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Abstract. Filtering of feature matches is heuristic method aimed to reduce the number of feasible
matches and is widely employed in different image registration algorithms based on local features.
In this paper we propose to interpret the filtering process as an optimal classification of the matches
into the correct or incorrect match classes. The statistics, according to which the filtering is per-
formed, uses differences of the geometrical invariants obtained from ordered sets of local features
(composite features) of proper cardinality. Further, we examine some computationally efficient im-
plementation schemes of the classification. Under the assumption of Gaussian measurement error,
the conditional distribution densities of invariants can be approximated by well-known linearization
approach. Experimental evidences obtained from fingerprint identification, which confirm viability
of the proposed approach, are presented.
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1. Introduction

The subtask of image registration is common in a variety of applications related to com-
puter vision, such as biometric identification (Ratha et al., 1996), aerial image analysis
(Hsieh, 1999), building a mosaic image from a sequence of partial views (Can, 1999),
structure from stereo vision (Williamson, 1998), motion analysis (Zheng, 1995), and
model-based object recognition (Olson, 1999). Huge amount of publications devoted to
this topic indicates that until now there is no single image registration technique suitable
for all applications with their different requirements. On the other hand, there is a neces-
sity for unifying the approaches to the image registration, thus creating a regular way to
improve a particular registration technique, and help to understand the common points
in different image registration algorithms. In this paper we present one of such common
approaches, namely, the interpretation of the feature pairs filtering, a supplemental proce-
dure, which could be applied in many different image registration algorithms as statistical
classification task.
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In our previous paper (Malickas and Vitkus, 1999) we have presented use of the re-
cently proposed feature consensus method (Shekhar et al., 1999) for fingerprint image
registration. The method is highly computationally efficient, which is crucial for bio-
metrics applications. We have used classical fingerprint minutia features (Hong et al.,
1998) described by position and direction attributes. While in general the transformation
relating two fingerprints of the same finger is non-rigid and non-linear, rigid linear trans-
formation was selected as a reasonable starting point. A pair of corresponding oriented
points from two images is sufficient to estimate three parameters of rigid transformation,
i.e., 2D rotation angle and 2D translation vector. It appears that performance of the fea-
ture consensus with the minutiae features is unacceptable. Only the usage of composite
line features, composed of two minutiae features, and application of feature pair filter-
ing with some attributes invariant to application of rigid transformation enables to reach
practical acceptability of the registration method in fingerprint identification tasks.

Our search for optimal parameter settings for the fingerprint recognition algorithm,
and analysis of approaches to image registration published during the past twenty years,
lead us to some generalizations, allowing to distinguish the process of discarding non-
corresponding feature pairs using invariants as relatively independent subtask, which may
be implemented, or is implemented in some form in the most of existing image registra-
tion algorithms. Matches filtering may be formalized as statistical classification task so
powerful statistical pattern recognition approaches could be used to optimize it.

2. General Formulation of Feature Pair Filtering Approach

To start, we overview the image registration techniques to which the presented approach
could be applied. We are mostly interested in the situations where images are produced
by certain imagining devices called cameras. These images represents the 2D projec-
tions of 3D world scenes. The image registration task may arise when there are two
images representing two different views of the same scene caused by different location
and orientation of the camera relative to the scene. The task is to estimate the geomet-
ric transformation that aligns the two images, and depending on the imagining situation,
could belong to different groups of 2D transformations. Representatives of such groups
are the rigid transformation group which consist of 2D rotations and translations, the sim-
ilarity group which is rigid transformation plus uniform change of scale, and the affine
transformation group which includes general 2D linear transformations plus translations.

Since the image is formed by projecting 3D world onto the plain, then transformation
groups mentioned earlier only approximately describe the alignment of the two images.
Moreover, in some applications the objects represented in the two images may undergo
some deformations themselves, or the two images may represent different (but similar
in shape) objects. In these more complicated situations the linear transformations could
also satisfactorily align the images. While in some medical applications (Lester et al.,
1999) it is necessary to estimate non-linear deformation which aligns, for example, two
successive slices of the object in 3D shape reconstruction.
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Another class of applications, which should be considered is the model-based object
recognition where the 3D model of the object should be aligned to all object instances in
the 2D image. The alignment transformation belongs to the 3D-to-2D projection groups,
such as orthographic, weak-perspective and perspective projections. Alignment of the 3D
model to the 2D image is a more complicated task, but the techniques used for this task
are usually applicable to simpler 2D-to-2D or 3D-to-3D alignment tasks.

Above, we have described different situations where the alignment task could arise.
Now we shall define the class of alignment algorithms to which the approach presented
in this paper is applicable. First of all, the image registration algorithm should be based
on local image features. These algorithms employ separate image preprocessing stage to
extract the local features, e.g., some distinguished points, edge fragments etc. When the
coordinates and other attributes of those features are recorded, the rest of information in
the two images is discarded and registration algorithm is based entirely on the two sets of
the local image features. The feature extraction stage falls outside the scope of this paper,
and we simply suppose that the feature sets of certain type are given in advance. We will
call these features as basic features. For the sake of simplicity, we will suppose that the
image registration algorithm is provided with the homogeneous sets of the features, i.
e., all features are described by the same set of attributes and are of the same type, for
example, points or lines or straight edge fragments, etc.

The registration algorithms should also use local feature pairs from the two images
to estimate the transformation parameters. This implies explicit or implicit recovery of
feature correspondence. Thus we should exclude the truly correspondenceless methods,
that, for example, use local features, but the transformation parameter recovery is based
on the distribution functions of the local feature attributes (Govindu, 1999). Other details
of the registration algorithms are mostly irrelevant.

In the following we introduce some definitions. Let U = {um, 1 � m � M} be a
first set of the basic features. Each feature is characterized by the position measured in a
coordinate frame F1 and possibly by a set of some other attributes. Let V = {vn, 1 �
n � N} be another set of basic features, that are characterized by the position measured
in a coordinate frame F2 and possibly by the same set of attributes as in feature set U . Let
τ : F1 → F2 denote the alignment transformation for two coordinate frames belonging
to a transformation group T .

Let us call a pair of the features (um, vn) a feature match. A set of feature matches
constitutes matching. A correct match is the match (um, vn) when a featureui is correctly
matched to its corresponding feature vj from the other feature set V .

A composite feature of cardinality k is an ordered set or k-tuple of k basic features.
The composite features are characterized by the attributes of the basic features that con-
stitute the composite feature. But more important is the possibility to compute new at-
tributes, which are invariant to the action of the transformation group T . The match
(um,vn) of two composite features um = {um,i, i = 1, 2, . . . , k} and vn = {vn,i, i =
1, 2, . . . , k} of cardinality k, is a set (um,vn) = {(um,i, vn,i), i = 1, 2, . . . , k} of the k

matches of basic features that constitutes the composite features. It is important to note
that the composite feature match is correct if all basic feature matches, which constitute
that composite match, are correct.
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One more definition is necessary before we proceed further. Estimation of transfor-
mation parameters is based on equations relating the attributes of basic features from
the different images. Depending on complexity of the basic features and transformation
we need some minimum number r of basic features to form sufficient number of equa-
tions in order to recover transformation parameters. Complexity of the basic features and
transformation here is measured by the number of geometric attributes and parameters,
respectively. We call composite features having cardinality r as the minimal composite
features and the matches of the minimal composite features as the minimal composite
matches.

