaminated data is often described with help of the sets P(0,Wt), P(0, Rt).
We use the following concept: an estimator is robust if it remains finite as one or more of
the data points become arbitrarily large.

Let

Φ :=
{
gt : Z+ × R

q → R
p
∣∣∣ gt is a measurable function

}
.

Now let us formulate the following auxiliary minimax problem

sup
P(0,St)

E||∆βt − gt(∆yt)∆yt||2 → min
gt∈Φ

!, (19)

P(0, St) :=
{
G |

∫
Rp+q

xtG(dxt) = 0,
∫

Rp+q

xtx
′
tG(dxt) � St <∞

}
,

where G is a distribution of vector xt. We call the function gt(∆yt) ∈ Φ a weight func-
tion. Expression (19) defines a weighted least-squares estimate for ∆βt. If a solution of
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the optimization problem (19) exists then we also can get an estimate βt|t of the vector
βt as a recursive weighted least-squares estimate. We call this estimate the optimal robust
estimate of vector βt. This estimate is a weighted least squares estimate of ∆βt. Note
that the weighted least squares method is one of the most popular algorithms for calculat-
ing robust estimators (Huber, 1981; Cipra and Romera, 1991; Bosov and Pankov, 1992;
Fahrmeir and Kaufmann, 1991; Pupeikis, 1998; Azhmyakov, 2000).

REMARK 1. The classical Kalman filter is the solution of the problem

E||∆β0
t −Mt∆y0t ||2 → min

Mt

!,

Mt ∈ R
p×q, t ∈ N,

under the usual assumptions of normality. The weight function is equal toMt. It is evident
that this problem is analogous to (19).

Let

St :=
(
S11 S12

S21 S22

)
.

We assume that S22 is an invertible matrix. Now we present our main result relative
to the optimal robust estimate.

Theorem 2. Suppose that E(ut|y∗t ) = ut, t ∈ N. The problem (19) has an unique
solution and the optimal robust estimate βt|t of the vector βt is given by the recursions

βt|t = βt|t−1 + g
opt
t (∆yt)∆yt, β0|0 = a0, (20)

βt|t−1 = Ftβt−1|t−1 +Htut, (21)

gopt
t (∆yt) = S12S

−1
22 , t ∈ N. (22)

Proof. First let x0
t ∼ N (0, S0

t ), S
0
t � St, where

S0
t =

(
Σ0

t|t−1 Σ0
t|t−1Z

′
t

ZtΣ0
t|t−1 ZtΣ0

t|t−1Z
′
t + Vt

)
.

Then the following relation

E||∆β0
t − g0t (∆y0t )∆y0t ||2 = min

gt∈Φ
E||∆β0

t − gt(∆y0t )∆y0t ||2

is satisfied, where

g0t (∆y
0
t ) := M̂t = Σ0

t|t−1Z
′
t(ZtΣ0

t|t−1Z
′
t + Vt)−1,

g0t (∆y
0
t )∆y

0
t = E[∆β0

t |y∗t ],
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and g0t ∈ Φ. Let

J(S0
t ) := E||∆β0

t − g0t (∆y0t )∆y0t ||2.

Hence J(S0
t ) = tr(Σ0

t|t). Now we consider a vector xt ∼ G ∈ P(0, St). Then for all

gt ∈ Φ, such that E||gt(∆yt)∆yt||2 <∞ the inequality

sup
P(0,St)

E||∆βt − gt(∆yt)∆yt||2 � E||∆β0
t − gt(∆y0t )∆y0t ||2

� min
gt∈Φ

E||∆β0
t − gt(∆y0t )∆y0t ||2 = E||∆β0

t − g0t (∆y0t )∆y0t ||2 = J(S0
t )

is satisfied. For all S0
t � St we obtain the inequality

min
gt∈Φ

sup
P(0,St)

E||∆βt − gt(∆yt)∆yt||2 (23)

� min
gt∈Φ

E||∆β0
t − gt(∆y0t )∆y0t ||2 = J(S0

t ).

Let us take the matrix S̃0 := argmaxS0
t �St

J(S0
t ) as S0

t . Denote

J̃ := sup
S0

t �St

J(S0
t ),

where

Σ0
t|t � S11 − S12S

−1
22 S21.

Evidently the trace tr(Σ0
t|t) of matrix Σ0

t|t is a non-decreasing function (the matrix Σ0
t|t

is a positive semi-definite matrix). Therefore S̃0 = St and

J̃ = J(St).

Now inequality (23) can be written as

min
gt∈Φ

sup
P(0,St)

E||∆βt − gt(∆yt)∆yt||2 � J̃ , (24)

where

J̃ = tr(Cov(∆β0
t − g̃t(∆y0t )∆y0t )) = tr(S11 − S12S

−1
22 S21),

g̃t(∆y0t ) := S12S
−1
22 .

