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Abstract. In this paper, we present our Form-driven approach for reverse engineering of relationa
databases. This methodology uses the information extracted from both form structure and instances
as a database reverse engineering input using an interaction with a user. Through a combination of
forms structures and data instances analysis, forms relational sub-schemas and their constraints
are derived. These relational sub-schemas are mapped to object sub-schemas, which will be merg-
ing into global object-oriented schema that presents the whole underlying databases. The resulting
global object-oriented schema must be validated as a rich and correct representation of the applica-
tion domain.
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1. Introduction

In many organizations, there are a large number of database applications that have evolved
over many years. These systems are referred to as legacy systems (Farhrner, 1995a; Chi-
ang, 1994; Hainaut, 1995; Soutou, 1998) and are characterized by lack of documentation
and non-uniformity resulting from numerous extensions. These properties lead to inflex-
ible systems and high maintenance costs.

Reverse engineering can help by understanding legacy databases and extracting their
design specification (domain semantics). It is the part of database maintenance work that
procures a sufficient understanding of a legacy database, and its application domain to
allow appropriate changes to be made. More specifically, databases reverse engineering
can be treated as a process that obtains domain semantics about a legacy database, makes
the reverse schema transformation (from logical to conceptual) and, finally, represents
the result usually as a conceptual schema (or object-oriented schema) (Farhrner, 1995b;
Behm, 2000).

Users in organizations are quite experienced in the handling and manipulation of
databases through forms. The CODASYL End User Facilities Committee (EUFC) has
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recognized the importance of forms as the most natural interface between users and
data and recommends the form-oriented approach as the main vehicle for user interface
(Lefkovitz, 1979). Following these recommendations, there have been a number of auto-
matic tools for defining, specifying, and implementing form applications (Batini, 1984;
Shu, 1985; Yao, 1984; Choobinen, 1992); query languages and database systems have
also been extended to deal with forms and other types of documents used in the office
environment to facilitate the manipulation of data via computerized form (e.g., Oracle
SQL Forms, Informix-SQL, Microsoft Access Forms and reports tools).

The objective of this research is to propose a form-based approach for reverse engi-
neering of relational databases. By form, we mean any structured collection of variables
(form fields) which are appropriately formatted to communicate with the databases espe-
cially for data retrieval and data display.

This approach uses the information extracted from both form structure and instances
as a databases reverse engineering input using an interaction with a user. This proposition
can be supported by the following arguments:

– a form model is a data model. Studying and analyzing a form and its relationship to
other forms can reveal many data dependencies and mapping;

– usually the most widely used data are gathered or reported in a form and, therefore,
important information can be obtained by analyzing a database’s forms;

– forms are familiar and commonplaces objects, they are easy to read and understand;
– normally the forms are accompanied by instructions. The instructions provide addi-

tional information about organization’s data and their procedural (or behavior) parts.
Our methodology articulate around five phases (Fig. 1):
– acquisition of the forms structure and instances,
– extraction of the domain semantics from forms analysis in order to construct their

relational sub-schemas,

Fig. 1. Phases of form-driven approach of relational databases reverse enginnering.
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– transformation of relational sub-schemas in object-oriented sub-schemas,
– integration of these object-oriented sub-schemas into a global object-oriented

schema,
– validation of the resulting global object-oriented schema.
The paper is organized as follows. In Section 2, related approaches in database re-

verse engineering, are discussed. Section 3 contains the different stages of form acquisi-
tion while introducing the concepts of their model and their graphic description language.
Section 4 presents the extraction of domain semantics from both form structure and in-
stances, and construction of their relational sub-schemas. Section 5 describes the rules
relational sub-schemas transformation in object-oriented sub-schemas, the integration of
these sub-schemas into a global object schema and the validation of the resulting global
object schema. Section 6 concludes the paper and summarizes the results.

2. Related Works

Several researches have been done on relational database reverse engineering, suggest-
ing methods and rules for reverse schema transformation of the logical data schema of a
legacy database into a conceptual (or object-oriented) schema. We classify these contri-
butions in two categories.

In the first category, the extraction phase of domain semantics is not present. These
approaches deal with the schema transformation, and have very strong requirements for
legacy databases to be reversing engineered. For example, their process requires that
the relations are in at least third normal form (3NF), a consistent naming convention
is applied to attributes, and information on the availability of inclusion dependencies and
keys is available. Farhner and Vossen (Farhrner, 1995a) classify these methods in two
classes:

– Approaches, in the first class, elicit the semantics of the given relational schema
through an evaluation of its inclusion dependencies (noted inds). Each ind is interpreted
with respect to the role (key, part of key, foreign key, non-key) of its attributes. Most of
these approaches require a complete set of inds and keys of the relations; some take only
key-based inds into account (Casanova, 1983; Ji, 1991; Markowitz, 1990), while others
consider general inds (Johanneson, 1994; Kalman, 1991).

– Approaches, in the second class, derive a conceptual schema through an evaluation
of keys, their construction through other keys, and a discovery of foreign keys. Several of
these approaches (Navathe, 1987; Batini, 1992; Chiang, 1994; Tari, 1997); also classify
the relation of the source schema with respect to the construction of their keys, e.g.,
whether the primary key of a relation is the concatenation of the primary keys of other
relations. The transformation is then done on the basis of this classification.

In the second category, the extraction phase of domain semantics is considered,
such as keys, functional and inclusion dependencies, and integrity constraints by using
machine-analyzable sources, such as databases instances and queries (or application pro-
grams). For example, a legacy database for reverse engineering normally contains a large
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volume of data from application domain, so these data instances can be sources for ex-
tracting domain semantics.

