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Abstract. The problem of recursive estimation of a state of dynamic systems in the presence of
time-varying outliers in observations to be processed has been considered. A learning phase used
in the state estimation is investigated, assuming that the observations of a noisy output signal and
that of a training one are given. A technique based on robust filtering by means of a bank of parallel
Kalman filters and on the procedure of optimization of the state estimation itself is used, choosing,
at each time moment, a current estimate, that ensures a minimal absolute deviation from the current
value of the teaching signal. An approach, based on the relation between the mean squared deviation
of state estimates from the true state and innovation sequence variance as well as on the fact that
both variables achieve their minimum for the same filter from the respective Kalman filter bank, is
proposed here for a working phase, where a training signal will be absent. The recursive technique
based on an adaptive state estimation with optimization procedure is worked out. The results of
numerical simulation of the linear discrete-time invariant (LTI) system (56) by computer using a
bank, consisting of Kalman filters are given (Figs. 1–5).
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1. Introduction

The filtering techniques, based on an ordinary Kalman filter, completely lose their op-
timal properties because of outliers in observations to be processed. Therefore, various
robust algorithms are worked out in order to increase the efficiency of such approaches
where the distribution of signals, used for the state estimation, deviates from the Gaussian
distribution. In such a case, the solution of the problem could be obtained using a bank or
a network of parallel Kalman filters (Pupeikis and Huber, 1997; Pupeikis, 1998; Pupeikis,
1999; Marcos, 2000), respectively, and an approach that optimizes the estimation itself.
It can be mentioned here that banks of Kalman filters have been used in fault detection
since 1968 (Newbold and Ho, 1968). On the other hand, during the state estimation by
means of the bank of Kalman filters in the presence of outliers – as a state, we understand
here the current output of an observed dynamic system – there always arises a problem to
choose some variable, that could be used for the optimization of state estimation. It can
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be solved by separating the state estimation itself into two phases: a learning phase and
a working one, according to Mulgrew and Cowan (1987) and Marcos (2000), assuming,
as usual, that some teaching signal is given in the learning phase. Then, for each Kalman
filter at each current iteration, a current value of deviation of the reconstructed output
from the teaching signal could be calculated. Afterwards, at each current iteration the
state estimate that ensures the minimal value of such a deviation and, correspondingly,
some Kalman filters, producing such an estimate, from a bank of filters could be deter-
mined. After terminating the learning phase, the most appropriate filter or some filters
will be chosen to estimate states in the working phase, where there is no teaching signal.
Therefore, there arises a problem to choose a new function to be minimized during the
state estimation in working phase. This problem is solved here at first analytically and
afterwards it is verified by the simulation on PC, using the bank of Kalman filters.

2. Statement of the Problem

Assume that a linear discrete-time invariant (LTI) system can be described using state
equations of the form

x[n + 1] = Ax[n] + Bu[n],

y[n] = Cx[n],
(1)

with the m× 1 state vector x[n], the p× 1 input vector u[n], the r× 1 output vector y[n],
and the m×m, m× p, r ×m known beforehand matrices A,B,C, respectively. Here

x[n + 1] =
(
x1[n + 1], x2[n + 1], . . . , xm[n + 1]

)T
,

x[n] =
(
x1[n], x2[n], . . . , xm[n]

)T
(2)

are vectors of states at time moments n + 1 and n, respectively;

u[n] =
(
u1[n], u2[n], . . . , um[n]

)T
(3)

are the values of an input {u[n]};

y[n] =
(
y1[n], y2[n], . . . , ym[n]

)T
(4)

is unobserved output of the object.
The observations of a noisy output {z[n]} described by

z[n] = y[n] + v[n], (5)

and of a training signal

r[n] =
(
r1[n], r2[n], . . . , rm[n]

)T
, (6)
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are given. Here

z[n] =
(
z1[n], z2[n], . . . , zm[n]

)T
(7)

are observations of output (5), {v[n]} is a sequence of independent identically distributed
variables with an “ε-contaminated” distribution of the form

p(vn) = (1 − εn)N(0, σ2
ξ ) + εnN(0, σ2

ς ), (8)

and the variance

σ2
v = (1 − γn)σ2

ξ + γnσ
2
ς ;

p(zn) is a probability density distribution of the sequence v[n] =
(
v1[n], v2[n], . . . ,

vm[n]
)T

with the value

vi[n] = (1 − γn)ξi[n] + γnςi[n] (9)

of additive noise at the time moment n; γn is a random variable, taking values 0 or 1 with
probabilities p(γn = 0) = 1 − εn, p(γn = 1) = εn; {ξ[n]}, {ς[n]} are sequences of
independent Gaussian variables with zero means and variances σ2