Now we can estimate the number of the minimal composite matches, which could
be considered in the worst case for recovering the correspondence and estimating the
transformation parameters. Let r is a minimum number of basic feature pairs sufficient to
estimate transformation parameters. Then from feature set U we can form Cr

M different
subsets of size r. The basic features in each subset could be ordered in r factorial (r!)
different ways. So the total number of ordered subsets or minimal composite features of
cardinality r, that could be formed using basic features from the first set U , is K = Cr

Mr!.
Similarly, L = Cr

N r! is the number of minimal composite features that could be formed
from the second basic feature set V . Then, the total number of the minimal composite
matches is KL. Let only X (X < M and X < N ) basic features has corresponding
features in the other image, then J = Cr

Xr! composite features of cardinality r are com-
posed exclusively by these X basic features and have corresponding composite feature
in the other image. The ratio between the total number of composite feature pairs and the
number of pairs representing correct matches is

RT = KL/J =
(X − r)!M !N !

X !(M − r)!(N − r)!

=
M · (M − 1) . . . (M − r + 1)N(N − 1) · . . . · (N − r + 1)

X(X − 1) · . . . · (X − r + 1)
.

This ratio reflects complexity of the correspondence establishment task. Let ρ = MN/X

is the ratio between the total number and the number of correct basic feature matches, i.e.,
ρ represents initial complexity of correspondence establishment between basic features.
Then, having in mind, that r << M and r << N , RT ≈ ρr. It means, that corre-
spondence establishment complexity grow exponentially with the growth of composite
features cardinality r. Even in the best case, when all features have corresponding ones
in other image, i.e., when X = M = N and ρ = M , the growth of the ratio RT is
tremendous in typical applications. For example, in our fingerprint identification system
the extracted minutiae numbers M or N are scattered in the interval 20 ÷ 40, and the
value of ρ is distributed in the interval 40 ÷ 100. Consequently, in the case of r = 2, the
ratio RT can reach ten thousands. Such amount of outliers (false matches) in relation with
inliers (correct matches) is too large a burden for the most image registration algorithms.
This was proven under the assumption of bounded error in feature attribute measurements
for the most popular registration algorithms in model-base object recognition field (Grim-
son, 1992; Grimson, 1990). And this is why in all proposed systems some techniques of
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complexity reduction are introduced. Basic feature labeling (Huttenlocher, 1987), group-
ing (Jacobs, 1989; Lowe, 1987) are the examples of techniques aimed to reduce the total
number of hypothetical matches in different recognition systems. While they give promis-
ing results, they are rather sophisticated and heuristic (as grouping by Jacobs), or should
be implemented in feature extraction algorithms to produce more complex basic features
(as various feature labeling techniques).

There is more simple and regular technique for reduction of the number of hypo-
thetical matches based on composite features redundancy. This is the decomposition ap-
proach proposed by Olson (Olson, 1999). To explain the approach, suppose that A is a
set of all minimal composite matches of cardinality r. The set A may be represented
as a sum A = ∪Aα of its subset Aα indexed by all composite matches α of lower
cardinality then r, for example r − 1. The subset Aα consists of all minimal compos-
ite matches that include the composite match α. For example, in the case of cardinal-
ity r − 1, the subset Aα contains all composite matches µij = {α&(ui, vj)}, where
i = 1, 2, . . . ,M, j = 1, 2, . . . , N , and (ui, vj) 	∈ α, i.e., each match µij contains the
same r − 1 matches, that constitute composite match α, plus one match from the rest
of KL− r + 1 possible matches. The correspondence establishment and transformation
parameters estimation using only hypothetical matches from subset Aα is considered as
solving a sub-problem. This sub-problem is much easier since in Aα there are much less
matches then in the whole set A, but the sum of elements in all subsets is larger than the
cardinality of the set A, since the subsets Aα partially overlap. The trick is to exploit the
redundancy which exists in composite matches. If α is a correct match for some object
then this object will be detected when solving the sub-problem Aα. But the same ob-
ject could be detected when solving another sub-problem Aβ . labeled by other correct
match β which relates other r − 1 features of that object in first image with correspond-
ing features from the second image. Since there is large number of such equivalent sub-
problems, it can be used the common randomization technique (Fischler, 1981; Olson,
1997) to limit the number of sub-problems solved while maintaining a low probability of
failure.

In the method advocated by this paper reduction of hypothetical matches is achieved
by using supplemental filtering process, which is carried out before the main registration
algorithm. The matches filtering is based on the feature attributes, called for the sake of
simplicity as invariants, that are invariant to the action of the particular transformation
group. We will consider only invariants which are functions of the coordinates or other
geometrical attributes of basic features. We call them geometrical invariants to distin-
guish them from the invariants of other modality, e.g., color, texture type, feature type,
etc., that could be provided by feature extraction process. In general case the invariants
are the functions of the attributes of several basic features. Geometrical invariants for the
most interesting transformation groups and types of the basic features are well known
(see for example (Weinshall, 1993)). As with the transformation parameter estimation
discussed above, for each basic features type there is a minimum number n of basic fea-
tures necessary to form an invariant function. If we increase this basic feature number n it
is possible to form additional invariants, thus by increasing the cardinality of composite
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features we could obtain more invariant attributes characterizing these features. More-
over, any function of invariants is also invariant to the action of the same transformation
group. Consequently there is virtually infinite number of invariants granting possibility
to make the best choice for particular tasks.

For example, consider 2D space and rigid transformation group, which includes rota-
tions and translations. It is well known that these transformations preserve the distances
between the points and the angles between the lines. Thus, if we have composite feature
constituted by two points we can calculate one invariant distance between the points, if
we have three points then we can calculate three distances using three pairs of points, and
three angles using three pairs of lines connecting the points. Moreover, we can compute
the area of the triangle, which is also invariant to the action of rigid group, but we need
all three points to calculate that invariant. If we have the so-called oriented feature points,
i.e., points additionally characterized by direction angle, then having composite feature
of cardinality 2 we could calculate not one, but three useful invariants: the distance be-
tween the points and the two angles between the line connecting points and the direction
vectors of the two points.

Thus, if we have the correct match of two corresponding composite features, then the
same invariants calculated from the two features should coincide, provided the measure-
ments are done without errors. In case of the measurements with errors, the calculated in-
variants from the corresponding features would be equal with some degree of uncertainty.
Having a proper model of propagation of uncertainty from the attribute measurement er-
ror to invariant calculations, one can introduce invariant similarity measure, and use it to
discard the incorrect matches in order to reduce the ratio of false to correct matches.

Below we describe a regular way to apply this scheme. Let the cardinality of minimal
matching is r and there is no invariants to reduce the outlier/inlier ratio, or the invariants
calculated from the minimum composite features are insufficient to reduce this ratio to an
acceptable degree. Then it is possible to consider composite features and matches having
r + 1 or, more generally, r + c cardinality. The composite features of higher cardinality
inherits the invariants from features of lower cardinality, yet they give opportunity to
compute other invariants, which can serve as additional constrains to detect and discard
more incorrect matches.