– Approaches using application programs are based on the use of query language
statements to extract (some of) the semantic information stored in a relational database
(e.g., Anderson, 1994; Petit, 1995). Anderson (1994) analyses equi-joins statements
whereas. Petit (1995) analyses auto-joins, set operations and where-by clause statements
as well as the equi-join statements. Otherwise, the Hainaut’s approach (Hainaut, 1995)
analyses the code of programs, mainly the logical description of files in Cobol, for com-
pleting knowledge on the data structure and on the constraints.

– Approaches using extension of legacy database are based on the analysis of data
instances to understand (some of) the semantics of database application. Chiang’s ap-
proach (Chiang, 1994) uses the relational schema information as the basic input and aim
to extract the semantic information by exhaustive analysis of each relation in the schema
and their key and non-key attributes. Also Anderson (1994) and Permerlani et al. (1994)
analyze data instances to extract inds from indication provided by joins. Otherwise, in
(Tari, 1997), the classification of the relational schema is based on the analysis of data in-
stances. Independently, Mannila et al. (1994) propose some algorithms (based-heuristics)
to extract functional and inclusion dependencies.

Until recently, researches in database reverse engineering do not use forms, which
manipulate databases, except Mfourga’s approach, as machine-analyzable source. In
(Mfourga, 1997), Mfourga proposes framework for extracting an entity-relationship
model from a set of form model schemas of a legacy relational database. Form model
schemas gather information, i.e., structural information and constraints among data, ex-
tracted from both their structures and instances. This approach uses these schemas to
supplement low-level schemas schemes to help reconstruct a entity-relationship schemas.

Our approach emphasizes the extraction of the relational sub-schema of form, from
both the form structure and the physical schema of the operational database, that is in
fact a pivot schema reflecting the semantics of the operational database as well as the
semantics of forms. So this schema facilitates the extraction of dependencies in order to
construct the conceptual object schema of the underlying operational database.

3. Acquisition of Forms

This phase supports the description of forms and their instances on one hand, and, the
automatic extraction of the forms hierarchical structures in order to facilitate their anal-
ysis and interpretation on the other hand. In this way, we use our form model presented
hereafter.

3.1. Form Model

In (Malki, 1999), we have presented a general model of forms suitable for databases re-
verse engineering task. The model allows abstracting any database form, that is, to make
explicit its components, fields as well as objects, and their interrelationships. It places a
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special emphasis on finding relevant constraints among database form component by ex-
ploiting the form instances. This model is similar but not identical to the models presented
in (Choobineh, 1992; Mfourga, 1997).

3.1.1. Form Type
A form is a structured collection of variables (i.e., fields) appropriately formatted to com-
municate with a database. A form type defines the structure, constraints and presentation
of the form fields. It represents the form intension as perceived by users. A particular
representation of form type is called a form template. A form template not only specifies
a representation, but is also medium dependent. This paper only addresses screen and
paper forms, which are used as communication interfaces with the database.

Three basic components of any template are title, captions, and entries. Every form
must have a title, which names the form and provides a general description of what is
to be filled in by the respondent. The title of the form in Fig. 2 is “CARD OF WAGE”.
Captions are preprinted on the form. They serve as a clue as what is to be filled in by the
respondent as well as a guide to enter or to read it on the form. An entry is the actual
data that is entered by an operator or displayed by the form processing system on the
space provided. The entry data may be text, numeric, bitmap or any other user defined
data type. As an example in Fig. 2, Name is the caption associated with the entry with the
value of “Malki”.

A form instance is a particular collection of values for the form fields. When a form
template is filled with values, it becomes an instance of that form type. Fig. 2 is a template
of “CARD OF WAGE” form with the values of a particular form instances.

3.1.2. Structural Units
Three types of form fields can be identified: atomic, box, and multiple choice (table). An
atomic field does not have any constituent (sub) fields. A box (or table) field groups a

Fig. 2. Example of form: “Card of wage”.
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number of other fields. A form field roughly corresponds to the concept of an attribute in
database terminology.

A structural unit type (SU), is a box (or table) of homogeneous pieces of information,
that is, an object that groups closely related form fields. Each SU is a logical sub-part of
a form type. The Fig. 2 shows some structural units of the “CARD OF WAGE” form:
Employee Identification, Function/activity and Premium/indemnities.

3.1.3. Relationships between Structural Units
We use the parent-child relationship which is one-to-many (multi-valued) or one-to-one
(single) relationship between two structural units. One of the SUs (always the one-side) is
called the parent SU, the other (many-side or sometimes one-side) is called the child SU.
An occurrence of a relationship consists of one SU occurrence of the parent and one or
several occurrences of the child SU. In the Fig. 2, the relationship between the SU “CARD
OF WAGE” (parent) and the SU “Identification” (Child) is one-to-one, i.e., that a “CARD
OF WAGE” is established for only one Employee. On the other hand the relationship
between the SU “CARD OF WAGE” (parent) and the SU “Premiums/indemnities” is
one-to-many, i.e., that an employee may receive a number of premiums and indemnities.

In this way, our model permits a hierarchical structuring of form fields. This hierar-
chical structure corresponds to form type logical structure. The root of the tree is the form
title. The other nodes represent structural units.

Children that have the same parent belong to the same level. The root level is num-
ber 0 and each subsequent level is one greater than its parent’s. The Fig. 4 shows the
hierarchical structure of the form “CARD OF WAGE”.

One may note that the form model includes a logical and a physical aspect.
The logical aspect corresponds to the form definition, as it is perceived by users (or

designers), i.e., its intensional part. This intensional part is a logical structure that con-
tains logical sub-parts corresponding to the objects (structural units) that compose a form
viewed as a parent-child hierarchical structure. The logical aspect allows understanding
both the form structure and meaning.

The physical aspect of a form is represented by a given form template. In this template,
the title of the form provides a general description of what is to be filled in. The placement
of the fields is often well studied and homogeneous information is in general contiguous.
Field captions are in general more explicit than underlying database attributes. The tem-
plate also provides instructions that represent contextual knowledge that is knowledge
about objets represented on the forms. Therefore, the form physical aspect can be useful
for identifying the objects contained in a form.

