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Abstract. In this paper, we analyze the abstractions used for developing component-based domain
generators. These include programming paradigms, programming languages, component models,
and generator architecture models. On the basis of the analysis, we present a unified relationship
model between the domain content, technological factors (structuring, composition, and general-
ization), and domain architecture. We argue that this model is manifested in the known software
generator models, too.
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1. Introduction

Software components are building blocks to make up a complex system. The composition
of a system from components is a fundamental issue of any design. The component-based
approach serves for achieving better quality and higher productivity. It is widely believed
that reusability is a key for improving productivity and quality. In this context, Szypersky
evaluates the component-based approach as the “law of nature” that resides in any ma-
ture engineering discipline (Szypersky, 1998). The component-based and generative ap-
proaches are two main directions in “technological” reuse. In recent years these directions
became much closer to each other than they were, say, ten years ago. The explanation is
simple – the researchers and practitioners have clearly understood that software gener-
ation should be built on the sound and proven model, i.e., on the concept of a library
component. The increasing stream of publications continues to appear on these topics.
There are not only the interesting generator models but their implementations in indus-
try settings, too. The known contributions differ from each other in many technological
aspects, however, they have as well many in common from the conceptual point of view.

The aim of this paper is to analyze the generative approach and different abstractions
most frequently used (templates, generics, meta-programming, scripting, etc.) with the
intention to build a unified “relationship model” between the abstractions and domain
content (domain architecture) when implementing generic components and generators.
We hope that such a model might (1) contribute to the better understanding of existing
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generator models; (2) clarify the process of designing software generators; and (3) en-
courage further research in this area.

The structure of the paper is as follows. In Section 2, we present the backgrounds for
the analysis. In Section 3, we analyze the abstractions including programming paradigms,
languages and architecture models. In Section 4, we discuss the basis of the proposed
model. In Section 5, we deliver the relationship model between domain content, techno-
logical factors and domain architecture. The evaluation of the generator models is pre-
sented in Section 6. Finally, in Section 7, we present the discussion and conclusions.

2. The Background for the Analysis

The development of complex systems, such as software generators, is a major problem
in software engineering. The usual way to managing complexity is to apply the principle
of separation of concerns. Although Dijkstra has coined the concept in the 1960’s, up
to recently it was used mostly at the component level, i.e., to reduce the complexity of
algorithms by dividing the problem into several smaller ones, and implementing them
separately. The most evident result of employing this “multi-component design” strategy
is the usage of component libraries. However, since these times the complexity of de-
veloped systems has grown significantly, thus the complexity problem should to be dealt
with at a higher level of abstraction.

The authors (Coste et al., 1999; Jerraya et al., 1999) have proposed a concept of
multi-language design. They argue that the usage of the different languages that are more
suitable and efficient for the specification of the subsystem of a large system is inevitable
when the system has to be designed by separate groups that are using different design
methods, languages and tools. The multi-language specification of a system implements
the principle of separation of concerns at the level of programming languages. The ad-
vantage of using the domain-specific language (DSL) that is oriented at the solution of a
particular sub-problem is evident. However, not all problems can be addressed and solved
at the language level. Some problems (e.g., generalization) can be effectively dealt with
only if a different programming paradigm was employed.

The authors (Horspool et al., 1993; Spinellis, 1994; Coplien, 2000) consider the con-
cept of multi-paradigm design. It supports the software development based on several
design paradigms simultaneously. The multi-paradigm design is not only focused on the
problem domain, but on the solution domain, too. The goal of the analysis of the solution
domain is to find software abstractions and programming technologies that naturally ex-
press the domain knowledge gained by analyzing the problem domain. The result of such
an analysis is the model of the designed system that bridges over the different component
models, programming languages and programming paradigms. We accept the principles
of the multi-paradigm design as a background for analysis we present below.
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3. Review and Analysis of Generative Abstractions and Models

3.1. Programming Paradigms

We argue that three distinct programming paradigms could be used for implementing
generators and their components. These are: (1) algorithmic or object-oriented program-
ming – components are implemented as structures (functions, procedures, objects) which
encapsulate specific code fragments; (2) meta-programming – components are imple-
mented as meta-programs, which generate specific component instances; and (3) script-
ing – components are implemented as black-box entities, which are glued together using
a scripting language. The paradigms may be used separately or combined together when
implementing generators. Below we present the overview of those paradigms.