ξ , σ
2
ς , besides, σξ <<

σς ; 0 � εn � 1 is an unknown fraction of contamination varying in time.
The aim of the given paper is the development of an approach for a robust recursive

estimation of states y1[n] = yn, y2[n] = yn−1, . . . , ym[n] = yn−m+1 of an LTI object
(1), using the observations of the noisy output {z[n]} as well as a teaching signal {r[n]}
in the learning phase and only the observations of {z[n]} in the working phase.

3. Discrete Kalman Filters

The ordinary Kalman filter used for the state estimation could be written as follows:

x̂[n|n] = x̂[n|n− 1] + M [n]
(
z[n] − Cx̂[n|n− 1]

)
,

M [n] = P [n|n− 1]CT
(
R[n] + CP [n|n− 1]CT

)−1
,

P [n|n] =
(
I −M [n]C

)
P [n|n− 1],

x̂[n + 1|n] = Ax̂[n|n],

P [n + 1|n] = AP [n|n]AT .

(10)

Here x̂[n|n− 1], x̂[n|n] are estimates of the vector x[n] determined by processing obser-
vations including z[n− 1] and z[n], respectively;

R[n] = E{v[n]vT [n]},

P [n|n] = E
{(

x[n] − x[n|n]
)(

x[n] − x[n|n|n− 1]
)T

}
,

P [n|n− 1] = E
{(

x[n] − x[n|n− 1]
)(

x[n] − x[n|n− 1]
)T

}
.

(11)



92 R. Pupeikis

It is known (Masreliez and Martin, 1977; Schick and Mitter, 1994) that the Kalman
filter turns out to be inefficient while estimating the state of the dynamic system (1)
because of outliers in observations. Therefore, in such a case, according to Masreliez and
Martin, 1977 and to Meyr and Spies, 1984, the simple robust versions of (10) could be
obtained by changing the first recursive equation of (10) as follows

x̂[n|n] = x̂[n|n− 1] + M [n]ψ
{
z[n] − Cx̂[n|n− 1]

}
, (12)

where

ψ(e[n]) =




−∆ if e[n] < −∆,

e[n] if − ∆ � e[n] � ∆,

∆ if e[n] > ∆
(13)

is Huber’s ψ – function with

e[n] = z[n]− Cx̂[n|n− 1], (14)

as an innovation at the time moment n + 1 and the threshold ∆, which depends on the
standard deviation σξ of the ground distribution and on a fraction of contamination εn.

The choice of ∆ plays an important role for the estimation of an unknown parame-
ter or state. In this connection, the existing propositions may be used to determine the
threshold ∆ (Huber, 1981; Hampel et al., 1986; Ljung, 1991; Verboon, 1994; Stockinger
and Dutter, 1987).

4. Optimization of a State Estimation in the Learning Phase

The aim of the learning phase consists in choosing from a bank of parallel Kalman filters
a filter or several ones, such that ensure a maximal accuracy of state estimation in respect
of other filters. These Kalman filters could be used in the working phase while the other
filters would be rejected. In the learning phase, the bank of state estimates

x̂1[1], . . . , x̂L[1]; x̂1[2], . . . , x̂L[2]; x̂1[N ], . . . , x̂L[N ] (15)

is calculated by processing noisy output {z[n]} observations, containing time-varying
additive outliers, using the bank of parallel L Kalman filters

x̂i[n|n] = x̂i[n|n− 1] + Mi[n]ψi

(
z[n] − Cx̂i[n|n− 1]

)
,

Mi[n] = Pi[n|n− 1]CT
(
R[n] + CPi[n|n− 1]CT

)−1
,

Pi[n|n] =
(
I −Mi[n]C

)
Pi[n|n− 1],

x̂i[n + 1|n] = Ax̂i[n|n],
Pi[n + 1|n] = APi[n|n]AT for i = 1, 2, . . . , L.