Now, we can define the notion of the form base representing a legacy (or operational)
database application. This base possesses for every form: its description, its hierarchi-
cal structure, and its instances. Formally, a form base is a triplet B(D,S, I), where D
represents a form description (i.e., both physical and logical aspects), S represents a hi-
erarchical structure of form and I represents their instances.
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3.1.4. Graphic Language of Form Description
In (Malki, 1999), we have presented a graphic language of form description (noted
GLFD). This language, that is a graphic interface, assists the user (or designer) in specify-
ing form description from concepts of the form model presented above. The idea consists
in identifying fields and structural units of the form (logical aspect) from its graphic rep-
resentation or form template (physical aspect).

We distinguish two definition shapes of the GLFD (graphic and declarative) that are
jointly usable.

3.1.4.1. Graphic Definition. It would be helpful to use the graphic definition of the
GLFD in order to facilitate the form description through its graphic interface while us-
ing the base concepts of the form model: group (or box), list (or table) and fields. This
graphic interface describes physical aspect of form while considering the structural units
as box (or table) composed with text, graphic and information (field). This identification
is sometimes enforced by separators (e.g., blanks, lines).

3.1.4.2. Declarative Definition. The base concepts of the form model used by the
graphic interface are expressed also under declarative specifications. These declarative
specifications describe the features characterizing every element (field, and structural
unit) of form reproduced graphically.

The syntax of this declarative specification is the following:
Box: <Name-Box>

Identify: <identify-Box>

Composition :{ <Identification-field>, <Text-Block>,

<Graphic-Block>,<Identify-Box>}

End-Box

Table :<Name-table>

Identify : <Identify-table>

column: 1/N

Line: 1/M

Field-Column or Field-line: < N◦−field> {<name-field>}
End-table

Field : <Name-field>

Identify : <Identify-field>

Type: integer/real/Boolean/character

Length: <integer>

Origin: System/User/computing <computing-rules>

level : <integer>

End-field

Let us take an example of the list specification “premium & indemnities ” of “CARD
OF WAGE” (see Fig. 3).
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Fig. 3. Example of specifation of table acquisition.

3.2. Insertion of Forms

In this step, we use a graphic language based on the form model concepts presented
above, for describing the form according both to their physical and logical aspects. In
the same way, a form dictionary is used in interaction with the designer. This dictionary,
which will be integrated in the form base, contains the meaning of fields (designation,
synonym, and rules of computed field). This dictionary is used to insure a presentation as
complete as possible for the form analysis.

For each form, we take several instances. These instances will be used with the formal
description of form as machine-analyzable source in order to facilitate the extraction of
the domain semantics.

3.3. Structuring of Forms

This process, that explores both physical and logical aspects of forms described by the
graphic language, identifies the structural components of form and their interrelationships
in order to construct the hierarchical structure of the form. It would be helpful to have a
precise picture of the hierarchical relationships of a form in order to clearly understand
its meaning and facilitate the extraction of the domain semantics.

This procedure, which is an automatic process and transparent to the designer, con-
structs the hierarchical structure in four steps:

– defining the root node whose name is the form’s title. All fields are reattached to the
root node;

– transforming in the first all structural units in node with level 1, i.e., their parent is
the root node;

– identifying the parent-child relationships among structural units. Because there are
several level of fields (e.g., 0, 1, 2, 3, etc.), this process identify recursively the sub-
structure (or sub-node) according to levels of their fields specified in the insertion process
of forms;
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Fig. 4. Hierarchical structure of the form “Card of Wage”.

– and simplifying the hierarchical structure while eliminating sub-structures that con-
tain only the text (or graphic) and calculated fields that do not contain interesting infor-
mation.

For example, the form “CARD OF WAGE” is restructured in hierarchical structure
(see Fig. 4).

4. Extraction of the Domain Semantics

Forms are often the most convenient interfaces for entering, changing, and viewing data
in database applications. Therefore, the most widely used data are gathered or reported in
forms. They are designed mostly with a deliberate attempt at user-friendliness and they
do not necessarily directly mirror the structure of the underlying database.

A deliberate effort of abstraction (i.e., description and structuring of forms: see section
above) is necessarily for making all the components of the form individually accessible,
and explicating their interrelationships as well as the constraints (or dependencies) on the
data they display. In this way, the forms of a given database taken as a whole can be used
to recover database semantics, especially with legacy systems. Indeed, with such older
systems, database applications often do not come with a conceptual schema, but only, for
example, with a relational schema.

In the relational model, semantics are specified not in the structure, but through con-
straints. Data dependencies are one kind of these constraints; where functional and inclu-
sion dependencies are of particular interest. Nowadays, relational databases are spread
everywhere, and many applications like reverse engineering, integrated access for in-
teroperable databases, knowledge based interfaces, migration to newer database man-
agement systems (DBMS), and improvement on the effective utilization of the data of
the organization require a deep knowledge on the semantics of these existing databases.
Unfortunately, many relational DBMS do not provide much support for specifying data
dependencies, and consequently, this semantics cannot be found in the schema. However,
since data dependencies are implicit in the extension of the databases, a solution to this
problem is to extract the dependencies by analyzing the extension.

The goal of this phase of extraction is to derive the relational sub-schema of form
from their hierarchical structure and their instances according the physical schema of
the underlying database. This process, in the first, identify relations and their primary
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keys respectively with regard to both structural units (or nodes) of form and underly-
ing database, then extract the functional and inclusion dependencies through both their
hierarchical structure and instances.