Object-oriented programming (OOP) has yielded a major advance in software engi-
neering. Its main concepts (encapsulation, inheritance, polymorphism) have contributed
greatly to the extensibility, adaptability and reusability of components (the role of OOP
for reuse has been evaluated in (Edwards, 1999)). The main advantages of OOP can be
summarized as follows: (1) encapsulation supports an abstraction and provides better
management of complexity; (2) inheritance allows extending and modifying objects; and
(3) polymorphism provides means for an alternative implementation of components.

Additionally, a great number of design patterns (Gamma et al., 1995) were estab-
lished, which (1) help to reuse patterns of interaction between objects; and (2) support
the creation of OO frameworks. Design patterns provide reusable solutions for families of
applications instead of developing single applications from scratch, and are widely used
in a number of generators (e.g., see (Budinsky et al., 1996)), especially in the graphical
user interface (GUI) generators.

However, OOP does not provide adequate means for generalization in the broad sense.
According to Sametinger (Sametinger, 1997), OOP supports generalization by narrow-
ing only. Other generalization forms, such as widening, can be implemented using meta-
programming techniques. OOP does not address the issue of composition adequately, too.
According to Nierstrasz and Meijler (Nierstrasz et al., 1995) OOP (1) fails to clearly
distinguish the computational and compositional views of applications; and (2) over-
emphasizes the object view, thus failing to provide general component specification and
composition mechanisms. These problems can be solved using the scripting technology.

Meta-programming is a programming technique that enables a manipulation with
other program structures. To distinguish between different program layers, a lower layer
of abstraction is denoted as a target language (TL), and a higher layer of abstraction – as
a meta-language. In linguistics, a meta-language is defined as follows: “any language or
symbolic system used to discuss, describe, or analyze another language or symbolic sys-
tem” (Czarnecki et al., 1998). A program that manipulates another program is clearly an
instance of meta-programming, and is called a meta-program. According to Batory (Ba-
tory, 1998), a meta-program is “a program that generates the source of the application
... by composing pre-written code fragments”. In other words, a meta-program is a set
of instructions, descriptions, and means of control (possibly generation) of sets of target
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programs. Meta-programs may be written using the same programming principles and
constructs (if, case, for loop) as target programs, however, they manipulate on program
representations, not on data.

As separate cases of meta-programming can be considered: (1) Generative Program-
ming; and (2) Aspect-Oriented Programming. Further, we consider them in some detail.

Generative Programming (GP) is a program development approach for generating
customized components and systems (Eisenecker, 1997; Czarnecki et al., 2000). GP is
based on the central themes of domain engineering and meta-programming. The focus
is on automating the mapping between the problem and solution domains given by an
established architecture. GP aims to (1) decrease the conceptual gap between domain
concepts and program code; (2) to achieve higher component reusability and adaptability;
(3) to simplify managing of component variants; and (4) to increase efficiency.

To achieve the prescribed aims GP uses the following techniques: parameterization,
separation of concerns, DSL techniques, and configuration knowledge. The parameteriza-
tion increases reusability by providing parameterized components, which can be instan-
tiated for different choices of parameters. The principle of separation of concerns sepa-
rates each domain problem into a distinct generic component or sets of components used
to generate target program. The DSL techniques allow achieving domain-specific opti-
mizations and better code understandability. The configuration knowledge allows captur-
ing a specific information about the parameter dependencies, default settings and illegal
combinations. The concepts of GP are implemented in Active Libraries, which extend
conventional component libraries by providing (1) domain-specific abstractions with au-
tomatic means of producing optimized program code; and (2) debugging, profiling and
testing capabilities.

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) is a way of modulariz-
ing features that cut across the traditional modular partitions. The common considerations
like performance and reliability usually manifest themselves in code fragments scattered
about a system. AOP decomposes domain problems into components and aspects. The
structure of the AOP-based specification of an application is a typical example of a multi-
language specification. A component is understood as a generalized procedure (i.e., func-
tion or object) implemented using the component (i.e., target) language. An aspect is a
property of the component that affects its performance or semantics in a systematical
way, and is implemented using the aspect (i.e., meta-) language(s). Components and
aspects are woven (i.e., joined) together (using a compiler or pre-processor) to obtain
a system implementation that contains tangled code, i.e., mixed code from components
and aspects. AOP is still in the early stages of development now, and is more focused on
conceptual issues. Authors estimate themselves that AOP is 20 years behind OOP.