(16)
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Here x̂i[n|n−1], x̂i[n|n] are estimates of the vector x[n] determined by each i-th Kalman
filter used for processing observations, including z[n− 1] and z[n], respectively;

R[n] = E
{
v[n]vT [n]

}
,

Pi[n|n] = E
{(

xi[n] − xi[n|n]
)(

xi[n] − xi[n|n|n− 1]
)T

}
,

Pi[n|n− 1] = E
{(

xi[n] − xi[n|n− 1]
)(

xi[n] − xi[n|n− 1]
)T

}
for i = 1, 2, . . . , L,

(17)

ψi(ei[n]) =




−∆i if ei[n] < −∆i,

ei[n] if − ∆i � ei[n] � ∆i

∆i if ei[n] > ∆i for i = 1, 2, . . . , L,

(18)

ei[n] = z[n]− Cx̂i[n|n− 1] for i = 1, 2, . . . , L. (19)

Thus, current state estimates (15) of LTI system (1) are calculated, using the bank
of parallel Kalman filters of the form (16) with some initial values (17) and Huber’s ψ-
function (18) with an innovation (19). At each current time moment n = 1, 2, . . . , N
the state estimate x̂∗

i [n], that guarantees the minimal absolute deviation δ∗[n] from the
value of the training signal {r[n]} is determined as follows: first, at the current time
moment n = 1, 2, . . . , N the bank of deviations δ1[n], δ2[n], . . . , δL[n] with δ1[n] =∣∣r[n] − x̂1[n]

∣∣, δ2[n] =
∣∣r[n] − x̂2[n]

∣∣, . . . , δL[n] =
∣∣r[n] − x̂L[n]

∣∣ is calculated, sec-
ond, δ∗[n], which is least of δ1[n], δ2[n], . . . , δL[n] is determined. Thus, while estimat-
ing states in such a way at each current time moment n = 1, 2, . . . , N , the state es-
timates δ∗[1], δ∗[2], . . . , δ∗[N ], ensuring the minimal deviation from the reference se-
quence {r[n]} are found. It can be mentioned that the accuracy of state estimates depends
on the number of filters in the Kalman filter bank as well as on thresholds in ψi-functions
to be used. When the learning phase is over, some most appropriate Kalman filters, en-
suring the maximal accuracy of prediction of a state, are established.

5. Determination of an Optimization Criterion for the State Estimation

In the working phase, there is no teaching signal used to solve the state estimation prob-
lem. Then the above-mentioned approach will fail and one has to choose a new variable
for the optimization of state estimation. We will try to determine such a variable below.

Theorem 1. If for large enough N in the bank of Kalman filters (16)–(19) there exists
such an l-th (l ∈ L) filter, ensuring that the variance σ2

el
of the innovation sequence

{el[n]} of the form

{el[n]} = ψl

{
z[n] − Cx̂l[n]

}
∀n (20)

is minimal as compared with the estimates of variance, calculated for the other L − 1
filters from the same bank, then for such an l-th filter, the mean squared deviation

El

(
x[n], x̂[n]

)
= N−1wT

l [N ]wl[N ] (21)
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acquires a minimum. Here wl[N ] =
(
x[1] − x̂l[1], x[2] − x̂l[2], . . . , x[N ] − x̂[N ]

)T

is a vector of deviations of the values of the state estimates from the true state values,
determined for the l-th filter.

Proof. Assume that for the l-th filter

x̂l[1] = x[1] + ζl[1], x̂l[2] = x[2] + ζl[2], . . . , x̂l[N ] = x[N ] + ζl[N ], (22)

where {ζl[n]} ∼ N(0, σ2
ζl

) and such that σ2
ζl

is lower than any σ2
ζi

, which is determined
for any i-th (i ∈ L) filter with

x̂i[1] = x[1] + ζi[1], x̂i[2] = x[2] + ζi[2], . . . , x̂i[N ] = x[N ] + ζi[N ]. (23)

Then the variance σ2
el

= σ2
v + σ2

ζl
of the innovation sequence

{el[n]} = ψl

{
z[n] − Cx̂l[n]

}
∀n (24)

is lower than any estimate of variance, calculated for the other filters from the same bank.
It also follows, that the mean square deviation (21) acquires on a minimum.