Since the forms group real objects (or structure units) which are manipulated by
end-user, this process of extraction does not necessarily restructuring the relational sub-
schemes representing these forms on the one hand, and facilitates the derivation of re-
lations as well as the identification of objects (or structure units) on the other hand.
Otherwise, it is not often true, when one takes only the physical scheme of database
as machine-analyzable source (Chiang, 1994; Petit, 1995). In addition, the using of form
instances reduces the time of extraction of domain semantics, with regard to approaches
that use database instances as machine-analyzable source (Chiang, 1994; Mannila, 1994;
Petit, 1995).

We start briefly by introducing the concepts of the relational model (Ullman, 1984).

4.1. Relational Model

In this sub-section, the basic relational concepts and terminology used in this paper are
reviewed. Details can be found in any textbook on the relational model, e.g., (Ullman,
1984; Elmasri, 1994).

A relation scheme is a pair <Ri, Xi>, usually denoted Ri(Xi), where Ri is a re-
lation scheme name, and Xi denotes a sequence of attributes. Each attribute of a re-
lation scheme is associated with a set, which is called its domain. We use the follow-
ing notational convention: if Ri(Xi) is a relation scheme with m attributes, we write
Xi = Ai,1, Ai,2, . . . , Ai,m. The domain for Ai,j is denoted by Di,j . A tuple for the
relation scheme Ri(Xi) is an element of Di,1 × . . .×Di,m.

A relation for a relation scheme Ri(Xi) is a set of tuples for Ri(Xi). If t is a tuple for
Ri(Xi) and Y is a subset of Xi, then t[Y ] denotes the subtuple of t corresponding to Y .

Let Ri(Xi) be a relation scheme, ri a relation for Ri(Xi), and Y a subset of Xi. The
projection of ri on Y , denoted by πY (ri), is {t[Y ]/t ∈ ri}.

A functional dependency (noted fd) over Ri is a statement of the form Ri: Y → Z ,
where Y and Z are subsets of Xi. A functional dependencyRi: Y → Z is satisfied by ri

if for any two tuples, t and t′, in ri, t[Y ] = t′[Y ] implies t[Z] = t′[Z].
A key for Ri is a subset Ki of Xi, such that Ri: Ki → Xi is satisfied by any ri asso-

ciated with Ri and there does not exist any proper subset of Ki having this propriety. A
relation scheme can have several candidates keys from which one primary key is chosen.
Therefore, in a relation, attributes can be classified into primary key, foreign keys, which
are keys in an other relation and non-key attributes. A primary key (or a sub-part of a key)
can be at the same time a foreign key.

In any algorithm that discovers fds from extension of the relations, it is important to
minimize redundant work, that is, the work of analyzing the tuples to obtain redundant
fds, because they can be derived from other ones by applying Armstrong rules (Arm-
strong, 1974). The focus is on the following derived fds:

1. Trivial fds rule: X → Y if Y ⊆ X .
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2. Augmentation rule: X → Y then XW → Y Z , if Z ⊆ W .
3. Transitivity rule: if X → Y and Y → Z , then, X → Z .
The presence of a fd can give rise to redundant information, which can be eliminated

by performing a decomposition. This observation has led to the definition of several nor-
mal forms of relational database (1NF, 2NF, 3NF, 3NFBCK). In our approach, we sup-
pose that relations are in 3NF.

Let Ri(Xi) and Rj(Xj) be two relations schemas. Let ri and rj be relations of
Ri(Xi) and Rj(Xj), respectively. An inclusion dependency (noted ind) is a statement of
the formRi.Y << Rj .Z , where Y andZ are ordered subsets of Xi andXj , respectively.
The inclusion dependencyRi.Y << Rj .Z is satisfied by ri and rj if πY (ri) ⊂ πZ(rj).
An inclusion dependency is key based if its right hand side is a key.

A relational schema is a pair < R,D >, where R is a set of relation schemes and D
is a set of functional and inclusion dependencies.

Let us take an example of relational schema of “Personnel” database from which we
apply our reverse engineering approach while analyzing their forms:

Employee (emp.id., name, birth-date, address, sex, m.s., number-chil., ssn,

accountid, nationality, recruitment-date),

Child (emp.id., name, birth-date, sex)

Holiday (hol.id, designation)

On-holiday (hol.id, emp.id, begin-date, end-date)

Element-Paye (payeid, designation, rate-number, type)

Payed (payeid, emp.id, date)

Sanction (sanc.id, désigantion, degree)

Punished (sanc.id. emp.id, sanction-date)

Diploma (dipl.id, designation)

Graduate (dipl.id, emp.id., obtain-date, University)

Rank (rankid, designation, category, section, level)

Having-rank (rankid, emp.id, begin-date, end-date)

Function (func.id, designation)

Having-function (func.id,emp.id,dept.id, begin-date, end-date)

Departure (dep.id, designation)

On-Departure (dep.id,emp.id, date, length)

Department (dept.id, designation, emp.id), Bank (bankid, name, address.)

4.2. Identification of Form Relations

The forms either permit the updating of relations in underlying database or represent a
view that is a joint of relations. Therefore, each field entry is generally linked to an at-
tribute of one relation in the underlying database. However, the identification of form re-
lations and their primary keys respectively, consists in determining the equivalence and/or
the similarity between structural units (nodes) of hierarchical structure and relations in
the underlying database. This is a basis point from a reverse engineering point of view
(Malki, 1999).
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A node of a form hierarchical structure may be either:
– equivalent to a relation in the underlying database, i.e., these two objects (node and

relation) have a same set of attributes;
– similar to a relation, i.e., its set of attributes is a subset of the one of the relation;
– a set of relations, i.e., its set of attributes regroups several relations in underlying

database.
Also, for dependent nodes (or form relation), primary keys are formed by concatenat-

ing the primary key of its parent whit its local primary key.
This process of identification is semi-automated because it requires the interaction

with the analyst to identify objets that do not verify proprieties of equivalence and simi-
larity.