The main idea of the scripting technology is that an application developer only has to
write a small amount of wiring code in order to establish a connection between compo-
nents. It can take various forms, depending on the nature and granularity of the compo-
nents, the nature and framework of the problem domain, and the composition model.

Ousterhout (1998) claims that scripting languages represent a different style of pro-
gramming than system programming languages. They are intended neither for writing



Relationship Model of Abstractions Used for Developing Domain Generators 115

applications from scratch nor for implementing complex algorithms or data structures.
Instead, the scripting languages assume a collection of existing components and are in-
tended for plugging these components together. Therefore, they are sometimes referred
to as glue languages or system integration languages. Ousterhout defines the term script-
ing language as follows: “Scripting languages are designed for gluing applications. They
provide a higher level of programming than assembly or system programming languages,
much weaker typing than system programming languages, and an interpreted develop-
ment environment”.

According to (Schneider et al., 1999), scripting can be considered as a higher-level
binding technology for component-based systems, which denotes abstractions for con-
necting components. The components implement the provided functionality behind a
standard interface, and generally represent the stable parts of applications, whereas
scripts plug components together, and represent the variable parts of applications. Script-
ing has proven very successful in rapid development of GUIs and in component frame-
works, i.e., areas closely related to software generators. Next, we consider programming
languages, which implement the concepts of programming paradigms in practice.

3.2. Languages Used for Developing Program Generators

A high-level language is the main abstraction for expressing the domain content and
coding components and generators. Some languages (e.g., Ada, VHDL, C++) provide a
meta-programming mechanism, called generics (or templates, in case of C++), for writ-
ing parameterized components (Musser et al., 1994). We analyze and compare the VHDL
(IEEE Std. 1076, 1996) and C++ capabilities for expressing composition and generaliza-
tion of components below.

VHDL provides generics for writing parameterized models. The generic component
specification represents a set of possible component implementations or instantiations.
A particular instance is generated when instance-specific data is passed into a generic
component. The use of generics for parameterisation of a structure and behaviour is es-
sential for design reuse-applications, and helps to create reusable design blocks. VHDL
provides the generate statement for generating repetitive structures. These are the con-
current VHDL constructs that may contain further concurrent statements for replication,
and help to effectively produce iterative structures of a design. The repetitive form of the
generate statement specifies a discrete range of values, and for each of these it generates
an instance of the statements in the body of the generate statement. The conditional form
includes a Boolean expression, which governs whether the statements comprising the
body of that generate statement are included. The generics provide a level of abstraction
that allows isolating many implementation details when developing a software system as
well as reduce the risk of introducing errors when components are reused. Additionally,
VHDL supports the structural composition capabilities to compose a system from compo-
nents (the port map statement). These features of VHDL allow to reuse hardware designs
(Meiyappan et al., 1999) and build circuit generators for adders, multipliers, DSP func-
tions, decoders etc., see (Stohmann et al., 1996; Stohmann et al., 1997; Zimmermann,
1997).
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We consider the C++ capabilities for generalization and composition from the view-
point of meta-programming as they are presented in (Veldhuizen, 1995). Templates were
designed to support generic programming, but unintentionally provided the ability to
write code generators and perform static computations. The template specifies only a
generic skeleton for a class (or function) declaration. To complete the declaration, a pro-
grammer must supply a concrete value for each of the template’s parameters. These pa-
rameters must be known at compile time. This causes the template to be instantiated: re-
placing all occurrences of the parameter with its value creates an instance of the template.
The composition is performed using the syntactic expansion. C++ templates resemble a
two-level language, where a “meta-programming sub-language” (i.e., templates) manip-
ulates the base code. Control structures (e.g., if/else, for) can be realized in templates
using a template recursion as a looping construct, and a class template specialization as
a conditional construct. However, the syntax for writing such structures is very clumsy.
The technique of template meta-programming has proven useful in template libraries
(e.g., STL, MTL, Blitz++, see (Veldhuizen, 1995), which provide optimized linear op-
erations for small, fixed-size vectors and matrices, as well as system C++ for hardware
design).