It is obvious that g̃t ∈ Φ.
For the vector xt ∼ G ∈ P(0, St) with a covariance matrix Cov(xt) � St we get

E||∆βt−g0t (∆yt)∆yt||2 = tr(Σt|t−1−Σt|t−1Z
′
t(ZtΣt|t−1Z

′
t+Vt)ZtΣt|t−1)

= J(S0
t ).
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Hence

sup
P(0,St)

E||∆βt − g0t (∆yt)∆yt||2 = sup
P(0,St)

tr(Σt|t)

= sup
Cov(xt)�St

J(Cov(xt)) = J(St) = J̃ , (25)

and

sup
P(0,St)

tr(Σt|t) = E||∆βt − g̃t(∆yt)∆yt||2. (26)

From (25) and (26) it follows that the inequality

min
gt∈Φ

sup
P(0,St)

E||∆βt − gt(∆yt)∆yt||2

� sup
P(0,St)

E||∆βt − g̃t(∆yt)∆yt||2 = sup
P(0,St)

tr(Σt|t) = J̃ (27)

is satisfied.
From relations (24) and (27) we get the relation (22)

gopt
t = S12S

−1
22 .

The normal equation for (∆βt −gt(∆yt)∆yt) implies the formulae (20) and (21) for βt|t
and βt|t−1. Let β0|0 = β0. The theorem is proved.

COROLLARY 1. The relations for covariance matrices Σt|t−1 := Cov(β−βt|t−1) and
Σt|t := Cov(βt − βt|t) are given by the following recursions

Σt|t−1 = FtΣt−1|t−1F
′
t +Qt, (28)

Σt|t = Σt|t−1−Σt|t−1L
′
t−LtΣt|t−1+LtΣt|t−1L

′
t+S12S

−1
22 VtS

−1
22 S

′
12, (29)

where Σ0|0 = Q0 and Lt := S12S
−1
22 Zt, t ∈ N.

This corollary can be proved by direct calculations.
The formulae (20)–(22) and (28)–(29) define the optimal (in the sense of the problem

(19)) robust estimate of the vector βt. As we can see the estimate βt|t has the structure of
the classical Kalman filter.

4. Some Properties of the Optimal Robust Estimate

In this section we show that the conditional density of the optimal robust estimate (20)–
(22) is a Gaussian density. The obtained estimation has a form of “weighted” recursion

βt|t = βt|t−1 + wt(∆yt)∆yt, β0|0 = a0, (30)
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∆yt := yt − E(yt|y∗t−1) = Zt∆βt + εt, (31)

βt|t−1 = Ftβt−1|t−1 +Htut, (32)

t ∈ N,

where wt(∆yt) = gopt
t (∆yt). Many famous variants of robust Kalman filter have the

same structure of “weighted” recursion (Fahrmeir and Kaufmann, 1991; Bosov and
Pankov, 1992; Cipra and Romera, 1991; Azhmyakov, 2000).

Let {Ω,F , P} be a probability space of the processes yt and ∆yt. By Fyt

t and F∆yt

t

we denote σ-algebras generated by yt and ∆yt respectively.

Lemma 1. For the processes yt and ∆yt defined by formulae (16) and (31) the equality

Fyt

t = F∆yt

t , ∀t > 1

is satisfied.

Proof. By definition we have ∆yt = yt −Ztβt|t−1. The functions βt|t−1 and ∆yt, t > 1
are measurable functions of the vector (y′1, ...y

′
t−1)

′. Hence

F∆yt

t ⊆ Fyt

t , ∀t > 1.

From (30)–(32) it follows that ∀t > 1 the stochastic function

yt = ∆yt + ZtFtβt|t−1

is a Fyt

t -measurable function. Finally we obtain Fyt

t ⊆ F∆yt

t .

Now we consider the following recursions for innovations

∆βt+1 = Ft+1(I − wt(∆yt)Zt)∆βt − Ft+1wt(∆yt)εt + vt+1, t � 0.

Let v1 ∼ N (0, Q1), ε1 ∼ N (0, V1). We assume that there exists a conditional density
function p(∆βt|F∆yt

t ) of the vector ∆βt.

Theorem 3. The conditional density function p(∆βt|F∆yt

t ), t ∈ N is a Gaussian density
function

Proof. The proof is by induction on t.
For t = 1 we obtain

∆β1 = F1(β0 − a0) + v1,
∆y1 = Z1F1(β0 − a0) + Z1v1 + ε1,
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and

(∆β1,∆y1)′∼Np+q

(
0,
(

F1Q0F
′
1+Q1 (F1Q0F

′
1+Q1)Z ′

1

Z1(F1Q0F
′
1+Q1) Z1(F1Q0F

′
1+Q1)Z ′

1+V1

))
.