Theorem 2. If in the bank of Kalman filters (16)–(19) there exists a j-th (j ∈ L) filter,
ensuring that the variance σ2

ej
of the innovation sequence {ej[n]} of the form

{ej[n]} = ψj{z[n]− Cx̂j [n]} ∀n (25)

is maximal as compared with the estimates of variance, calculated for the other filters
from the same bank, then for such a j-th filter the mean square deviation

Ej

(
x[n], x̂[n]

)
= N−1wT

j [N ]wj [N ] (26)

acquires a maximum. Here wj [N ] =
(
xj [1]− x̂j [1], xj [2]− x̂j[2], . . . , xj [N ]− x̂j [N ]

)T

is a vector of deviations of the values of the state estimates from the true state values,
determined for the j-th filter.

Proof. Assume that for the j-th filter

x̂j [1] = x[1] + ζj [1], x̂j [2] = x[2] + ζj [2], . . . , x̂j [N ] = x[N ] + ζj [N ], (27)

where {ζj [n]} ∼ N(0, σ2
ζj

) and such that σ2
ζj

is more than any σ2
ζi

, which is determined
for any i-th (i ∈ L) filter with

x̂i[1] = x[1] + ζi[1], x̂i[2] = x[2] + ζi[2], . . . , x̂i[N ] = x[N ] + ζi[N ]. (28)

Then the variance σ2
ej

= σ2
v + σ2

ζj
of the innovation sequence

{ej[n]} = ψj

{
z[n] − Cx̂j [n]

}
∀n (29)
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is higher than any estimate of the variance, calculated for the other filters from the same
bank. It also follows, that the mean squared deviation (26) acquires a maximum.

Theorem 3. If in the bank of Kalman filters (16)–(19) there exists an f -th (f ∈ L) filter
with

x̂f [1] = x[1] + ζf [1], x̂f [2] = x[2] + ζf [2], . . . , x̂f [N ] = x[N ] + ζf [N ], (30)

where {ζf [n]} ∼ N(0, σ2
ζj

) and such that σ2
ζf

is less than any σ2
ζi

, which is determined
for any i-th (i ∈ L) filter with

x̂i[1] = x[1] + ζi[1], x̂i[2] = x[2] + ζi[2], . . . , x̂i[N ] = x[N ] + ζi[N ], (31)

then the variance σ2
ef

of the innovation sequence

{ej [n]} = ψf

{
z[n] − Cx̂f [n]

}
∀n (32)

and the mean squared deviation

Ef (x[n], x̂f [n]) = N−1wT
f [N ]wf [N ] (33)

both are minimal as compared with the estimates of variance and mean square deviations,
respectively, calculated for the other filters from the same bank.

Here

wf [N ] =
(
xf [1] − x̂f [1], xf [2] − x̂f [2], . . . , xf [N ] − x̂f [N ]

)T
(34)

is a vector of deviations of the values of the state estimates from the true state values,
determined for the f -th filter.

Theorem 3 follows from Theorems 1 and 2.

Theorem 4. If in the bank of Kalman filters (16)–(19) there exists an l-th (l ∈ L) filter
with

x̂l[1] = x[1] + ζl[1], x̂l[2] = x[2] + ζl[2], . . . , x̂l[N ] = x[N ] + ζl[N ], (35)

where {ζl[n]} ∼ N(0, σ2
ζl

) and such that σ2
ζl

is lower than any σ2
ζi

, which is determined
for any i-th (i ∈ L) filter with

x̂i[1] = x[1] + ζi[1], x̂i[2] = x[2] + ζi[2], . . . , x̂i[N ] = x[N ] + ζi[N ]. (36)

Then for an l-th filter the functions

Ei(x[n], x̂i[n]) = N−1wT
i [N ]wi[N ] for i = 1, 2, . . . , L, (37)

Qi(e[n], ei[n]) = (N − 1)−1αT
i αi for i = 1, 2, . . . , L (38)
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acquire minimal values.
Here

αi =
(
e[1] − ei[1], . . . , e[N ] − ei[N ]

)T
for i = 1, 2, . . . , L, (39)

e[k] 	= ei[k] ∀k = 1, 2, . . . , N and ∀i = 1, 2, . . . , L; e[1], e[2], . . . , e[N ] are values of
the sequence {e[k]} of the form

{e[n]} = {z[n]− Cx[n]} ∀n = 1, 2, . . . , N, (40)

determined in the absence of outliers in observations, substituting here true state values
x[1], x[2], . . . , x[N ],

wi[N ] =
(
xi[1] − x̂i[1], xi[2] − x̂i[2], . . . , xi[N ] − x̂i[N ]

)T
. (41)