While applying this process on the hierarchical structure of “Card of wage” and the
physical relational schema of underlying database, we extract the following relational
sub-schema:

Employee (emp.id., name, birth-date, address, sex, m.s., number-chil., ssn,

accountid, nationality, recruitment-date),

Payed (payeid, emp.id, date)

Having-rank (rankid, emp.id, begin-date, end-date)

Having-function (func.id, emp.id, dept.id, begin-date, end-date)

4.3. Extraction of the Functional Dependencies

The extraction of functional dependencies from the extension of database has received a
great deal of attention (see, e.g., Anderson, 1994; Castellanos, 1993; Mannila, 1994; Petit,
1995). The aim of the extraction of functional dependencies is to reduce the complexity
of extraction algorithms, that is exponential time with regard to the number of attributes
(left hand side of fd noted lhs), and polynomial with regard to the number of tuples of
relation in database (right hand side of fd noted rhs).

In our approach (Malki, 1999), we introduce two ways to reduce the time for ex-
tracting functional dependencies. The first one replaces database instances with a more
compact representation that is, the form instances. The second one is to use only the non-
key attributes as left hand side of functional dependencies, because, we suppose that the
relational schema is in the 3NF (where the primary key determines functionally the rest
of attributes, i.e., non-key attributes). In this condition, it is possible to infer a new fd
through non-key attributes and key attributes (i.e., non-key attributes → key attributes).
However, we consider the utilization of forms as sampling database for extracting domain
semantics.

Let La be the left-hand side (simple or composite) of a fd, that is, the determinant,
and Ra the right hand side (always simple). For every pair (La, Ra) all the tuples of the
relation must be analyzed to test the fd condition.

Now, we present the fundamental principles that permit to optimize the process for
extracting the fds:

– The possibleLa’s are ordered by number of attributes (i.e., non-key attributes). For a
relation R with non-key attributes A, B, C, the order would be: A, B, C, AB, AC, BC,
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ABC. This order guarantees that no La is analyzed until any subset of its component
attributes has been analyzed.

– For every possible La X that is analyzed, each key attribute of R is candidate as a
Ra of a possible Fd. However, each such attribute is proposed as a possible Ra only if
there is no previously found fd whose left hand side is contained by this La and whose
right hand side is equal to this Ra, otherwise, the pair (La, Ra) represents a redundant
fd (by augmentation rule) and Ra is not a possible but a positive right hand side for La.
In this way, only fds with minimal La’s are obtained. Furthermore, once a fd has been
discovered, all transitive fds that can be derived at that moment are computed. With this
mechanism, the analysis of the extension of the relation (sub-relation of form) is avoided
for many redundant fds.

– For each pair (La, Ra) representing a possible fd, the extension of the relation is
analyzed to test if it satisfies the Fd condition. This condition is checked simultaneously
for all possible fds (i.e., all possible Ra) on a La while the pairs of tuples ti, tj are
being retrieved. The problem is that to test the fd condition for each different value b for
La, every tuple in the relation must be retrieved in search of the same value b for the
condition of attributes composing La. If the search succeeds, then for each possible Ra

the corresponding attributes of both tuples are checked to see if their values match too.
– The sorting of the relations according La reduces the search of Ra.
The algorithm for extracting fds through sub-relation form is presented in (Malki,

2000), only the main parts are given below.

Algorithm 1. Extraction of the functional dependencies
Input:

RS: Relational sub-schema < R′(Y ),K′: primary key>

FB: Forms base < T : template, S: hierarchy structure, I : instance of R′
i >

Output:

FD: Set of fds: La → Ra

/La: attributes no keys and Ra s: key attributes/

FD := ∅
For each Relation R′

i

La := Xi −K′
i /the set of non-keys attributes/

For each Lak

Comp−Ra(X − Lak)

/it is key attribute under atomic shape for which La → Ra is no redundant/

If Ra then

Sort r′i(Lak)

Detect-fd (Lak, Ra, r
′
i, FD) /Test this fd. according to instances of form/

Endif

Transit-fd (Fd) /deduct all fds. while applying the rule of transitivity/

Endfor

Endfor

FAlgo
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Detect-fd (La,Ra, r, FD)

i := 1

n := card(r)

While Ra �= ∅ or i < n

If ti[La] = ti+1[La]

For each Raj

If ti[Raj ] �= ti+1[Raj ]

Ra := Ra−Raj

Endif

Endfor

Endif

i := i + 1

Endwhile

If Ra �= ∅
FD := FD + (La,Ra)

Endif

Endetect

While using non-key attributes, the number of candidates to extract a canonical func-
tional dependence becomes therefore linear with regard to the number of attributes. The
time complexity is then reduced to © (n |X | p ln p), where n = |Xi|, X is a the non-key
attribute and P is number of tuples in ri.

While applying this algorithm on the sub-schema of “Card of Wage” and their in-
stances, one finds the Fd: departmentid → Employeeid. These functional dependencies,
that are extracted, can be used for normalizing correspondents’ relational sub-schemas in
3BKCNF.

4.4. Extraction of Inclusion Dependencies

Once the extraction of the functional dependencies is achieved, one proceeds to the ex-
traction of the inclusion dependencies, which contain the majority of the information for
the identification of relationships between relations. The problem with the extraction of
Inds is well known (Chiang, 1994; Castellanos, 1993; Mannila, 1994; Petit, 1995). The
naive method of checking, for each part of relation with n attributes in the database, all
possible Inds, one by one, is particularly impossible, because there are n! possibles no
equivalent Inds. In order to reduce the set of possible Inds, Chiang et al. in (Chiang, 1994)
and Petit et al. in (Petit, 1995) use heuristics that only formulate Inds between relations’
key attributes. These possible inds will be verified by analyzing data instances in regard
with Ind definition.

