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Abstract. Recently, Sun proposed a private-key encryption scheme based on the product codes
with the capability of correcting a special type of structured errors. In this paper, we present a novel
method to improve the information rate of Sun’s scheme. This method uses the added error vector
to carry additional information. Some information bits are mapped into an error vector with the
special structure to be added to a codeword. Once the error vector can be identified, the additional
information can be recovered.
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1. Introduction

A number of private-key cryptosystems based on error-correcting codes have been pro-
posed to protect confidential data over the past few years (Alencar et al., 1993; Campello
de Souza, 1994; Rao and Nam, 1987a, 1987b; Sun, 1997). However, most of them were
shown to be insecure. For example, the Rao–Nam system (Rao and Nam, 1987a, 1987b)
is subjected to some chosen-plaintext attacks (Struik and Tilburg, 1988), Alencar et al.’s
(1993) scheme and Campello de Souza’s (1994) scheme were proven to be insecure
against some chosen-plaintext attacks in (Sun and Shieh, 1996). In 1995, J. and R.M.
Campello de Souza (1995) proposed a private-key encryption scheme which is based on
product codes. The idea of their scheme is to use a product code which is capable of
correcting a special kind of structured errors and then disguise it as a code that is only
linear. This makes it unable to correct the errors as well as their permuted versions. Re-
cently, Sun (1999) showed that J. and R.M. Campello de Souza’s scheme is also insecure
against chosen-plaintext attacks, and consequently proposed a secure modified scheme.
The modified scheme has the disadvantage that the information rate of the scheme is
low. In this paper, we address the issue of improving the information rate of the modified
scheme.
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2. Preliminaries

DEFINITION 1 (J. and R.M. Campello de Souza, 1995). The direct mapping with param-
eters r and s, denoted DMr,s(· ), is the one that maps the vector V = (v1, . . . , vrs) into
the matrix

A =




a0,0 . . . a0,s−1

. . . . . . . . .

ar−1,0 . . . ar−1,s−1




r×s

,

so that ai,j = vis+j+1, for i = 0, 1, . . . , r − 1, j = 0, 1, . . . , s − 1.

DEFINITION 2 (extension from J. and R.M. Campello de Souza, 1995). The vector
E = (e1, . . . , ers), ei ∈ the congruence class modulo 2t, where t � 1, is said to be
a biseparable error, denoted BSE(r, s), if (i) its nonzero components are distinct elements
in the congruence class modulo 2t; and (ii) each row and each column of DMr,s(E)
contains, at most, one nonzero component.

Theorem 1 (extension from J. and R.M. Campello de Souza, 1995). A product code PC

(n = (r+1)(s+1), k = rs, d = 4) in the congruence class modulo 2t, whose constituent
row and column codes are single parity-check codes C1(n1 = r + 1, k1 = r, d1 = 2)
and C2 (n2 = s + 1, k2 = s, d2 = 2) respectively, can correct a BSE (r + 1, s + 1) of
weight up to wmax, where wmax = min(2t − 1, min(r + 1, s + 1)).

Sun’s private-key cryptosystem (Sun, 1999)

Secret key: G is the generator matrix of a PC (n = (r + 1)(s + 1), k = rs,
d = 4) in the congruence class modulo 2t. S is a random binary (nt)×
(kt) matrix, called the scrambling matrix, and P is an (nt) × (nt)
permutation matrix.

Encryption: Let the plaintext M be a binary kt-tuple. That is, M = (m1, . . . , mkt),
where mi ∈ GF (2).The ciphertext C is calculated by the sender:
C = {[M ⊕ (E ⊗ S)] ·G + E}⊗P , where E is a BSE(r + 1, s + 1)
of weight w, 1 � w � min(2t − 1, min(r + 1, s + 1)). Here we use
⊕ and ⊗ to denote the XOR operation and the matrix multiplication
operation in GF (2), and + and · to denote the vector addition operation
and the matrix multiplication operation in the congruence class modulo
2t. When ⊕ and ⊗ operations are executed, every bit is regarded as a
number in GF (2). When + and · operations are executed, every t-bits
is regarded as a number in the congruence class modulo 2t.

Decryption: The receiver first calculates C′ = C ⊗ P−1 = M ′ · G + E, where
M ′ = [M ⊕ (E ⊗S)] and P−1 is the inverse of P . Secondly, by using
the decoding algorithm of the product code G, the receiver can find and
remove the error E embedded in C′ to obtain M ′. At last, the receiver
recovers M by computing M ′ ⊕ (E ⊗ S) = M .
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It is clear that the information rate of this scheme is k
n = rs

(r+1)(s+1) .

3. Improving the Information Rate

We can use the added error vector E to carry an additional message block. That is, some
additional information bits are mapped into an error vector to be added in the encryption
phase. Once the error vector can be identified, the additional message block can be re-
covered. Therefore, we need a mapping function f such that f(M ′) is a biseparable error
E, and it is easy to compute M ′ from a given f(M ′), where M ′ denotes the additional
message block.