In fact the filtering could be regarded as a traditional statistical classification task.
Suppose we judge about the similarity of two invariant values looking if their difference
is close to zero. The difference (or differences of several invariants) is random variable(s).
The conditional distribution of invariant difference in case of correct match and false
match are quite different as would be demonstrated in the following sections. Thus using
the differences of appropriate invariants obtained from a composite feature match we can
assign this match to correct or false match class in some statistically optimal way.

3. Two Ways of Incorporation of Matches Filtering

There are essentially two practical ways to incorporate the feature match filtering into the
registration algorithms. Both have their implementation drawbacks and advantages.
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The first way is to use the higher cardinality composite feature matches exclusively
for filtering purposes in order to discard the incorrect matches of lower cardinality. This
is based on the fact that the composite feature match of cardinality k can be correct only
if all k basic feature matches, which constitute the composite match are correct. Thus,
if we take any subset of lower cardinality l < k, then this composite match also would
be correct, if the composite match of cardinality k is correct. In this form the matches
filtering could be adopted by any registration algorithm with minor modifications of the
algorithm.

We shall describe the filtering process for the case when composite matches of car-
dinality r + 1 are used to filter the composite matches of cardinality r. Generalizations
are straightforward. Suppose we have K and L composite features of cardinality r in
the two feature set. The total number of hypothetical matches is equal to KL. Let the
construction of composite features of cardinality r + 1 is done by adding to the end
of each composite feature of cardinality r an additional basic feature. Thus from each
composite feature of cardinality r we could construct M − r and N − r new composite
features of cardinality r + 1 in first and second sets respectively. The total number of
hypothetical matches of cardinality r+1 will be approximately equal to KLMN , where
M and N are the numbers of basic features in two images. Then the filtering process
could be produced as follows. Let {αp} is a set of invariants, that could be calculated
using composite feature of cardinality r+1. And suppose we have the procedure accord-
ing to which the composite matches of cardinality r + 1 are assigned into correct and
incorrect match class. The number and exact form of the invariants and specific classifi-
cation procedure at this moment are unimportant. Let each cell of 2D accumulator array
A = {ak,l, k = 1, 2, . . . ,K; l = 1, 2, . . . , L} is associated with one of KL composite
matches of cardinality r. The array is initialized by zeroes. Recall, that each composite
feature of cardinality r+1 is an extension of some composite feature of cardinality r and
therefore each composite match of cardinality r+1 is related with the match of cardinal-
ity r from which it was constructed. As was discussed earlier, if the match of cardinality
r+1 is assigned to correct match class, then related match of cardinality r should also be
considered as correct match. So each correct match of cardinality r + 1 casts a vote for
its related match of cardinality r into the associated accumulator element. When voting
procedure is finished, the correct matches of cardinality r are the matches that are asso-
ciated with non zero accumulator elements. And only those matches should be used in
the subsequent registration procedure. It should be mentioned that in most existing recog-
nition systems based on geometric hashing this filtering is inefficient (Grimson, 1991).
Filtering appears to be more effective if we decide that match of cardinality r is correct
when associated accumulator element exceeds non zero threshold. But the selection of
this threshold is out of scope of this paper.

The most known algorithms which use such approach are object recognition algo-
rithms based on indexing or geometric hashing scheme. (Hummel, 1988a; Lambdan,
1988a; Lambdan, 1988b; Costa, 1990; Tsai, 1993; Tsai 621). In fact, these algorithms
use the feature matches filtering together with decomposition into the sub-problems and
very efficient way of implementation, which will be described below. Computational ef-
ficiency mades this scheme very popular in the object recognition field.
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We illustrate the scheme for 2D basic feature points and affine transformation group.
In order to recover the 2D affine transformation, it is sufficient to have three correspond-
ing point matches. Using three points we can form the affine coordinate system and rep-
resent all other feature points by their two coordinates in this frame. For example, if we
take three non collinear points x1, x2, x3 in the plain and place zero point of coordinate
system in x1, then any point x of the plain can be represented uniquely by two coordinates
(a, b):

x = a(x2 − x1) + b(x3 − x1).

It is easy to show, that if we apply the affine transformation τ to all points x′ = τx, and
again select the same three transformed points x′

1, x
′
2, x

′
3 to form the basis in transformed

plain, then affine coordinates of any other transformed point x′ do not change:

x′ = a(x′
2 − x′

1) + b(x′
3 − x′

1).

Three basis points plus a fourth point constitutes a composite feature of cardinality 4. The
affine coordinates of fourth point are two invariants, that are used to filter hypothetical
composite matches of cardinality 4. But to recover the 2D affine transformation param-
eters only three pairs of corresponding points are neccessary. So in geometric hashing
schemes the composite matches of cardinality 4 are used to filter matches of triplets form-
ing the basis. Note, that efficient implementation scheme described in following section
introduces some discretization errors.

In the following we demonstrate how to incorporate the hypothetical matches filtering
into the registration algorithm (Gold, 1998) from rather different class of algorithms that
uses some global optimization techniques. We have implemented this algorithm antici-
pating that it will facilitate the analysis of our fingerprint image registration algorithm,
since it is too slow to be used in biometrics applications. This is an elegant algorithm,
which uses deterministic annealing to escape from local minimum, and softassign tech-
nique to satisfy the assignment matrix constraints, and simultaneously recovers feature
correspondences and transformation parameters. The algorithm minimizes the following
objective function:

E(m,T,R) =
M∑

j=1

N∑
k=1

mjk ‖uj − T −Rvk‖2 − α
M∑

j=1

N∑
k=1

mjk,

where T and R denotes 2D translation and rotation transforms, respectively, and coef-
ficients mjk represents feature correspondences (mjk = 1, if the feature point uj cor-
responds the feature point vk, otherwise mjk = 0). Although some examples presented
in the literature (Gold, 1998) look similar to the fingerprint minutiae point matching,
nevertheless, we have not succeeded in selecting the proper parameter values, and the al-
gorithm always converges to spurious local minimum, except for the cases when the two
minutiae sets coincide. The reduction of hypothetical matches should influence favorably
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the algorithm, or at least its convergence rate, and speed it up by excluding large amount
of calculations. The feature match filtering could be realized in very similar manner to
that described in the beginning of this section. Let the matrix {njk} having the same size
M × N accumulates the votes for minutiae features matches. Using the three invariants
mentioned above (Malickas and Vitkus, 1999), we can classify the composite matches of
cardinality two into the correct and incorrect ones. The composite match of cardinality 2
is an ordered set of only two minutiae matches. So the correct composite match votes for
one of those two minutia matches (let it be the first minutiae match) as feasible match,
and adds the votes into the appropriate element njk . When all votes are casted, the ele-
ments njk that exceed some threshold will be equaled to 1, otherwise to 0. Formally, to
incorporate the filtering into the optimization algorithm, we should replace the term mjk

in the objective function by the product mjknjk . In practice the algorithm should simply
check the element njk before it produces any calculations related to the mjk term. The
algorithm should skip all calculations and assign zero to the term mjk, if njk = 0.