It follows that

P (∆β1 �χ | F∆y1
1 )

=Np

{
0+(F1Q0F

′
1+Q1)Z ′

1(Z1(F1Q0F
′
1+Q1)Z ′

1+V1)− × (∆y1 − 0),

(F1Q0F
′
1+Q1)−(F1Q0F

′
1+Q1)Z ′

1(Z1(F1Q0F
′
1+Q1)Z ′

1+V1)−

×Z1(F1Q0F
′
1+Q1)

}
,

where χ ∈ R
p.

Let P (∆βs � χ | F∆ys
s ) = Np(ms, γs). We use the Lemma 1 and consider the

following conditional distribution function P (∆βs � χ | Fys
s ) = Np(ms, γs). Then we

have

P (∆βs+1 � χ, ∆ys+1 � ϕ |∆βs, Fys
s ) = N (A,B), ϕ ∈ R

q,

where

A = (c1, c2)′ =
(

Fs+1

Zs+1Fs+1

)
∆βs −

(
Fs+1ws(∆ys)

Zs+1Fs+1ws(∆ys)

)
∆ys

= A1∆βs −A2(∆ys),

c1 ∈ R
p, c2 ∈ R

q,

and the covariance matrix B is equal to

B =
(
Qs+1 0
0 Vs+1

)
.

Note that (∆βs+1 − c1) = vs+1, (∆ys+1 − c2) = εs+1.
Now we consider the characteristic function of the vector (∆′βs+1, ∆′ys+1)′

E(exp(iλ′(∆′βs+1, ∆′ys+1)′)|∆βs,Fys
s )

= exp[iλ′(A1∆βs −A2(∆ys))− 0.5λ′Bλ], λ ∈ R
p+q.

By induction step we obtain

E(exp(iλ′A1∆βs)|Fys
s ) = exp[iλ′A1ms − 0.5λ′A1γsA

′
1λ].

Therefore the relation

E(exp(iλ′(∆′βs+1, ∆′ys+1)′)|Fys
s )

= exp
[
iλ′(A1ms −A2(∆ys))− 0.5λ′(B +A1γsA

′
1)λ
]
,
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and

P (∆βs+1 � χ, ∆ys+1 � ϕ | Fys
s ) = N(A1ms −A2(∆ys), B +A1γsA

′
1),

ϕ ∈ R
q

are satisfied. It follows that the conditional distribution function

P
(
∆βs+1 � χ | Fys+1

s+1

)
is also Gaussian distribution function (Liptser and Shiryayev, 1977).

Thus the innovations∆βt, t = 1, 2, ... are conditionally normal random variables. By
mt and γt, t ∈ N we denote the conditional expectation and the conditional covariance
matrix of the process ∆βt. It is evident that

m1 = (F1Q0F
′
1 +Q1)Z ′

1(Z1(F1Q0F
′
1 +Q1)Z ′

1 + V1)−∆y1,

γ1 = (F1Q0F
′
1 +Q1)

− (F1Q0F
′
1 +Q1)Z ′

1(Z1(F1Q0F
′
1 +Q1)Z ′

1 + V1)−Z1(F1Q0F
′
1 +Q1).

COROLLARY 2. For the parameters mt and γt of the density function p(∆βt|Fyt

t ) the
following relations

mt+1 = (Ft+1 − Ξt+1Zt)mt − Ξt+1∆y0t
+Υt+1(∆yt+1 − Zt+1((Ft+1 − Ξt+1Zt)mt − Ξt+1∆y0t )), (33)

γt+1 = (Ft+1γtF
′
t+1 +Qt+1)−Υt+1Zt+1(Ft+1γtF

′
t+1 +Qt+1), (34)

Υt+1 = (Ft+1γtF
′
t+1 +Qt+1)Z ′

t+1 × [Zt+1(Ft+1γtFt+1 +Qt+1)Z ′
t+1 + Vt+1]−,

Ξt+1 := Ft+1wt(∆yt), t ∈ N

are satisfied.

Proof. We have

mt+1 = E(∆βt+1|Fyt

t ) + Υt+1(∆yt+1 − E(∆yt+1|Fyt

t )),

γt+1 = d1 −Υt+1d2,

where

d1 := Cov(∆βt+1|Fyt

t ),

d2 := Cov(∆yt+1,∆βt+1|Fyt

t ),

and

Υt+1 = Cov(∆βt+1,∆yt+1|Fyt

t )Cov(∆yt+1|Fyt

t )−.
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Thus we obtain the formula

mt+1 = (Ft+1 − Ξt+1Zt)mt − Ξt+1∆y0t
+Υt+1(∆yt+1 − Zt+1((Ft+1 − Ξt+1Zt)mt − Ξt+1∆y0t )),

t ∈ N.