Proof. Assume that for the l-th filter

x̂l[1] = x[1] + ζl[1], x̂l[2] = x[2] + ζl[2], . . . , x̂l[N ] = x[N ] + ζl[N ], (42)

where {ζl[n]} ∼ N(0, σ2
ζl

). Moreover, σ2
ζl

is less than any σ2
ζi

, which is determined for
any i-th (i ∈ L) filter with

x̂i[1] = x[1] + ζi[1], x̂i[2] = x[2] + ζi[2], . . . , x̂i[N ] = x[N ] + ζi[N ]. (43)

Then the mean squared deviation

El(x[n], x̂[n]) = N−1wT
l [N ]wl[N ], (44)

according to the Theorems 1, 3 is minimal. It follows that function (37) acquires a mini-
mum. On the other hand, for the right-hand side of function (38) it can be written

lim
N→∞

N−1αT
i αi = lim

N→∞

N∑
k=1

(
e2[k] − 2e[k]ei[k] + e2

i [k]
)

= σ2
e + σ2

ei
, (45)

∀i = 1, 2, . . . , L,

while

lim
N→∞

N−1
N∑

k=1

e[k]ei[k] = cov
(
e[k]ei[k]

)
= 0, ∀i = 1, 2, . . . , L, (46)

as {e[k]} ∼ N(0, σ2
e) and {ei[k]} ∼ N(0, σ2

ei
) ∀i = 1, 2, . . . , L are mutually un-

correlated for all k. Here cov
(
e[k]ei[k]

)
is the covariance between {e[k]} and {ei[k]}
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∀i = 1, 2, . . . , L and ∀k = 1, 2, . . . , N . It follows from (45) that function (38) achieves
its minimum for the i-th filter, that is

Qi

(
e[k], ei[k]

)
< Qj

(
e[k], ej[k]

)
fori 	= j, (47)

if and only if

σ2
ei

< σ2
ej

for j = 1, 2, . . . , L− 1. (48)

REMARK 1. Functions (37) and (38) acquire their minimum for the same i-th filter.

REMARK 2. Functions (37) and (38) can not be calculated because of unknown x[n] and
e[n] ∀n, respectively.

REMARK 3. Function (38) could be replaced by the calculable function

Qi(ei[n]) = (N − 1)−1βT
i βi (i ∈ L), (49)

because for the each filter from the same bank component σ2
e is the same. Here

βi =
(
ei[1], . . . , ei[N ]

)T
for i = 1, 2, . . . , L(50) (50)

vector of respective innovation sequence.

Conclusion. The existing relation between the mean squared deviation function (37)
and the function (38) of variances of innovation sequences, calculated for each fil-
ter from the bank of Kalman filters (16)–(19), allowed us to replace the function (38)
by the function (49), which components can be easy determined. Thus, the vector
x̂l[n] = (x̂l[1], . . . , x̂l[N ])T of estimates of states x[1], . . . , x[N ] may be defined using
the criterion (49) and the condition

x̂l[n] : Q(el[n]) = min
ei[n]∈D

Qi(ei[n]), (i ∈ L). (51)

Here D is a restricted area of values of innovation sequences ei[n] ∀i = 1, 2, . . . , L
generated by the bank of the Kalman filters.

6. Optimization of a State Estimation in a Working Phase

Thus, the current state estimates of a LTI system (1) are calculated by the bank of the L

parallel Kalman filters (16)–(19), that yield a bank of state estimates

x̂1[1], . . . , x̂L[1]; x̂1[2], . . . , x̂L[2]; x̂1[N ], . . . , x̂L[N ], (52)
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and a respective bank of innovation sequences

e1[1], . . . , eL[1]; e1[2], . . . , eL[2]; e1[N ], . . . , eL[N ], (53)

using respective Huber’s ψ-functions of the form (18). Then for i = 1, 2, . . . , L the
estimates of the variance σ2

e are calculated by the formula




σ2
e1

σ2
e2
...

σ2
eL−1

σ2
eL




=
1

N − 1




N∑
n=1

(
e1[n] − ē1

)2

N∑
n=1

(
e2[n] − ē2

)2

...
N∑

n=1

(
eL−1[n] − ēL−1

)2

N∑
n=1

(
eL[n] − ēL

)2




, (54)

using, respectively,L innovation sequences (53). Here ē1, . . . , ēL are means of innovation
sequences.