The other way to incorporate the filtering is to modify the registration algorithm for
using the composite feature of higher cardinality not only in filtering stage, but also in a
further registration procedure. It should be noted that such modification is always possi-
ble, since composite features of lower cardinality, which were used in the original regis-
tration algorithm, bear less information, yet are sufficient to recover the transformation
parameters. Thus, composite features of higher cardinality, which include all informa-
tion of the lower cardinality features, will provide even more information to the modified
algorithm.

The main disadvantage of this approach is the exponential growth of hypothetical
matches which will affect not only the filtering stage, as in the previous approach, but
also the main registration algorithm which may be more computationally demanding.
Suppose, we use composite features of cardinality r + 1, instead of using composite
features of cardinality r. Then the number of composite features will increase by the
factor M−r and N−r in the first and second image, respectively, and the total number of
the hypothetical matches will approximately increase by the factor MN . Consequently,
using this approach it is an urgent necessity to incorporate the efficient implementation
algorithms described in the next section. For the algorithms which use computationally
expensive global optimization, similar to those described in the previous paragraph, this
approach could be unacceptably slow.

One of the advantages of this approach is the possibility to employ the additional
information of composite features of higher cardinality. For example, if we have more
than minimum number of points or other features, we can recover the transformation
parameters more precisely.

To illustrate the second approach, we present the modification of the registration al-
gorithm based on Hough transform (Ratha et al., 1996), which we have implemented in
order to compare its efficiency with feature consensus algorithm (Malickas and Vitkus,
1999). The original Hough algorithm have been implemented using the oriented point
features. We use three-dimensional accumulator array with one dimension for rotation
and two for translation parameters. For each minutiae pair and each rotation angle, which
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aligns the minutia directions within some bounded error, we calculate translation vector
which aligns these minutia. Then we increment the accumulator array element pointed to
by the angle and translation vector as well as nine neighboring elements in the translation
plane of the accumulator. The implementation using composite features of cardinality
two differs only in two aspects: the minutia direction is replaced by the direction of a line
fragment connecting the two minutia, and the minutiae location is replaced by the loca-
tion of the fragment center. Nevertheless, as mentioned earlier, in the case of composite
features we have the possibility to use additional information. For example, the error of
the fragment angle depends on the distance between the minutia, in particular error grow
when distance gets smaller. The angles between the corresponding minutiae directions
could also be used as rotation angle estimates and these estimates have stable error. So
it is possible to combine these three estimates (i.e., take a weighted average) in order to
reduce the estimation error.

4. Efficient Implementation Algorithms

It is necessary to find answers to some questions which arise after closer examination
of the approach, considered above. First of all, the relation between the outlier/inlier
ratio ρ for basic feature matches and R for composite feature matches of cardinality r is
expressed as R ≈ RT ≈ ρr. Consequently R grow exponentially with r and it is unclear
do the matches filtering could eventually reduces ratio R below the ρ. We do not have
formal proof of this assertion in general, but it will be addressed in the following sections
of this paper from the statistical point of view. Anyway, the answer is influenced by the
two circumstances. First, the number of possible invariants increases very rapidly with
r, thus the potential number of constraints on the correct matches also increases with r.
Second, the tightness of these constraints heavily depends on the degree of uncertainty
involved in the invariant value calculation.

The next problem is rapid grow of computational load with the increase of r, and
how this combinatorial explosion should be managed. Answer to this question, or at least
partial answer will be given in this section.

First of all, the large redundancy in composite features should be emphasized. For
example, each basic feature from the first set U has at most only one corresponding ba-
sic feature in second set V , but the same corresponding pair of basic features emerges
in a large number of correct composite matches. To be more precise, let X be the num-
ber of correct basic feature matches, and r is the cardinality of the composite features.
Then each correct basic feature match could be found in Y = Cr−1

X r! correct composite
matches. This can be enormous number, while in order to estimate transform parame-
ters it is enough to catch only one correct match of cardinality r1, where r1 < r. Most
methods discussed below exploit this redundancy.

The simplest way to limit the number of considered composite features is to set some
regular constraints on their formation. For example, we can form the pairs of minutiae
only if the distance between them is within certain bounds. This is justified not only by
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the reduction of total number of matches. It is well known, that some configurations of
basic features can produce large errors in invariant value calculations even when moderate
errors are produced in the basic feature attribute measurements (Costa; 1990). Usually,
there exist numerical values indicating these unstable configurations, which could be used
to prevent the formation of unwanted composite features (Costa, 1990; Olson, 1992).

The randomization technique is other regular method widely used to limit the number
of hypothetical matches, as well as in other applications for the same aim (Bergen, 1991;
Xu, 1990). According to it only a limited number K of randomly selected matches are
considered (Fischler, 1981; Olson, 1997). It is possible to select the number K in a such
manner, that the probability of failure is reasonably small.

The next method described bellow is according to our knowledge new, and quite gen-
eral one for dealing with the combinatorial explosion. It was not implemented practically,
thus only the theoretical framework will be presented. It is likely that this method could
be applied together with the previously outlined methods.

As mentioned earlier, the composite features are ordered sets or k-tuples of basic fea-
tures. If we have a set of the k basic features from the first image, we can form k! ordered
sets or composite features from it. Thus, the number of ordered feature sets of the size k

is k! times larger then the number of unordered feature sets. Suppose, that all k basic fea-
tures have there corresponding basic features in the second image. Then for each of the k!
ordered sets of basic features from the first image there exist a corresponding ordered set
in the second image. Consequently, from one pair of corresponding unordered sets we get
k! pairs of corresponding ordered sets or correct matches. But the registration algorithm
do not know in advance the correspondence of the basic features and should consider pos-
sible matches of all composite features from the first image with all composite features
from the second image. The total number of possible matches of the composite features
formed from the pair of corresponding unordered sets is k!× k!. So in addition to k! cor-
rect matches we should consider k!× (k!− 1) incorrect matches. The idea of the method
is to recover correspondence of the unordered sets of basic features instead of ordered
ones.

To establish the correspondence between unordered sets of k features we should have
specific invariant α, which is the function of all k features (more precisely α is a function
of some attributes of all k features) and its value does not depend on the order of its
arguments, i.e., α is symmetric function of its arguments. Such invariants do exist at least
for some widely spread situations. For example, let consider rigid transformation group
on the plain, which preserves the area of geometric figures. Let k = 3 and the basic
features are 2D points. Then the area of a triangle build by three points is an invariant,
which does not depend on the sequence of its apexes, and thus is symmetric function of
the triangle apex points.

If by comparison of appropriate invariants the pair of unordered sets was judged as
incorrect match, then incorrect will be all k!× k! matches of ordered sets. If the pair was
not discarded as incorrect, then the correspondences between the basic features inside
the unordered sets should be established. For this purpose a system of partially ordered
invariants may be used. The partial order is based on the number of features which was
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used to calculate the invariant, i.e., for two invariants the relation α1 > α2 is true if α1 is
a symmetric function of the set D1 of feature attributes, and α2 is a symmetric function
of the set D2 of feature attributes, where D2 is a subset of D1. If comparison of the first
pair of invariants does not discard unordered match, the next invariant according to the
partial order should be considered. An interpretation of the next step is the following. We
withdraw one feature from the first and one feature from the second feature set. And ex-
actly in the same way as with the original feature sets, the second level invariant tests the
compatibility of two unordered sets of features of cardinality k−1. Thus, in the next level
the (k − 1)! × (k − 1)! matches of ordered sets of cardinality k can be rejected. This hi-
erarchical process can obviously be repeated until the correspondence will be established
between all k basic features in the sets or in some step all possible ordered matches will
be discarded.