For simplicity, we assume that Sun’s scheme uses the parameters r, s, and t such that
r = s, 2t − 1 � r + 1, and E is a BSE(r + 1, r + 1) of weight r + 1. Therefore, E

depends on which r + 1 elements are chosen from {1, . . . , 2t − 1} and which positions
of these r + 1 elements are located in E. The total number of possible combinations for
r + 1 elements chosen from 2t − 1 elements is C2t−1

r+1 . So the amount of information

to represent these C2t−1
r+1 combinations is

⌊
log2 C2t−1

r+1

⌋
. Once these r + 1 elements are

determined, we need to specify the positions of these r + 1 elements. Because E is a
BSE(r + 1, r + 1) of weight r + 1, each row (each column) of DMr+1,r+1(E) exactly
contains one element of the chosen r + 1 elements. There are totally (r + 1)! possible
choices for selecting r + 1 positions in DMr+1,r+1(E). So the amount of information
to represent these (r + 1)! choices is 	log2(r + 1)!
. In addition, for each choice, there
are (r + 1)! possible methods to put the chosen r + 1 elements into the chosen r + 1
positions in DMr+1,r+1(E). Therefore, the amount of information to represent these
(r + 1)! methods is 	log2(r + 1)!
.

From the above discussion, it is clear that we can carry an additional message block

with the length of
⌊
log2 C2t−1

r+1

⌋
+2 	log2(r + 1)!
by specifying the error vector E. Thus

the information rate of Sun’s scheme can be significantly improved. In Table 1, we show
the comparison of the information rate between the original scheme and the improved
scheme.

In the following, we show how to specify r + 1 elements from 2t − 1 elements by

using
⌊
log2 C2t−1

r+1

⌋
information bits. We can use a binary vector of length (2t − 1) with

Table 1

The comparison of the information rate between the original scheme and the improved scheme, where ‘O’ and
‘N’ denote the original scheme and the improved scheme respectively

t r s Ciphertext Plaintext(O) Plaintext(N) Info. Rate. (O) Info. Rate. (N)

3 5 5 108 bits 75 bits 95 bits 0.694 0.880

3 6 6 147 bits 108 bits 132 bits 0.735 0.898

4 7 7 256 bits 196 bits 238 bits 0.766 0.930

4 8 8 324 bits 256 bits 304 bits 0.790 0.938
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weight r +1 to denote those r + 1 elements out of 2t − 1 elements. Therefore, we need a

simple mapping method to transform between
⌊
log2 C2t−1

r+1

⌋
-bit and the vector of length

(2t − 1) with weight r + 1. There have been a number of methods proposed to address
this problem. The interested reader is referred to (Lin and Fu, 1990; Park, 1989; Sendrier,
1995).

In the following, we show how to specify r + 1 positions for a biseparable error
in DMr+1,r+1(E) by using 	log2(r + 1)!
 information bits. We can use a permuta-
tion {p1, . . . , pr+1} of {1, . . . , r + 1} to denote these r + 1 positions which are the (1,
p1)−entry, the (2, p2)-entry, . . ., and the (r+1, pr+1)-entry in the matrix DMr+1,r+1(E).
Therefore, we need a simple mapping method to transform between 	log2(r + 1)!
-bit
and the permutation {p1, . . . , pr+1} of {1, . . . , r + 1}.

Here we regard each 	log2(r + 1)!
-bit information as a number x.

Algorithm for transforming a number x into a permutation of {1, . . . , r + 1}:
Input: a number x.
Output: S = {p1, . . . , pr+1} which is a permutation of {1, . . . , r + 1}.
Initial: T = {1, . . . , r + 1};
For i = r, r − 1, . . . , 0;
{ j = 	x/i!
 ;

pr+1−i – the (j + 1)-th item in T .
Delete the (j + 1)-th item in T , and sort T again;

x = x − j· i!;
}

EXAMPLE. Let r = 6 and x = 0101001100112 = 1331. Then the corresponding per-
mutation is (2, 7, 1, 4, 6, 5, 3).

Algorithm for transforming a permutation {p1, . . . , pr+1} into a number x:
Input: S = {p1, . . . , pr+1}.
Output: a number x.
Initial: T = {1, . . . , r + 1}, x = 0.
For i = 1, . . . , r + 1;
{ Find the position of pi in T (we assume pi is the j-th item in T );

x = x + (j − 1) · (r + 1 − i)!.
Delete the j-th item in T , and sort T again.

}

EXAMPLE. Let r = 6 and the permutation be (2, 7, 1, 4, 6, 5, 3). Then x = 1 ∗ 6! + 5 ∗
5!+0∗4!+1∗3!+2∗2!+1∗1!+0∗0! = 720+600+6+4+1 = 1331 = 0101001100112.

Similarly, specifying the chosen r + 1 elements into the chosen r + 1 positions in
DMr+1,r+1(E) can be done as the above method by using 	log2(r + 1)!
 information
bits.
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4. Conclusions

In this paper, we have proposed a method to improve the information rate of Sun’s private-
key cryptosystem based on product codes. By using the proposed method, the information
rate of Sun’s scheme can be up to around 0.9 or more.
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Informacijos perdavimo greičio pagerinimas slaptažodžio kodavime

Hung–Min SUN

Ankstesniuose Sun darbuose pasiūlyta asmens slaptažodžio kodavimo schema grindžiama kodu
su galimybe koreguoti specialaus tipo struktūrines klaidas. Šiame straipsnyje autorius pateikia
nauj ↪a metod ↪a, kaip pagreitinant ↪i informacijos perdavimo greit ↪i Sun schemoje. Metodas naudoja
klaidos vektori ↪u, nesant ↪i papildoma informacija. Keli informacijos bitai yra atvaizduojami ↪i klai-
dos vektori ↪u, o priėmus pranešim ↪a – vėl atskiriami.