We conclude that both languages (VHDL and C++) have higher- and lower-level
structures that allow expressing a generalization when designing components. In general,
these structures can be treated as the meta-programming ones. VHDL has capabilities for
structural composition, too. No matter how strongly the standard languages support meta-
programming, one-language paradigm is not flexible enough. Next, we analyze the evo-
lution of the meta-programming concept and the implementation of the multi-language
paradigm in known generator models.

3.3. Implementation of Multi-Language Paradigm in Known Generator Models

We consider Bassett’s frame technology, Batory’s GenVoca model and our approach be-
low.

Frame technology (Bassett, 1997) is a generative technique for adapting the target
program source code using a pure lexical manipulation. It fragments the programs into
generic components called frames. A frame is a text written in any target language.
Frames are organized into a frame hierarchy and form a generic architecture, from which
programs incorporating specific variants can be produced. The topmost frame in a frame
hierarchy, called a specification frame, specifies how to adapt the rest of the frame hierar-
chy to the requirements of a given variant. Frames can be adapted to meet requirements
of a specific system by modifying frame code at breakpoints. Each frame can reference
lower level frames in the hierarchy, and also inherit default behavior and parameters from
higher level frames. Each frame contains either frame commands or generic text, i.e., text
that may contain embedded parameters. The frame commands, in combination, can add,
modify, delete, instantiate, select, and iterate any details of sub-frames down to individual
symbols. A frame processor customizes a frame hierarchy according to directives written
in the specification frame and assembles the customized system. The adaptable frames
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enable most complexity to be hidden, making sophisticated systems easier to design and
easier to adapt to changing needs. Despite their simplicity, frames have been used with
a great success to create programs of the significant size in the commercial information
systems design.

The GenVoca model (Batory, 1997; Batory et al., 1997) is a component-based reuse
strategy in which the components play the role of layers of abstraction in the program
construction process. Each layer encapsulates a pure abstraction or domain feature. The
assembly of layers causes the generation of large-grained components, which are then fur-
ther composed into the target application. The layer (called realm) is an abstract domain
entity that exposes a standard interface and allows many different implementations, called
components. In GenVoca, a component is the basic unit of software system and construc-
tion. It is a suite of interrelated variables, functions and classes that work together as a
unit to implement a particular feature of a software system for a given problem domain. A
realm is a library of plug-compatible components. A realm is defined by a standardized
interface that consists of functions and classes. All components of a realm inherit this
interface and may specialize it by adding data and function members to existing classes,
and by adding new variables, functions and classes. Realms and components are imple-
mented using special language P++, which is an extension of C++, and offers syntactic
constructs for component abstraction, encapsulation, parameterization and inheritance.
The GenVoca model uses two parameterization types: the horizontal one, where realms
can be parameterized with other realms, data types and constants; and the vertical one,
which specifies the components in lower layers. The horizontal parameterization allows
the instantiations of components, whereas the vertical parameterization allows the com-
position of components. The composition is performed by the syntactic expansion of the
parameterized components. A P++ preprocessor assembles target systems from the spec-
ifications of components and compositions of layers.

Our approach uses both the one- and multi-language paradigms for building generic
components and generators (Štuikys et al., 2001a). By one-language paradigm we mean
the exploration and usage of the VHDL capabilities only. By multi-language paradigm
we mean the usage of two independent languages simultaneously, i.e., VHDL as a TL
and Open PROMOL as a scripting language (SL). We use the TL for transferring domain
content and the SL for achieving generalization. By introducing the SL, we seek the
following aims: (1) To gain higher flexibility in VHDL-based generic component designs.
(2) To support the design platform independent from a hardware design language (Štuikys
et al., 2000a, Štuikys et al., 2001b). And (3) to extend the generative approach with
program transformations, such as program specialization (Štuikys et al., 2000b).

We categorize components either as instances or generic components (GCs). An in-
stance implements the concrete functionality, whereas a GC is a generalization of “sim-
ilar” instances, and implements a variety of the related functionality. The generalization
is important for several reasons as stated below. We can reduce the size of reuse libraries
significantly, because a GC may represent a family of instances. The generalization in-
creases reusability of the component significantly because a GC may be customized in
the different contexts of its usage. The instances can be either instantiated or generated
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from the GCs automatically. Finally, for implementing system generators, the Intellectual
Property providers or tool designers can use a reuse library containing the GCs.