The last technique called indexing or geometric hashing is very popular in model-
based object recognition, but is also well suited for biometrics applications. Since the
object models are accessible before the recognition process, large number of calculations
on the data can be performed in advance. In the preprocessing stage the models of several
objects are processed in sequential order. For each model a different feasible composite
features of cardinality r are selected as a basis. Then, the invariant representation of
all other features of the model are calculated in terms of the current basis. In example
presented in previous section the invariant representation of the points were two affine
coordinates. These invariants or their functions are used as indices to hash table and the
information about model and the current basis is stored into the pointed location of the
table. If several sets of indices point to the same bucket of the hash table, the information
about all objects and their appropriate basis are stored as a list.

In the recognition stage features are extracted from the image, and the composite
features of cardinality r are selected as the basis in sequential manner. For each other
basic feature of the image the same invariant representation according to the current basis
is calculated and used to index the hash table. All the model-basis pairs are retrieved
from the indexed bucket and their individual scores are incremented. When the invariant
representations of all features with respect of current basis are used, the model-basis
pair with the largest score is found. If largest score exceeds a predefined threshold, the
existence of the model instance in the image is hypothesized. Then the process is repeated
with the next basis.

The feature matches filtering is produced at the entry retrieval from the hash table.
This is a highly efficient technique, since the selected basis is matched against all models
and their basis simultaneously. On the other hand quantization of the invariants space
introduces some errors into the filtering process.

5. Estimation of the Probability Densities of the Invariants

In the next two sections we formulate feature matches filtering as an optimal statistical
classification procedure. Differences between invariants will be the statistics according to
which feature matches are classified into the correct and incorrect ones.
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Learning is an important step in the statistical classification procedure, during which
the conditional probability densities of statistics are estimated. In our case this means re-
covery of conditional probability densities of invariants differences for correct and false
match classes. Once these densities are estimated, the traditional statistical decision the-
ory could be applied in order to classify the samples. If, for some training set of image
pairs, correspondences between features are established manually, then it is possible to
use some standard learning algorithms to estimate these conditional probabilities. More
simple way is to approximate the conditional distributions using measurement error dis-
tributions, since invariants are the functions of measured feature attributes. Usually, the
manual establishment of correspondences between the features is also necessary in order
to estimate measurement error distribution. Nevertheless estimation of measurement er-
ror is easier task and if we estimated this distribution, we could apply it to approximate
the distributions of variety of invariants. This is the way we propose to use for feature
matches filtering.

The measurement errors of the feature attributes is usually approximately Gaussian
and independent. For example, in the case of fingerprint minutiae, the position and ori-
entation angle measurement errors are close to Gaussian as will be shown empirically in
Section 7. In this case, it is possible to approximate the errors of the invariants by Gaus-
sian distribution. This is done by the standard linearization technique (Tsai 621; Costa,
1990). Suppose the invariant α = f(X) is a function of the statistically independent fea-
ture attributes vector X = {x1, x2, . . . , xn} and the attribute xi is distributed according
to Gaussian distribution with parameters (x̄i, σi). Then the invariant α is also random
variable and its distribution could be approximated by Gaussian distribution with mean
and variance (ᾱ, σα) (Costa, 1990):

ᾱ = f(X̄), (1)

and

σ2
α =

n∑
i=1

(
∂

∂xi
f(X̄)

)2

σ2
i . (2)

If we have two invariants αi = fi(X), i = 1, 2, then the covariance is equal to

σ2
α1α2

=
n∑

i=1

∂

∂xi
f1(X̄)

∂

∂xi
f2(X̄)σ2

i . (3)

Since multidimensional Gaussian distribution is fully defined by the moments up to
second order, having these parameters it is easy to construct the joint Gaussian distribu-
tion of any set of invariants.

Below we present the expressions of means and variances for invariants used to dis-
card incorrect matches in our image registration algorithm. As was mentioned above the
basic features were minutia or oriented points, that are characterized by three attributes:
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their coordinates (x, y) and direction ϕm. In algorithm we use composite features of car-
dinality 2, i.e., a pair of minutia characterized by their coordinates (x1, y1), (x2, y2) and
directions ϕm1, ϕm2. In addition to these attributes each minutia pair could be charac-
terized by three attributes that are invariant to action of the rigid transformation group.
These are the invariants used in filtering process: distance between minutiae d and two
differrences of angles ∆ϕ1 = ϕl −ϕm1, ∆ϕ2 = ϕl −ϕm2, where ϕl is a slope angle of
line connecting two minutia. The expression for the distance d and its partial derivatives
are:

d = f1(X) =
√

(x1 − x2)2 + (y1 − y2)2,
∂

∂xi
f1(X̄) = (−1)i−1(x̄1 − x̄2)/d̄, (4)

∂

∂yi
f1(X̄) = (−1)i−1(ȳ1 − ȳ2)/d̄,

where i = 1, 2. Let σx, σy be the standard deviations of x and y coordinates of the
minutiae. Then by substituting (4) into the (2) we obtain the variance σ2

d of distance d:

σ2
d =

2
d̄2

(
(x̄1 − x̄2)2σ2

x + (ȳ1 − y2)2σ2
y

)
.

If σx ≈ σy = σc, then σ2
d = 2σ2

c and σ2
d does not depend on the size of d.

The distributions of other two invariants are identical, so we will derive distribution
parameters only for first of them:

∆ϕ1 = ϕl − ϕm1,

where ϕm1 is Gaussian variable obtained from the feature extraction process with average
value ϕ̄m1 and variance σ2

m1. The ϕl is calculated as

ϕl = f2(X) = arctg
(

y1 − y2

x1 − x2

)
.

The partial derivatives of ϕl are:

∂

∂xi
f2(X̄) = (−1)i 1

1 +
(

ȳ1−ȳ2
x̄1−x̄2

)2

ȳ1 − ȳ2

(x̄1 − x̄2)2
= (−1)i(ȳ1 − ȳ2)

/
d̄2,

∂

∂yi
f2(X̄) = (−1)i−1 1

1 +
(

ȳ1−ȳ2
x̄1−x̄2

)2

1
(x̄1 − x̄2)

= (−1)i−1(x̄1 − x̄2)
/
d̄2.

Then from (2) we obtain the variance σ2
ϕ of ϕl:

σ2
ϕ =

2
d̄4

(
(x̄1 − x̄2)2σ2

x + (ȳ1 − ȳ2)2σ2
y

)
.
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If σx ≈ σy = σc, then σ2
ϕ = 2σ2

c/d̄
2 and depends on the size of distance d between te

two minutia.
Finally, the invariant ∆ϕ1 is a sum of two independent Gaussian variables so it is

Gaussian random variable with average value ϕ̄l − ϕ̄m1 and variance σ2
l + σ2

m1.
Since d and ϕm1 are independent, the covariance between d and ∆ϕ1 is equal to

covariance between d and d and ϕl. From equation (3) this covariance is equal to

σ2
dϕ = 2

ȳ1 − ȳ2)(x̄1 − x̄2)
d̄3

(σ2
y − σ2

x).