If the variance σ2
el

satisfies the condition (51), then the vector x̂l[n] = (x̂l[1], . . . ,
x̂l[N ])T of estimates of the state x[n] = (x[1], . . . , x[N ])T is an optimal one. It
can be mentioned that formula (52) allows us to choose the optimal state estimates
x̂l[n] = (x̂l[1], . . . , x̂l[N ])T only after processing the whole set of observations
z[1], z[2], . . . , z[N ]. Really, it is important to choose the current optimal state estimate
at each time moment k. Thus, it is necessary to rewrite (54) in such a way




σ2
e1

σ2
e2
...

σ2
eL−1

σ2
eL




k+1

=




σ2
e1

σ2
e2
...

σ2
eL−1

σ2
eL




k

+




ϑe1

ϑe2

...
ϑeL−1

ϑeL




k+1

=
(

1 − 1
k

)



σ2
e1

σ2
e2
...

σ2
eL−1

σ2
eL




k

+
1
k




e2
1[k + 1]

e2
2[k + 1]

...
e2

L−1[k + 1]
e2

L[k + 1]



. (55)

Now, at each time moment k, the minimal variance σ2
el

as well as the state estimate
from the bank of Kalman filters (16)–(19) can be chosen. It can be mentioned that in
case such as in (Pupeikis, 1998) there could also appear here a false optimum if too small
thresholds ∆i∀i = 1, 2, . . . , L were used in (18).



On the Optimization of an Adaptive State Estimation of Dynamic Systems 99

7. Simulation Results

The LTI system is defined by the state-space equation system (1) with

A =


 1.1269 −0.4940 0.1129

1.0000 0 0
0 1.0000 0


 , B =


−0.3832

0.5919
0.5191


 , C = [1 0 0]. (56)

The impulse and step responses of system (1) with matrices (56), as well as Bode dia-
grams are shown in Fig. 1. The signals of the LTI system are presented in Fig. 2. As an
input to the LTI system the autoregressive-moving average signal (ARMA)

u[n] =
1 − 0.8q−1

1 − 1.5q−1 + 0.7q−2
ζ[n], (57)

is applied, using the sequence{ζ[n]} ∼ N(0, 1) as an initial sequence. A noisy input
{u[n] + 0.5ς[n]} with {ς[n]} ∼ N(0, 1) is shown in Fig. 2a. The output signal {z[n]}
(Fig. 2b) is calculated, substituting the noisy input into the first equation of (1). After-
wards, {z[n]} is corrupted by additive noise {v[n]} with outliers according to expression
(5). The teaching signal {r[n]} (Fig. 2c) is determined using equations (1), where instead
of the noisy input the unnoisy one, i.e., {u[n]} is substituted into the first equation. The
unobserved output signal without an additive noise is presented in Fig. 2d. The results of
the state estimation, performed in the learning phase by processing observations of the
output signal with outliers (Fig. 2b) and of the teaching one {r[n]} (Fig. 2c), are shown

Fig. 1. Basic characteristics of the LTI system (1), (56) in time and frequency domains.
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Fig. 2. Signals of the LTI system: noisy input (a), output with noise containing outliers (b), teaching signal (c),
unobserved unnoisy output (d).

in Figs. 3, 4. The output, presented in Fig. 2b, is processed by one ordinary Kalman filter.
The state estimates calculated by it dependent on the number of observations processed
are shown in Fig. 3a. In Fig. 3b, we present the state estimates, calculated using the bank
of 24 Kalman filters (16)–(19) with different thresholds ∆i for i = 1, 2, . . . , 24 in (18),
which are chosen from the interval [0.25 5.8]. In Fig. 3c, the operation of the Kalman fil-
ters in time is shown. It can be mentioned that during the state estimation the numbers of
the Kalman filters are choosen by the optimization technique, which is worked out here.
From the simulation and state estimation results, presented in Fig. 3, it follows that the
accuracy of state estimates, obtained using the bank of the Kalman filters by optimizing
the estimation itself (Fig. 3b), is higher as compared to the accuracy of the estimates,
obtained by the ordinary Kalman filter (Fig. 3a).

After the learning phase is terminated a single Kalman filter with ∆ = 5.5 in (18)
from the bank of filters (16), (17) is chosen to estimate the states in a working phase.
State estimation in a working phase is performed, using 300 observations of noisy out-
put. In such a case, the teaching signal is absent. In Fig. 4a, the unobserved output and
the one, corrupted by an additive noise with outliers are presented. In Fig. 4b, the unob-
served output and the state estimates produced by one robust Kalman filter with ∆ = 5.5,
selected in the learning phase, are shown.