We use the three-layered GC models based on the monolithic (M-), hierarchical
(H-) and generative (G-) architectures (Štuikys et al., 2001a). The M-architecture mostly
deals with generalization of the fine-grained stand-alone components, H-architecture –
with composition of the coarse-grained components, and G-architecture – with automatic
generation of large-scale systems composed of M- & H-architecture GCs. What is impor-
tant to note is that we use the models in both paradigms (i.e., the one- and multi-language
ones).

Next, we discuss the basis for the relationship model between the domain content,
programming abstractions and generator architectures.

4. The Background for the Relationship Model

Software generation is a process of creation of a target system from a high-level specifi-
cation (Thibauld et al., 1997). Both, a high level specification and a target system express
the same domain content, though in a different form and manner. An act of generation
does not change the content of a target system, because it already potentially exists in
a system specification. The process of generation only actualizes a system by changing
the form of its content. In fact, a software generation is only a partial case of software
transformation and a transformation as a whole.

The problem of transformation is a long-standing issue in the history of science. Aris-
totle noticed two types of transformation in his Metaphysics: (1) accidental (e.g., water
turns into ice; compare to “a program is compiled to an executable code”); and (2) sub-
stantial (e.g., wood burns to coal; compare to “a program in a hardware description lan-
guage is synthesized to produce a chip”). In each case, there is a passive substratum, a
matter (hyle), which is a constant basic foundation of every changing substance. How-
ever, a matter is only an abstract representation of all things. To become an object, it
needs to be formed, i.e., to take a concrete form (morphé), which reveals the particular
features of a matter pertaining to that object.

A program transformation is a meaning preserving mapping defined on a program-
ming language (Paige, 1997). It is used for the derivation of programs from the formal
specifications or old program versions in a semantics preserving way. What changes dur-
ing the program transformation is the syntax of a program, but its semantics remains the
same. In other words, a program transformation is a transformation defined on a program-
ming language domain. The semantics of a language is a matter of program transforma-
tion, and the syntax is a form of it. Program transformation tools, such as compilers or
processors, work on the same principles as software generators, though the conceptual
gap between input and output they bridge is much narrower than in generators.

Returning to software generators, Aristotle’s matter can easily be recognized in a do-
main. Indeed, a domain contains abstractly all physical phenomena and concepts that
pertain to it, without giving the concrete details of implementation (e.g., circuit design
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domain contains a concept of gate, whose behavior can be described by Boolean func-
tions). A domain content takes a particular form when some technology is introduced.
This technology can be understood as hardware (e.g., chip) or software (e.g., program)
that implements a domain entity and evidently manifests its structure and behavior (in
this paper we discuss the software technology only). However, the domain content and
software technology are not enough to build a domain generator, as well as a matter and
a form are not enough to make an object. What are putting a matter and a form together
are the rules of formation or organization (aka in-formation), i.e., the principles of apply-
ing a form to a matter, the most common representation of which are the laws of nature.
Accordingly, a software generator needs an organizational medium, which determines
“the rules of engagement” for the technological factors. We call this medium the domain
architecture.

Before any system could be build, first, the domain must be analyzed (we do not con-
sider Domain Analysis (DA) here). The result of DA is domain knowledge. This domain
knowledge is always limited and only partially corresponds to the domain content. This is
due to the limitations of human understanding, imperfection of DA methods, and limited
time of analysis. Furthermore, this knowledge is not organized and, therefore, can not be
used “as is”. In other words, domain knowledge can be used only if it becomes domain
information. The knowledge must be formatted (i.e., classified, organized) in order it to
become a domain information. This is achieved by applying the rules of organization.
The gaining of information is the continuous process: the more domain information is
extracted from the domain content and recognized, the better we comprehend the do-
main itself, and vice versa. Domain information is the hierarchically organized set of the
interrelated domain concepts. We consider domain architecture as an expression of the
domain information in terms of software engineering.

Domain architecture is the heart of a domain generator. It describes and implements
a complete set of actions, which lead from a specification of a domain problem to an
implementation of a target system. Perry and Wolf (Perry et al., 1992) define a software
architecture as a combination of elements, form and rationale: ‘‘A software architecture
is a set of architectural (design) elements that have a particular form. Properties con-
strain the choice of architectural elements, whereas rationale captures the motivation
for the choice of elements and form”. We argue that generator architecture is a particu-
lar combination (actually synthesis) of domain content (“design elements”), underlying
software technology (“form”) and domain architecture (“rationale”) that maps domain
content onto software.