In our approach (Malki, 1999), we formulate possible Inds between relations’ key of
relational sub-schema of form. The time of this process is more optimized with regard
to the other approaches ((Chiang, 1994) and (Petit, 1995)), because the possible Inds are
verified by analyzing the form extensions which are more compact representation with
regard to the database extension.
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The heuristics employed by the extraction process for proposing possible inclusion
dependencies are described in below.

– Two relations Ri and Rj , having the same primary key X , may be linked by a Ind:
Ri.X << Rj .X ,

– When the primary key X of a relation Ri is a foreign key x in an other relation Rj ,
then it is possible to have a Ind: Rj .x << Ri.X .

In addition, we apply some criteria, which verify the Inds proposed by analyzing data
instances of forms:

– For each formulated Ind, the extraction process must compare the sets of values
appearing in Ri.X and Rj .X according to the Ind definition,

– Redundant Inds can be detected by the inference rules of inclusion dependencies
(projection and transitivity) (Elmasri,1994), that is: If Ri.X << Rj .X and Rj .Y <<

Rk.Y hold, and Y is a subset of X , then the Ind: Ri.X << Rk.Y is redundant.
The algorithm of extraction of Ind is detailed in (Malki, 2000); we present hereafter

only the main parts.

Algorithm 2. Extraction of Inclusion Dependencies
Input:

RS: Relational sub-schema: < R′(X),K′: primary key>

SRS: Set of RS of Forms

FB: Forms base: < T : template, S: hierarchy structure, I : instance of R′
i >

Output:

IND.: Set of the Inds: R′
i.Xi << R′

j .Yj

Begin

IND:= ∅
For each R′

i of SRS

For each R′
j �= R′i of SRS

/Test of a possible Ind. joining two relations even having the key primary/

If K′
i = K′

j

Test-Ind (R′
j .K

′
i, R

′
i.K

′
i, IND) /According to Instance of form/

Else If K′
i =Foreign key(R′

j )

Test-Ind (R′
j .K

′
i, R

′
i.K

′
i, IND)

EndIf

EndForj

EndFori

Endalgo

Test-Ind (Ri.X,Rj .Y, IND)

If (Ri.X, Rj .Y ) �∈ IND /it is a Ind. no redundant/

ri.X := πX(ri) /The projection of ri on X/

rj .Y := πY (rj ) /The projection of rj on Y /

If rj .Y �= ∅ and rj .Y � ri.X

IND := IND + (Rj .Y << Ri.X)

EndIf
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If ri.X �= ∅ and ri.X � rj .Y

IND := IND + (ri.X << rj .Y )

EndIf

Transit-Ind (IND) /deduct all Inds. From the rule of transitivity/

EndIf

EndTest-Ind

In this algorithm, attributes of dependencies are the primary keys and foreign keys.
Thus, the time complexity is reduced to the test of the inclusion dependency on the form
instances.

The set of the Inds extracted from the relational sub-schema “Card of wage” is:
Having-rank.rankid « Rank.rankid
Payed.payeid « Element-Paye.payeid

Having-function.func.id «function.func.id

5. Transformation of Relational Schema into Conceptual Object Schema

Object-oriented technology is being widely used in software development these days. The
object-oriented data model is growing in popularity in the area of database development.
Consequently, there is also a growing interest in re-engineering relational databases to
object-oriented databases. Reverse engineering of relational databases is concerned with
the task of extracting structures corresponding to a particular conceptual model such as
the entity-relationship (ER) model, the extended entity-relationship (EER), the object-
oriented (OO) model, and so on (Behm, 2000; Farhrner, 1995b; Ramannathan, 1997;
Tari, 1997).

The fact that our approach uses database forms as machine-analyzable source, im-
plies that we first transform the relational sub-schemas of forms into object-oriented sub-
schemas. In the following, we merge the set of object-oriented sub-schemas in a global
object-oriented schema representing the conceptual schema of the underlying database.
The resulting global object-oriented schema must be validated as a rich and correct repre-
sentation of the application domain. As a target model, we use the object-oriented model
called HCB (Ayache, 1995) developed in our laboratory. It is presented hereafter.

5.1. The HCB Model

The HCB model is an object-oriented model with a three-dimensional representation of
objects. HCB is first a model of representation, because it allows the specification of the
object scheme, following three planes (Fig. 5a): structuring, communication and inheri-
tance, where each component is described separately and represents the projection of the
object on the corresponding plane. A simple representation of objects gives, in general,
a diagram composed of heterogeneous information and different link types. The compre-
hension and the exploitation of such schema are not easy because of the superposition of
the different perspectives. The HCB model aims first to offer an object schema, which
is coherent and easily exploitable. The model is called HCB because each perspective
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Fig. 5. a) The three planes of the model HCB; b) Representation of a class.

represents a specific verb. The structure is modeled by the verb Have because it speci-
fies what the object has. The behavior is modeled by the verb Communicate. Finally, the
inheritance perspective is modeled by the verb Be because it express what the object is.

5.1.1. Constructors of the HCB Model
The structuring of information is done using the following constructors to build composed
object types (Fig. 5b.):

– tuple: if a class contains component of different types, those latter will be structured
by the tuple constructors. The tuple is a structure of heterogeneous objects, where order
is not significant. The structure can be recursive since a tuple may be used to construct
another tuple.

– set: the set constructor is a mechanism allowing the creation of a “set-object” from
homogeneous component objects of same type, where the order of object member is not
significant.

– list: the list constructor allows the grouping together of homogeneous objects, where
the order is significant and an element may be repeated.