Fig. 5 corresponds to the case, where the teaching signal is not available still in the
learning phase. Therefore state estimates are calculated by processing the observations
of noisy output with outliers (Fig. 2b) and a procedure, based on equations (51)–(55).
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Fig. 3. State estimates and the operation of the Kalman filters. Estimates: obtained by an ordinary Kalman filter
(a); obtained by the bank of Kalman filters (b), operation of the Kalman filters by processing observations (c).
Curves: 1 – unobserved output, 2 – state estimates.

Fig. 4. Signals and state estimates in the working phase. Curves: 1, 3 – unobserved output, 2 – output to be
processed, 4 – state estimates.
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Fig. 5. State estimates and operation of the Kalman filters by processing observations. Estimates: obtained by
the bank of filters (a); obtained by one filter (c), operation of filters (b). Curves: 1 – unobserved output, 2, 3 –
state estimates.

In Fig. 5a, the state estimates calculated by the bank of 5 Kalman filters (16)–(19) with
different thresholds ∆i for i = 1, 2, . . . , 24 in (18), which are chosen from the interval
[5 5.8], are presented. In Fig. 5b, the operation of the Kalman filters in time is shown.
In Fig. 5c, the dependence of state estimates, found by one Kalman filter with ∆ = 5 in
(18), depending on the processed observations, is presented.

8. Conclusions

It follows that in the presence of time-varying outliers in observations to be processed
the accuracy of state estimates, obtained using the small bank of the Kalman filters (16)–
(19) by optimizing the estimation itself (Fig. 5a, b), is a little higher as compared to
the accuracy of estimates, obtained by one Kalman filter with ∆ = 5 in (18) (Fig. 5c)
or calculated employing large bank (Fig. 3b, c) using even the teaching signal. On the
other hand, as shown by the state estimation results presented in Figs. 4b and 5c, the
most important thing is choosing a ∆in (18). If ∆is chosen correctly (Fig. 4b), then the
accuracy of state estimates is higher as compared with that obtained by banks of filters
(Figs. 3b, 5a) even if the teaching signal is given (Fig. 3b). In spite of this, if the bank of
the Kalman filters is available, then a threshold ∆ in (18) is chosen automatically. In the
opposite case, such a possibility is not valid, therefore one has to choose a threshold ∆
arbitrary and often it is chosen incorrectly.
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Apie dinamini ↪u sistem ↪u adaptyviojo būsenos ↪ivertinimo optimiza-
vim ↪a, taikant stebėjimus su nestacionaraus srauto išmetomis

Rimantas PUPEIKIS

Straipsnyje nagrinėjamas dinamini ↪u sistem ↪u (1)–(4) būsenos rekurentinis ↪ivertinimas, apdoro-
jant stebėjimus (5) su išmetomis (8), (9), kuri ↪u srauto intensyvumas kinta laikui bėgant. Būsenos

↪ivertinimui taikomi Kalmano tipo filtr ↪u bankai (16)–(19), generuojantys patvarius išmet ↪u atžvil-
giu ↪iverčius. Teoriškai (teoremos 1–4) parodyta, kad esti priklausomybė tarp vidutinio kvadra-
tinio būsenos ir jos ↪iverčio nuokrypio funkcijos (37) bei atnaujinanči ↪u sek ↪u dispersij ↪u, gaut ↪u
kiekvienam Kalmano filtrui iš minėto filtr ↪u banko, funkcijos (38). Tai leidžia mums funkcij ↪a (38)
pakeisti funkcija (49), kurios komponentės gali būti randamos, taikant kriterij ↪u (49) ir optimizuo-
jant būsenos ↪ivertinim ↪a pagal (51) išraišk ↪a. Pasiūlytas naujas metodas sistemos būsenai ↪ivertinti,
grindžiamas patvari ↪aja filtracija ir optimizavimo procedūra (54), (55), kuri ↪a taikant kiekvienu
laiko momentu iš būsenos ↪iverči ↪u banko (52) išrenkamas ↪ivertis, optimalus minimalaus nuokry-
pio prasme. Dinaminės sistemos ((56), 1 pav.) su ↪iėjimu (57) modeliavimo rezultatai (2–4 pav.)
patvirtina teorini ↪u išvad ↪u pagr ↪istum ↪a.