Summarizing, we present the different viewpoints to program generators below:

• a generator implements “the product-line architectures” (Batory, 1998);

• a generator “creates derived components and various relationships from languages
and templates” (Jacobson et al., 1997);

• a generator is “a higher-level automatic builder that hides the manual interconnec-
tion of components using a problem-oriented language, template or option filter, or
a visual environment” (Lim, 1998);
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• generators are “compilers for domain-specific languages” (Villarreal et al., 1997;
Deursen et al., 1999).

This spectrum of opinions is another reason for seeking to find a unified relationship
model between these concepts we present in Section 5.

5. The Relationship Model

The main idea for implementing reuse is that the domain content and technological fac-
tors should be considered as interrelated concepts. Biggerstaff (1998) describes this rela-
tionship stating that “the first order term in the success equation of reuse is the amount
of domain-specific content and the second order term is the specific technology chosen in
which to express this content”. We usually express the amount of domain content through
the domain architecture. We assume that we receive the domain content (or domain ar-
tifacts) through DA. By the domain content, we conceive the physical domain objects
(entities), their features and relationships (between objects as well as features). For ex-
ample, for a concrete domain, such as hardware design, the domain content consists of the
following items: transistors, gates, flip-flops, etc., and their connections (signals), which
are combined together accordingly to appropriate rules into a higher-level physical sys-
tem with specific characteristics.

Our standpoint is that a relationship between the domain architecture and technolog-
ical factors can be presented in the four-dimensional space as a 4D model (Fig. 1). We
assume that the domain content is independent from the introduced abstractions. This
model should be interpreted as follows. Each constituent part of the model (structuring,

Fig. 1. The 4D relationship model between domain content, technological factors and architecture.
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generalization, composition, and architecture) can be analyzed with respect to the differ-
ent aspects. According to our model, the domain knowledge must be projected or mapped
from domain content onto the domain architecture. To accomplish such mapping proce-
dure, we need to pass through three abstraction layers (technological factors, which are
represented as a middle cube). We can conceive that the axes of the hypercube (see Fig. 1)
represent this mapping procedure. We represent architecture by the faces of the external
cube. This can be interpreted as the fact that architecture itself may have various views.
This standpoint is approximately the same as presented by D’Souza and Wills (D’Souza
et al., 1999, see Table 12.1, 484 p.).

Software technology can be characterized by a number of technological factors,
which play a fundamental role in developing software. These factors reflect a particu-
lar aspect of software developing process. The well-known examples include reuse, op-
timization, integration, encapsulation, separation of concerns, adaptation, parameteriza-
tion, etc. We argue that all technological factors can be divided into three main categories:
structuring, composition, and generalization (see Fig. 2).

Structuring in this paper is understood as a process of dividing a particular integral
concept into a hierarchy of interrelated structures (abstractions), which express impor-
tant properties of that concept from different points of view. Structuring, in particular,
deals with structural issues in software engineering, such as abstraction, integration, en-
capsulation, etc. It plays two roles: (1) conceptually – it represents a complex internal
structure of a domain content as a hierarchy of interrelated abstractions; and (2) opera-
tionally – it paves the way for the creation of tools that work with these abstractions. As
a result of structuring an abstract idea of domain content takes a concrete shape of com-
ponent models, programming languages and programming paradigms, which are used
for expressing this domain content. These structures are not accidental, but reflect the

Fig. 2. Relationship model between structuring, generalization and composition.
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up-to-date achievements in software engineering (multi-design paradigm).
At the lowest hierarchical layer of component models, a notion of component instance

is introduced. A component instance is a direct representation of a domain entity in a
symbolic (i.e., linguistic) form. In other words, a component is a consciously created
symbol, which concretizes an abstract entity it represents. This symbolization of a domain
content (1) represents a domain reality, though in a depleted way, in a concrete human-
readable form; and (2) allows defining actions to be performed over it (i.e., the context
of usage). Each component has a particular internal structure and implements a specific
behavior.