For the vectors ∆βt and ∆yt the following relations

∆βt+1 − E(∆βt+1|Fyt

t ) = Ft+1(∆βt −mt) + vt+1,

∆yt+1 − E(∆yt+1|Fyt

t ) = Zt+1Ft+1(∆βt −mt) + Zt+1vt+1 + εt+1,

are satisfied.
Now we calculate the covariance matrices d1 and d2

d1 = Ft+1γtF
′
t+1 +Qt+1,

d2 = Zt+1(Ft+1γtF
′
t+1 +Qt+1),

Υt+1 = d′2(Zt+1(Ft+1γtF
′
t+1 +Qt+1)Z ′

t+1 + Vt+1)−,

and at last we obtain the formulae (33)–(34).

The conditionally normality of the vectors ∆βt makes possible more detailed investi-
gation of the robust estimate (20)–(22).

5. Optimal Linear Feedback

For solving the optimal control problems (17)–(18) and (13)–(14) for t = 1, ..., N we
use the optimal robust estimate given by formulae (20)–(22). First let us consider the
problem (17)–(18). We construct the optimal control ut as a linear function of the vector
βt|t (linear feedback) (Bryson and Ho, 1975) namely

u∗t = −k2
tβt|t, t = 1, ..., N, (35)

where the matrix k2
t is equal to

k2
t = (H ′

tPt+1Ht + Ct)−1(H ′
tPt+1Ft +B′

t), (36)

Pt = F ′
tPt+1Ft − (k2

t )
′(Ct +H ′

tPt+1Ht)k2
t +At. (37)

The matrix PN is given. The optimal robust estimate (20)–(22) has the structure of the
classical Kalman filter. Therefore using the optimality principle of Bellman one can prove
(Bryson and Ho, 1975) that the optimal control function has the form of the linear feed-
back (35).

The formulae for the optimal robust estimate (20)–(22), the recursions for covariance
matrices (28)–(29) and relations (36)–(37) completely determine the solution (35) of the
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problem (17)–(18). This solution is robust with respect to stochastic perturbations (out-
liers). It is evident that the condition E(ut|y∗t ) = ut, t = 1, 2, ..., N of the Theorem 2 is
also satisfied.

The covariance matrix Σt|t−1 satisfies the algebraic Riccati equation (Anderson and
Moore, 1979)

Σt+1|t = Ft(Σt|t−1 − Σt|t−1Z
′
t[ZtΣt|t−1Z

′
t + Vt]−1ZtΣt|t−1)F ′

t +Qt.

Now we use the presented theory of the optimal robust estimation in the discrete
optimal control problem of a bioreactor (13)–(14). Consider the model (10)–(12). It was
assumed that

ε̃t ∼ G ∈ P(0,Wt) :=
{
G |

∫
R2
ε̃tG(dε̃t) = 0,

∫
R2
ε̃tε̃

′
tG(dε̃t) �Wt <∞

}
,

and

ṽt ∼ G ∈ P(0, Rt) :=
{
G |

∫
R2
ṽtG(dṽt) = 0,

∫
R2
ṽtṽ

′
tG(dṽt) � Rt <∞

}
.

For the problem (13)–(14) we have PN ≡ 0 and

F̃t := (I −∆τa1(τt))−1, H̃t := (I −∆τa1(τt))−1a2(τt).

Let

Θt =


 θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33


 .

The optimal solution uopt
t of the approximating problem (13)–(14) is given by follow-

ing relations

uopt
t = −k3

t β̃t|t, t = 1, ..., N , (38)

k3
t =

H̃ ′
tPt+1F̃t + (θ31, θ32)
H̃ ′

tPt+1H̃t + θ33
, (39)

Pt = F̃ ′
tPt+1Ft − (k3

t )
′(θ33 + H̃ ′

tPt+1H̃)k3
t + Ãt, (40)

PN = 0, (41)

where

Ãt :=
(
θ11 θ12
θ21 θ22

)
.

The vector β̃t|t is defined by the recursions (20)–(22) and (28)–(29). These recursions
and the formulae (38)–(41) completely define the optimal solution of the discrete optimal
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control problem (13)–(14). The solution of the optimal control problem problem (13)–
(14) is given by linear feedback (38).
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Optimalus gerai maišomo bioreaktoriaus valdymas esant
stochastiniams trikdžiams
Vadim AZHMYAKOV

Straipsnyje nagrinėjamas biomediacijos bioreaktoriuje matematinis modelis esant idealiam
medžiag ↪u maišymuisi. Tiriamos sistemos dinamika yra aprašoma stochastinėmis diferencialinėmis
lygtimis. Sprendžiamas optimalaus valdymo uždavinys su kvadratine tikslo funkcija naudojant
gerai maišomo bioreaktoriaus linearizuot ↪a model ↪i. Optimalus valdymas grindžiamas optimaliais
robastiniais būklės ↪iverčiais. Apytikris sprendinys gaunamas kaip tiesinis gr ↪ižtamasis ryšys.