It can be seen, that covariance is equal to zero if the variances of x and y coordinates
are equal.

6. Feature Matches Filtering as Optimal Classification

In the previous section we demonstrated the possibility to approximate the distribution
densities of invariants by a Gaussian distribution using the first order approximation un-
der the assumption that measurement errors are independent and Gaussian. Having these
distributions of the invariants we can propose filtering scheme based on statistically opti-
mal classification procedure. We start from classification using one invariant.

The task can be formulated as follows. Having a pair of composite feature (ui, vj)
from the first feature and the second feature sets, and respective invariants αi and αj , we
should decide if this pair is a correct or a false match. The difference ∆α = αi − αj

will be used as a statistic in the decision process. When the pair (ui, vj) is a correct
match, invariants αi and αj are independent and identically distributed Gaussian random
variables with the distribution function N(ᾱ, σα) as shown in previous section. Then ∆α

is distributed according to Gaussian distribution N(0,
√

2σα).
When the pair (ui, vj) is an incorrect match, we suppose that αi and αj are indepen-

dent and identically distributed random variables having uniform distribution function.
This assumption seems to be reasonable, for example, in object recognition applications
(Costa, 1990) and the experimental evidences for this model in the fingerprint identifica-
tion field will be given in the next section. Also other distribution models, like truncated
Gaussian distribution could be used, if necessary, with minor changes in the procedure.
Let W be the width of the interval in which αi and αj are distributed. Then in the case of
false matches ∆α is distributed according to the triangle distribution, which is non zero
in a finite interval:

t(x,W ) = (1 − |x|/W )/W, for −W < x < W.

This follows from the well known fact that the distribution density fdiff of difference
of two random variables distributed according to densities f1 and f2 is a convolution
fdiff (x) = f1(x) ∗ f2(−x). This is true for invariants like distances or areas. For an-
gle invariants distributed according to uniform distribution the distribution of the angle
difference is also uniform since convolution is cyclic.
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From the viewpoint of statistical inference, we should select between two simple hy-
pothesis: is ∆α distributed according to N(0,

√
2σα) (the match is correct – null hypothe-

sis H0), or according to the triangle distribution t(W ) (the match is incorrect – alternative
hypothesis H1). The disappointing circumstance here is that both distributions are uni-
modal, symmetric, and centered at the same zero point. Nevertheless, the hypotheses can
be well discriminated at the tails of distributions provided that W is much larger than√

2σα. In order to simplify the situation we standardize the invariants dividing them by
standard deviation

√
2σα. In the correct match case this operation changes distribution

to N(0, 1). In the false match case the parameter W of triangle distribution function also
should be replaced by W ′ = W/

√
2σα, i.e., the width is measured in standard deviation

units.
The standard decision rule (Levin, 1989; Fomin, 1986) is to form likelihood ratio

l(∆α) = f(∆α|H1)/f(∆α|H0) and compare it with the threshold c. If l(∆α) < c

then the null hypothesis (correct match hypothesis) is accepted, otherwise the alternative
hypothesis is accepted. The threshold value depends on the accepted decision criterion.
Having in mind the substitutions made in previous paragraph, the likelihood functions
f(∆α|H0) and f(∆α|H1), which are simply conditional densities of random variable
∆α, can be expressed as:

f(∆α|H0) = k0e−(∆α)2/2,

f(∆α|H1) = k1(1 − |∆α|/W ′),

where k0 and k1 are normalizing constants. The same decision will be made if we com-
pare log(l(∆α)) with log(c).

Some aspects of this decision rule should be discussed. Since both likelihood func-
tions are symmetric, only positive argument can be considered. First, it should be noted,
that l(∆α) is not monotonic and topology of likelihood curve intersections depends on
the W ′ size. For example, for W ′ values that are larger than some value between 2 and 3,
the straight line of triangle density intersects the standard Gaussian density at two points.
Nevertheless it is obvious, that the critical zone for rejection of null hypothesis should
extend from the point defined by threshold to infinity.

More difficulties causes selection of classification criterion which defines the thresh-
old c. It seems, that the Neuman–Pearson or maximum likelihood ratio criterion is ac-
ceptable. The more general Bayesian decision rule could be applied also, but we face
the problem of selection of right penalties for wrong decision. For example, according
to maximum a posteriori probability criterion the penalties are equal in both cases: 1) if
we assign the match to correct match class when in fact it is false match; and 2) if we
assign the match to false match class when in fact it is correct match. The threshold then
is equal to the ratio of prior probabilities of classes. As it is easy to estimate from the cor-
rect and incorrect match numbers provided in Sections 2 and 3, usually this ratio is less
then 1/50. On the other hand for the typical values of W ′ which spread in the range 5–30,
the likelihood ratio is always larger the 1/50. Consequently according to this decision
rule we always should assign the matches to the false match class. Nevertheless, from the
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practical point of view selection of the criterion is not a big problem. If we have some
measure of quality for registration or for the whole identification or object recognition
process, then we could experimentally find maximum value of this measure depending
on the threshold value used in filtering algorithm.

In the case of several invariants, the decision making process remains unchanged ex-
cept for the computation increase. Using the method outlined in the previous section, it
is possible to estimate the covariance matrix Σ, and the likelihood function in case of
correct matches becomes as

f(∆α|H0) = k0 exp
(
−∆αT Σ−1∆α/2

)
,

where ∆α now is a vector. The likelihood function in the case of alternative hypothesis
H1 is a product of one dimensional density functions:

f(∆α|H1) = k1

∏
i

(1 − |∆αi|/W ′
i ),

since in this case the differences of the invariants are independent. While it is possible
to use efficient look-up table methods to compute f(∆α|H1), nevertheless, two differ-
ent types of densities in likelihood ratio complicates its calculations. As it will be shown
experimentally in the next section, the distribution function of invariants could be approx-
imated by truncated Gaussian distribution. In this case the logarithm of likelihood ratio
could be expressed as follows:

ln
(
F (∆α|H1)/F (∆α|H0)

)
= (∆αT )A(∆α) + C,

where A is the matrix, pre-computed from the covariance matrices, and C is a constant.
Thus, in order to make decision, it is necessary to calculate quadratic form and compare
its value with some threshold.

7. Experimental Data

In this section we will demonstrate experimentally the validity of general assumptions
about the prior distributions of the invariants and the effectiveness of the feature matches
filtering framework in the fingerprint identification task. We start with the estimate of the
feature attribute measurement error distributions, and prior distributions of the invariants.
These error may be large, since it is clear in advance that the rigid transformation group
do not describe exactly the transformation between the two fingerprint images. In general
case, only nonlinear elastic deformations could align exactly the two fingerprints.