In order to be understandable, all components, which represent entities of the same
domain, are usually described at a higher layer of programming languages. The language,
used for describing functionality of domain entities, is usually a DSL (e.g., VHDL for
hardware design domain). Programming languages have two roles: (1) they introduce a
standard set of symbols (the syntax of the language) and actions associated with these
symbols (the semantics of the language) that unambiguously express a domain content;
and (2) they allow creating tools (e.g, compilers, processors) that interpret these sets of
symbols.

The process of programming, i.e., using a programming language to develop com-
ponents which represent domain entities, is a sophisticated and error-prone process. In
order to simplify and automate it, the methods of programming (i.e., algorithms, design
patterns) are introduced at a higher layer of programming paradigms. These methods
(1) extract and encapsulate common methods of solution of particular problems; and (2)
allow creating tools (e.g., generators) that automate the process of programming.

We understand composition as a process of constructing a particular item from a col-
lection of the lower-level items. There are two types of composition: (1) physical com-
position, where the code of composed components is actually glued together; and (2)
logical composition, where the composed components communicate between themselves
through some kind of ports, communication channels or connectors. The level of com-
position can be expressed by a number of lower-level items a higher-level item is com-
posed of. The composition allows (1) to represent the system of hierarchical relations
that link domain entities; and (2) to reuse the existing component instances in a target
system. The role of composition is clearly seen at the component model layer, where
a component library can be composed of generic components or component instances.
Accordingly, scripting languages describe the syntax and semantics of composition, and
scripting paradigm describes the rules and methods for implementing composition.

The generalization is a process of unifying similar items into a single item, which
encapsulates their similarities and differences. The process differs from composition, be-
cause no new functionality is created, instead any of the involved parts can be derived at
any time. Generalization is closely related to parameterization. In fact, parameterization
is a part of generalization process, and constitutes of finding variable aspects of “look-
alike” components, which are represented as generic parameters in the generic compo-
nents’ interface. The level of generalization can be naturally expressed by a number of
generic parameters. Generalization allows (1) to encapsulate related domain concepts



Relationship Model of Abstractions Used for Developing Domain Generators 123

thus simplifying, both quantitatively and qualitatively, the design space; and (2) to reduce
the size and improve the structure of the component libraries. Generalization, according
to Sametinger (1997), can be performed using 4 techniques: (1) widening, (2) narrowing,
(3) isolating, and (4) configuring component functionality. The result of generalization at
a component model layer is a generic component, which represents in a compact way a
set of “look-alike” component instances. Accordingly, meta-languages describe the syn-
tax and semantics of generalization, and meta-programming paradigm defines the rules
and methods for implementing generalization.

Programming languages are mapped onto three component models: the component
instance, generic component, and component library ones. An instance implements the
functionality of a single domain entity using an algorithmic language. A generic com-
ponent encapsulates the similar functionality of the family of domain entities using al-
gorithmic & meta-languages. A library encompasses a collection of generic components
covering the entire domain using algorithmic & meta- & scripting languages.

Finally, in Fig. 3 we present the “content-knowledge-architecture” relationship as a
part of the 4D model. We assume that the domain knowledge should be captured through
DA.

All parts of the model express the domain knowledge, in one way or another. The
component model captures the semantics of a domain. The syntax of a domain is reflected
in the programming language. The patterns and algorithms of the domain phenomena and
relationship between domain entities are established at the programming paradigm level.
The concepts of a programming paradigm are implemented by a programming language,
which describes the behavior of a component. The design solutions at the structural level
are tightly coupled with overall domain architecture by the rules of organization.

Next, we evaluate the proposed model with respect to the known generative ap-
proaches.

Fig. 3. Other view to the “content-knowledge-architecture” relationship model.
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6. Evaluation of the Generator Models