5.1.2. Composition, Aggregation and Inheritance
The composition links introduce a semantic of cardinality between an object and its com-
ponents (attributes). To keep this information, we propose the following representation:

– a single-valued link is represented by a simple arrow (noted →),
– a multi-valued link is represented by a double arrow (noted →→), and we use a

triple arrow when the values form a list (noted →→→),
– a link of inheritance (i.e., link of specialization/generalization) is represented by a

double links oriented from subclass to superclass,
– in addition, the concept of role allows the modeling of crossed references between

entities of the system. The HCB model generalizes the notion of role and uses it any time
that the attribute value is a reference to an object belonging to another class(e.g., Empid
of department class: Fig. 6a).

The dynamic part of an object overlays two aspects, calculation (i.e., methods with
communication messages) and behavior (i.e., life cycle). We distinguish two categories
of methods:

– interfaces methods, which allow access to values of attributes. We can write, read,
modify, and perform other access functions on attribute values;
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Fig. 6. a) Binary association; b) N -ary association.

– calculation methods allowing computation of attribute values. Calculation methods
send messages to access instances.

5.2. Transforming Form Relational Sub-Schema into Object-Oriented Sub-Schema

Formally, a schema mapping of a source schema SM1
1 defined on a data model M1 to a

target schema SM2
2 defined on a model M2 may be defined as a transformation T such

that T (SM1
1 ) = SM2

2 . The transformations are usually a collection of rules that map con-
cepts from the source data model to the target data model (Hainaut, 1995; Ramannathan,
1997).

The proposed methodology of transformation, which is a mixture of key-based and
Ind-based approaches (Farhrner, 1995a; Chiang, 1994; Petit, 1995), consists in identify-
ing the components of the object sub-schema in the HCB model through the relational
sub-schema. However, this process that concerns all three planes of HCB model (i.e.,
structuring, and inheritance) permits that:

– the identification of object classes and their composition relationships will be pre-
sented in the structuring plane;

– the identification of inheritance relationships will be presented in the inheritance
plane;

– and the extraction of the dynamic aspect of object classes from the forms will be
presented in the communication plane. This process will be investigated subsequently in
other work.

5.2.1. Identification of Object Classes
In order to simplify the translation process, we assume that all relations (or relation
scheme) are in the 3NF. The reason for this is to ensure that each relation corresponds to
exactly an object class. These object classes have the same attributes as those contained
in the relations. Thus, we define a class-relation to be a relation that directly maps to an
object class.

5.2.2. Identification of Associations
In the HCB model, we identify two types of associations: binary and n-ary associations.
These associations are represented by reference links (i.e., role attribute) and association
classes respectively.
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5.2.2.1. Binary Associations. The foreign keys of class-relation and the corresponding
Inds identify a binary association between class-relations. Therefore, this referential link
is translated in role attribute in the HCB model. The target will be, in general, a role
attribute typed by the other class. As the association is not directed, then the obtained
represented comprises crossed references, as shown in the following schema (Fig. 6a).

While applying this transformation rule on the two class-relations and their Inds be-
low, we generate the following object schema (see Fig. 6a).

Employee (emp.id., emp.name, birth-date, address, sex, m.s., number-children, ssn, accountid,

nationality, recruitment-date),

Department (deptid, design, empid),

IND: Department.empid « Employee.empid.

5.2.2.2. n-ary Associations. Every class-relation whose primary key is entirely com-
posed of foreign keys is a class that represents an association (noted association-class)
between all the classes corresponding to the class-relation that foreign keys refer to. This
n-ary association may be translated by an attribute tuple. In this transformation step,
an option must be taken and the possibility is let to the analyst to choose one of the
transformation rules. Although the creation of association-class transforming the n-ary
association can become indispensable.

The relation Having-function (funcid, empid, deptid, beginning-date, end-date) is
translated into Association-class as show in Fig. 6b.

5.2.3. Identification of Inheritance Relationships
Two forms of relational structures may indicate an inheritance relationship:

– In the first case, every pair of class-relations (CR1, CR2) that have the same pri-
mary key (noted X) and the corresponding Inds (i.e., CR1.X << CR2.X) may be
involved in an inheritance relationship, i.e., CR1 “is-a” CR2. In Fig. 7a, the relations
Employee and Child have the same primary key ( empid) and the corresponding Ind:
Child.empid « Employee.empid, therefore Employee is the superclass and Child is a sub-
class.

– In the second case, only one class-relation is considered to which an inheritance
relationship may be generated. For example, in the relation Employee, the attribute rank
is relevant only for the teacher employee (i.e., EmpType=“T”) and the attribute Function
is relevant only for administrative employee (i.e., EmplType=“A”). The relation contains

Fig. 7. a) on two relations b) on only one relation.
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null value for rank attribute for all administrative employees and null values for Function
attribute for all teacher employees. This is an example of instances of two subclasses
being stored in the single relation.

The identification of this form of inheritance relation raises the knowledge domain
from database (Piatetsky, 1991). There are several knowledge discovery algorithms that
can identify rules from relational database (Piatetsky, 1991). By using one of those algo-
rithms on the Employee relation, for instance, we can identify the following rules:

EmpType = “T” =⇒ Function = Null (1)
EmplType = “A” =⇒ Rank = Null (2)
Such types of rules are typically called “strong rules” since they hold for all the in-

stances of the relation. In effect, these algorithms can be used to identify the discrimi-
nate attribute of the generalization by finding rules whose right hand side is of the form
A =Null where A is some attribute name. Following is the generalized procedure for
identifying sub-classes once the characteristic rules have been identified.

As an example, the rules ((1) and (2)) permit to identify the hierarchy of generalization
with two sub-classes (see Fig. 7b).

Regarding the transformation rules presented above, we propose an algorithm that
transforms a form relational sub-schema into an object-oriented sub-schema.