7.1. Prior and Conditional Distributions

As mentioned earlier, in our fingerprint identification system we use minutiae features,
characterized by their location and direction attributes. In order to evaluate the prior and
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conditional distributions of these attributes, it is necessary to establish the true correspon-
dence between the minutiae in different fingerprints. To eliminate the feature extraction
process, which is not under consideration in this paper, the true correspondence was es-
tablished not using all minutiae in two fingerprints, but only the minutiae features that
have been automatically extracted and presented for identification process. The corre-
spondence have been established between each pair of five fingerprints from five fingers,
totally 50 different fingerprint pairs having 853 correct pairs of minutia.

The correspondences between minutia have been settled by neutral person not skilled
in fingerprint identification. The pairs of preprocessed binary fingerprints were presented
on a monitor screen. The extracted minutiae features were marked and enumerated, so
that the corresponding minutia indices could be recorded.

Since the minutia matching is tedious and long process, some system to check
matched pair consistency have been developed. First of all, each pair of fingerprints had
been submitted for matching twice with exchanged positions. The operator, which con-
ducted the matching was asked to find for each minutia from the left side fingerprint the
corresponding minutia in the right side fingerprint if it exist. Then the two lists of matched
pairs were compared to check if they contain the same matched pairs. If any discrepancy
was found, the operator was asked to reestablish the appropriate correspondence.

The next step was to check the consistency of the matched pairs between more
than two images. Suppose we have N fingerprint images of the same finger and from
each fingerprint image In the feature extraction process extracts Ln minutiae features,
n = 1, 2, . . . , N . Let the fingerprint images and minutia inside the fingerprint images
are somehow indexed. Then we can form the set K = {mn,k, n = 1, . . . , N, k =
1, . . . , Ln} of all minutia from all fingerprints, that are indexed by its fingerprint im-
age index and its order index inside the fingerprint. The correct correspondence process
should to each finger minutiae assign a subset of K which consist at most of N corre-
sponding minutia, one from each image. The subsets corresponding to different minutia
must not overlap since each image minutiae should match only one minutiae on the finger.
In fact, the correspondence induces the equivalence relationship between the elements of
the set K and divides them into non overlapping equivalence classes.

The consistency checking was based on this equivalence relationship and the equiva-
lence classes formation process. Namely, if the established correspondences are correct,
then starting from any single minutiae from the particular equivalence class we should
form exactly the same class. The process of the equivalence class formation is as fol-
lows. For each pair of the fingerprint images we have a list in which the corresponding
minutia indexes are recorded. The minutia from each fingerprint are recorded in N − 1
lists. Let us start from the minutiae mn,k and form the equivalence class An,k by scan-
ning appropriate N − 1 lists of matched minutiae pairs and adding to equivalence class
An,k all minutiae that were paired with mn,k. Then we form the equivalence classes us-
ing all other minutia from An,k as the starting point. The correspondences related with
An,k are established correctly if all new classes coincide with equivalence class An,k.
The rigid transformation parameters for each pair of fingerprint were estimated by the
least square method using corresponding minutia. After applying the transformation to
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Fig. 1. The distributions of attributes measurement errors: (a) minutia orientation angles, (b), (c) x and y coor-
dinates respectively.
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one set of minutia the differences between the aligned corresponding minutia coordinates
and orientation angles were calculated. These difference represent attribute measurement
errors and are presented in Fig. 1a–c.

Fig. 2. The prior distribution of minutiae attributes: (a), (b) x and y coordinates respectively.

It is clear that the distribution densities of all three attributes can be approximated by
the normal distribution. The mean values and standard deviations for x, y coordinates and
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orientation angle are (0, 5.1), (0, 6.2) and (−0.3, 6.6), respectively.
Note, that both images that are involved in the registration process have been prepro-

cessed by the same feature extraction program. Consequently, the measurement errors
should be distributed identically. This requires to use symmetric model for the estimate
of measurement errors. Suppose the attributes of minutiae are estimated with some Gaus-
sian error x = x′ + ξx, y = y′ + ξy , ϕ = ϕ′ + ξa, where x, y, and ϕ are x, y coordinates
and direction angle of minutiae, respectively. Let x′, y′, and ϕ′ are the true values of the
attributes and ξx, ξy , ξa are random measurement errors. We suppose that LSM regis-
tration aligns exactly the true position values of correctly matched minutia. Therefore
the differences between the attributes of the matched minutia, for example, ∆x can be
expressed as

∆x = x1 − x2 = ξx1 − ξx2.

Since ξx1 and ξx2 are independent and identically distributed random variables with mean
and standard deviation equal to x′ and σx, respectively, the mean and standard deviation
of ∆x are equal to 0 and

√
2σ. Consequently, in order to assess the standard deviation

of x, y, and direction angle we should divide the experimentally obtained values 5.1, 6.2
and 6.6 by

√
2.

The next task was to estimate experimentally the prior distributions of attributes of the
composite features. In particular we were interested in prior distributions of the invariants,
that were used in feature matches filtering. In Fig. 2a–c, the histograms of x, y coordinates
and direction angle of minutia, while in 3a–b the histograms of distances between the
two minutia and angles between the x-axis and the line connecting the two minutia are
presented. The distance and slope angle are the new attributes of composite features of
cardinality two that where used in filtering process.

These histograms were obtained using minutiae features from 75 fingerprint images.
As can be seen from Fig. 2, only the minutia orientation angle distributions are close to
uniform, while the minutia position X and Y coordinates are distributed more close to
the Gaussian distribution. This leads to the Chi-square distribution having two degrees of
freedom for the distance between the minutia (Fig. 3). Nevertheless, the distribution of
the distances between two minutia in the interval 50–150 is approximately uniform. The
distribution of the line slope angles could also be approximated by uniform or truncated
Gaussian distributions.

The distributions presented in this section supports the assumptions about the distri-
butions of invariants made in Sections 5 and 6.

7.2. Inlier/Outlier Ratio Increase

Having the manually established correct correspondences we were able to trace how the
number of correct matches varies in comparison with the total number of the feature
matches. All data were obtained using composite feature match filtering procedure from
our previous paper (Malickas and Vitkus, 1999). This procedure was heuristic, but the
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Fig. 3. The prior distribution of the composite feature (pair of minutia) atributes: (a), (b). Length of line fragment
connecting two minutia in full range and in truncated range, respectively (c) line fragment slope angle.

parameters were selected according to the thorough experimental search and should be
not very far from optimal ones.

In brief, we use the composite features consisting of two minutia and three invariant
attributes were used to reject the false matches. The invariants were the distance between
the minutia, and two differences between the direction angles of the two minutia and
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the slope angle of line connecting these minutia. The filtering procedure was as follows.
First, we computed the differences between the corresponding invariants of two features
of the hypothetical match. Then these differences are compared with two thresholds cd, ca

(one for distance and one for angle differences) and the feature match was rejected if the
difference was larger then the corresponding threshold. Finally, the euclidean norm of
3-dimensional vector of differences was calculated, and the match pair was rejected if the
norm exceeds threshold 0.7∗(cd + ca). The following threshold values have been found
experimentally to be optimal for cd = 13, ca = 10. In order to reduce the computational
load, we restrict the distance interval to 50–150 and the total number of composite feature
to 400. The starting point is the ratio ρ of correct and total numbers of basic features or
minutia matches. In Fig. 4. the distribution of this initial ratio ρ is presented. This dis-
tribution was obtained from 50 pairs of the fingerprint images with manually established
feature correspondences. As seen from the figure, the ratio does not exceed 3%.