Though the analyzed generative approaches are employed in considerably different do-
mains (Bassett’s approach – for information systems design; Batory’s – networking,
database applications, etc.; ours – hardware design), they reveal a great deal of simi-
larity, which is reflected in the proposed 4D model. All approaches (see Table 1) use a
hierarchical structure (Bassett’s hierarchy of frames; Batory’s layers of abstraction; ours
H-architecture) which naturally expresses the complexity of the underlying domain con-
tent. This hierarchy is build using at least two programming paradigms: the algorithmic
(OO) one for describing domain functionality, and the meta-programming (or scripting)
one for generalization and textual modification. These paradigms are implemented using
(1) two programming languages (Bassett’s Frame Command Language + TL (e.g., Java,
COBOL); ours Open PROMOL + TL (e.g., VHDL)), the first of which is domain-specific
and independent of the second one; or (2) an extension of a standard language (Batory’s
P++ is an extension of C++). In the latter case, C++ is used for implementing domain
algorithms, and the extension is used for describing generic layers of abstraction. At the
component model layer, the similarity is even greater. All three approaches use parame-
terized software modules (Bassett’s frame; Batory’s realm; ours generic component) for
expressing the similarities in the domain. These modules can form libraries, which cap-
ture the domain knowledge.

Summarizing, we argue that the proposed 4D model encompasses the analyzed gen-
erative approaches and clarifies their main features. However, we do not claim that this
model expresses all features of software generators.

Table 1

Comparison of generative approaches

App- Abstraction
roach Component Programming Programming Generator

Model Language Paradigm Architecture

Bassett’s Frame – a param-
eterized software
module

Frame Command
Language – a meta-
language for a textual
manipulation

Meta-programming –
frame commands per-
form a pure lexical ma-
nipulation of the target
program text

Hierarchy of
Frames

Batory’s Realm – an ab-
stract parameteriz-
able domain entity

P++ - an extension
of C++ for describing
generic layers of ab-
straction

Object-Oriented / Me-
ta-programming – lay-
ers are implemented as
encapsulated suites of
interrelated classes

Layers of Ab-
straction

Ours Generic Com-
ponent – a para-
meterized domain
entity

Open PROMOL –
a scripting language
for target program
VHDL, C++, etc.)
modification

Meta-programming /
scripting – GCs are
imple-mented as textual
composition of TL, SL
code & other GCs

M-, H- & G-
architectures
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7. Discussion and Conclusions

While not a silver bullet, an abstraction plays a key role for creating components and gen-
erators. The programming languages, and domain-specific languages in particular, are the
basic abstractions for expressing the domain content. The more complex domain content
is, the higher-level of abstraction we need to describe the content. The high level standard
languages, like C++ and VHDL, have higher-level constructs with the meta-programming
capabilities (e.g., templates, generics) allowing to implement generic components.

The flexibility of generalization can be enhanced significantly either through exten-
sions of the standard target languages or through the usage of the external scripting lan-
guages (multi-language paradigm). The generic components are designed using the dif-
ferent kind of abstractions, and thus allow expressing the families of domain instances
concisely. Using various mechanisms of instantiation and generation, generic compo-
nents can be combined together to form a system with the specific requirements. The
component-based generators allow producing complex systems, and predominate over
other generative technologies now.

The proposed 4D model of a domain generator is the result of the multi-paradigm
design analysis over the domain of software generators. We argue that hardly any
component-based domain generator can be built without considering three program-
ming paradigms: (1) the algorithmic (OO); (2) meta-programming; and (3) scripting
paradigms, which are implemented through the corresponding languages. These are: the
algorithmic, meta-programming, and scripting languages. The first one addresses do-
main functionality. The second one deals with the generalization of similar (“look-alike”)
functionality. The third one deals with the composition of components as well as target
systems. We argue that this model is manifested in the known software generator models,
too.
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Štuikys, V., G. Ziberkas, R. Damaševičius, G. Majauskas (2001a). Two approaches for developing generic
components in VHDL. Microelectronics Journal, 2049, Elsevier Science Ltd., Oxford.
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Abstrakcij ↪u, naudojam ↪u kuriant srities generatorius, s ↪aryšio modelis

Vytautas ŠTUIKYS, Robertas DAMAŠEVIČIUS

Šiame straipsnyje mes analizuojame abstrakcijas, vartojamas kuriant komponentinius srities
generatorius. Šios abstrakcijos yra: programavimo paradigmos, kalbos, komponent ↪u modeliai ir
generatori ↪u architektūr ↪u modeliai. Atliktos analizės pagrindu mes pateikiame bendr ↪a s ↪aryšio tarp
srities turinio, technologini ↪u faktori ↪u (struktūrizavimo, komponavimo ir apibendrinimo) ir srities
architektūros model ↪i. Mes teigiame, jog šis modelis atspindi žinomus program ↪u generatori ↪u mode-
lius.