Algorithm 3. Transformation of a relational sub-schema into OO subschema
Input :

RS: Relational sub-schema: < R′(X),K′: primary key>

FB: Forms base: < T : template, S: hierarchy structure, I : instance of R′
i >

IND: Set of Inds.: R′
i.Xi << R′

j .Yj

Output:

OS: Object-oriented sub-schema: < C: classes, L: composition, H : inheritance>

C := ∅; L := ∅; H := ∅;

For each R′
i relation

Create_class Ci

C := C +Ci /each relation becomes a Class/

Attachment (Xi, Ci) /Attachment of all attributes of R′
i to Ci/

Endfor

For each R′
i relation

If ∃ Ind: R′
i.Xi << R′

j .Yj

If Xi is Primary Key of R′
i

H := H + (Ci−isa→ Cj) /An inheritance of two class relations (Ci, Cj)/

Else If ∃k′
i ∈ K′/Xi ⊂ k′

i

If k′
i groups together a partition of n foreign key referencing for example the following rela-

tions: R′
i,1 . . . R

′
i,n

create_association_class Ca

C := C +Ca /Creation of an association class (i.e., Association n-ary)/

For each R′
i,l: Cl /Class participant to the association/

create_attribute Tl of Ca /typed Role by Cl/
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Fig. 8. Object-oriented sub-schema of “Card of wage”.

L := L + (Ca – role → Cl)

Endfor

Else If Xi � k′
i

create_attribute Ti /typed Role Cj /

L := L + (Ci-role→ Cj) /generation of a binary association (role)/

create_attribute Tj /typed Role Ci/

L := L + (Cj-role→ Ci)

Else Identify the strong rules: (Xa = value) =⇒ Xi =Null

create_super-class Ch whose a set of attributes = X − ∪Xi

For each Xi

create_subclass Ch,i

H := H + (Ch,i-isa→ Ch) /An inheritance of only one Relation/

Endfor

Endif

Endfor

Endalgo

Fig. 8. presents the transformation of the relational sub-schema of “card of wage ”
into an object-oriented sub-schema.

5.3. Integration of Object-Oriented Sub-Schemas

In this phase of reverse engineering using forms as machine-analyzable source, object-
oriented sub-schemas are derived from relational sub-schemas. These object sub-schemas
will be merging into a global object-oriented schema that represents the whole underly-
ing database. However, we apply the techniques of integration schema. We assume, in
agreement with (Batini, 1986) that the integration schema process consists in two phases:
comparison and conforming of schemas, and merging and restructuring of schemas.
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The comparison phase performs a parities comparison of objects (of the sub-schemas)
and finds possible objects pairs, which may be semantically similar with respect to some
proprieties, such as synonyms (name of attribute and class) of equal primary key attribute
and equivalent of classes. The conforming is a variety of analysts assisted techniques that
are used to resolve conflicts and mismatched objects.

The merging and restructuring phase generates an integrated schema from two com-
ponent schemas that have been compared. The intermediate results are analyzed and re-
structured in order to eliminate the symmetrical and transitive relationship between ob-
jects.

In addition, we consider only one pair of schemas at a time; further, the result of
integration schema is accumulated into a single schema, which evolves gradually towards
the global object schema. For more details see (Malki, 2000).

5.4. Validation

The key question to be answered by validation is: how faithfully will a legacy database be
represented by the global object schema produced from reverse engineering process? A
schema is correct if all concepts of the underlying model are used correctly with respect
to syntax and semantics (Chiang, 1994; Farhrner, 1995b; Hainaut, 1995). If all database
instances that can be represented in the source schema can also be represented in the
target database schema and vice versa, the process is information preserving.

Our validation process is completely interactive. Human intervention will be required
in the verification and conformation of the results. In this process, that is not determinist,
some conceptual construction will be examined either to be validated or to be put back in
reason. However, it consists in identifying the hidden objects, reiterating the restructuring
process in order to eliminate the symmetry and the transitivity of composition and inheri-
tance relationships and insuring the consistency of the global object-oriented schema. For
more details, see (Malki, 2000).

6. Conclusion

A methodology for performing reverse engineering of a relational database towards an
object-oriented system is proposed. Our approach that requires the interaction with users
(i.e., analyst or designer) uses the information extracted from form structures and in-
stances as machine-analyzable source for database reverse engineering.

This methodology does necessarily a model that allows abstracting database forms
and a framework that allows to analyzing forms in order to extract structure informa-
tion as well as domain semantics. Forms are used in combination with other semantic
sources, especially relational database schema and uses “head-knowledge”. The issues
with regard to the validation and verification of the extraction and transforming process
are also discussed.

An experimentation of this method has been achieved in the setting of the “Personnel
Management” system of our university. This approach can supplement existing database
reverse engineering techniques where forms constitute important uses of the database.
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There are a number of possible extensions to this research:
– we have used techniques of datamining for identifying inheritance relationships;

these techniques can be generalized for extracting data dependencies;
– for the migration toward Object-oriented systems, we have made only the extraction

of the static aspect (i.e., data semantic and conceptual structure), it remains to extract the
dynamic aspect in order to translate data and programs into Object-Oriented system.
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Objektini ↪u schem ↪u formavimas iš esam ↪u realiacini ↪u bazi ↪u
vadovaujantis formomis

Mimoun MALKI, André FLORY, Mustapha Kamel RAHMOUNI

Straipsnyje nagrinėjamas uždavinys, kaip, vadovaujantis vartotojui pateikiamomis rezultat ↪u
formomis, atkurti reliacini ↪u duomen ↪u bazi ↪u schemas. Sprendžiant š ↪i uždavin ↪i siūloma pasinaudoti
ir rezultat ↪u form ↪u struktūra, ir j ↪u turiniu (konkrečiais duomenimis). Šitaip galima atkurti realiacini ↪u
bazi ↪u poschemius ir j ↪u ribojimus. Gautus realiacinius poschemius siūloma transformuoti ↪i objek-
tinius poschemius ir, agreguojant objektinius poschemius, suformuoti atitinkamos duomen ↪u bazės
vis ↪a objektin ↪e schem ↪a.