As disclosed in (Malickas and Vitkus, 1999) feature consensus algorithm estimates
transformation parameters in sequential manner. And the matches filtering could be per-
formed before each stage using increasing number of invariants. The changes of the ratio
of the correct and total match numbers in each stage are presented in Table 1. As ex-
pected, transition to composite features reduces the ratio to the level of less than 1%. The
filtering process increases the ratio up to the range of 10–60%. After the rotation angle
estimate, use of the additional invariant, the slope angle, increases the ratio to 20–90%,
and full recovery of the transformation increases this ratio to 72% and more. In most
cases the ratio exceeds 90%.

We also present the example when application of feature matches filtering process
do not lead to the significant improvement of registration algorithm performance. Fig. 5
shows the improvement of Hough transform-based algorithm with the composite features
of cardinality 2. Differently from the Hough type algorithm based on minutia features,
the composite feature matches could be filtered using the same invariants, which were

Fig. 4. Distribution of initial ratio of correct minutiae matches to total number of minutiae matches.



408 A. Malickas, R. Vitkus

Table 1

Improvement of the ratio of correct matches number to total matches number in different stages of feature
consensus algorithm

Initial Rotation Translation Recognition

Bin Frequency Bin Frequency Bin Frequency Bin Frequency

0.026509 1 8.148148 1 19.04762 1 0 1

0.069553 30 12.8933 10 26.00951 8 9.090909 0

0.112598 43 17.63845 24 32.9714 6 18.18182 0

0.155643 25 22.38361 18 39.93329 20 27.27273 0

0.198687 1 27.12876 26 46.89518 16 36.36364 0

0.241732 4 31.87391 15 53.85707 22 45.45455 0

0.284777 15 36.61906 5 60.81896 17 54.54545 2

0.327821 4 41.36422 6 67.78085 13 63.63636 1

0.370866 0 46.10937 6 74.74274 13 72.72727 6

0.413911 0 50.85452 4 81.70463 6 81.81818 23

0.456955 0 55.59967 7 88.66652 2 90.90909 36

More 2 More 3 More 1 More 56

used in the first filtering step of the feature consensus algorithm presented in Table 1.
Nevertheless, despite tenfold improvement of the ratio of correct matches number to to-
tal matches number, we notice only slight improvement of the ROC characteristic at the
low level of false acceptance. While the transition from the minutia to minutia pair fea-
tures in feature consensus algorithm gives about 10% improvement of the true acceptance
rate at the same level of false acceptance rate (Malickas and Vitkus, 1999). This can be
explained by better robustness of Hough transform-based algorithms in comparison to
the feature consensus algorithm. The occupational model analysis conducted by Grimson
et al. (Grimson, 1990) for Hough transform algorithms is also valid for feature consen-
sus algorithn, since the latter uses similar voting scheme. According to this analysis, the
probability that in a bucket of the accumulator array randomly will appear the peak of
size l or larger is proportional to the redundancy factor, and inversely proportional to the
total number of buckets in the accumulator array. Since the redundancy factor for both
algorithms is the same, but the number of buckets in 3D Hough transform accumulator is
much larger than in 1D feature consensus accumulator, the former is more robust to false
matches.

8. Conclusions

Image registration and object recognition algorithms are mostly based on the establish-
ment of local (basic) features correspondences. For each transformation group and basic
feature type there is a minimum number of corresponding feature pairs (composite fea-
ture matches) necessary to recover uniquely the geometric transformation relating the two
different images. So in order to recover transformation which correctly aligns the two im-
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Fig. 5. Comparison of two Hough transform-based algorithms: a) based on minutia features without matches
filtering and b) based on minutia pairs (lines) with feature matches filtering

ages we should have at least one correct minimal composite feature match. However, the
correct matches are not known in advance, and many automatic image registration pro-
cedures have different algorithms to establish the correct correspondence between the
features from different images. The main difficulty here is large number of false matches
in comparison with the number of correct matches, and large percentage of features from
the image that do not have corresponding counterparts in the other image, puts even more
heavy burden on the task.

One of ways to reduce the number of hypothetical matches is to filter the feature
matches using the feature attributes which are invariant under the action of transforma-
tions belonging to the considered geometric transformation group. If the minimum com-
posite features are insufficient to generate invariants, they become available after increas-
ing the cardinality of composite features by adding to them the additional basic features.
While the feature match filtering has been widely used as a supplement measure to cope
with large number of hypothetical matches, all these filtering techniques were heuristic.
In this paper we proposed to treat feature matches filtering as an optimal statistical classi-
fication of matches into the correct or incorrect match classes. This enables to devise the
optimized filtering process, or to evaluate possible improvements of suboptimal filtering
procedures for a given invariant set.



410 A. Malickas, R. Vitkus

In this paper we also surveyed two general frameworks allowing to incorporate the
filtering procedure into the existing registration algorithm by increasing the cardinality
of the composite feature. The examples of application of each framework are presented.
Since the linear increase of the composite feature cardinality invokes exponential in-
crease of hypothetical matches we have reviewed the published efficient implementation
schemes, and proposed a new one.

All filtering implementations known to us use differences of the invariants as statistics
for the incorrect match rejection. To construct the optimized classificator, it is necessary
to estimate the conditional distribution densities or likelihood functions of this statistics.
The simplest way to do that is to approximate the invariant distribution with the Gaussian
distribution using well known linearizing technique under the assumption that the local
feature attributes are measured with Gaussian error distribution. We demonstrate how it
can be realized for invariants used in our own fingerprint images registration algorithm,
and present experimental evidences indicating that general assumptions regarding feature
distributions are valid in the case of the minutiae features from the fingerprint images.

Finally, the efficiency of suboptimal filtering process were presented, and it was
demonstrated that final improvement of the overall registration process depends heav-
ily on the robustness of the registration algorithm which follows the filtering stage.
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Požymi ↪u lyginim ↪u filtravimas pagal geometrinius invariantus vaizd ↪u
registravime

Algimantas MALICKAS, Rimantas VITKUS

Požymi ↪u lyginim ↪u filtravimas, plačiai naudojamas vaizd ↪u registravime, yra euristinis meto-
das skirtas sumažinti požymi ↪u palyginim ↪u skaičiui. Darbe siūloma tok ↪i lyginimo filtravim ↪a inter-
pretuoti kaip klasifikacijos, ↪i teisingus ir neteisingus lyginimus, uždavin ↪i. Statistika, pagal kuri ↪a
toks klasifikavimas atliekamas, yra paremta elementari ↪u požymi ↪u sutvarkyt ↪u rinkini ↪u (sudėtini ↪u
požymi ↪u) invariant ↪u skirtumais. Siūloma tokio klasifikavimo efektyvaus ↪idiegimo schema ir opti-
mizavimo būdai. Pateikti eksperimentiniai rezultatai, iliustruojantys siūlom ↪u metod ↪u efektyvum ↪a.


