
INFORMATICA, 2001, Vol. 12, No. 3, 347–372 347
 2001 Institute of Mathematics and Informatics, Vilnius

Verification Rules of Computerized Information
System Model with Respect to Data Resource
Processing

Rita BUTKIENĖ, Rimantas BUTLERIS
Kaunas University of Technology, Department of Information Systems
Studentu̧ 50, 3027 Kaunas, Lithuania
e-mail: ribu@soften.ktu.lt, rimbut@if.ktu.lt

Received: April 2001

Abstract. This paper presents the set of verification rules to detect faults in specification of model
of computerized information system. Computerized information system model is specified using
Enterprise modeling approach, which integrates static and dynamic dependencies. Typical commu-
nication action loop is a basic construct of Enterprise modeling approach. Actions, which process
data resources of computerized information system, are analyzed.

Key words: information system, requirement specification, enterprise modeling, integrity, static
dependencies, and dynamic dependencies.

1. Introduction

The specification of requirements is one of the most important stages in the development
of information system. The correct description is one of the principle goals in preparation
of specification of requirements. A variety of methods for object-oriented systems anal-
ysis and design have been developed in the past years (Booch, 1994; Coad and Yourdan,
1991; Jacobson et al., 1992; Martin and Odell, 1995; Rumbaugh et al., 1991; Muller,
1997). Many methods rely on graphical specification technique. The reason is that con-
cepts used in the method are easy to understand and use if they are expressed in graphical
notation. Traditional methods use various graphical diagrams to define semantics of infor-
mation systems. But each diagram is designed to describe one or few, but not all aspects
of information system. It means that information system models should comprise a com-
bination of several notations, each for some particular aspect. This leads to a difficult
problem of integration of various graphical representations used to specify semantic of
information systems. The Enterprise modeling approach suggested by R.Gustas (Gustas,
1997) was selected as having integration of static and dynamic dependencies. This ap-
proach provides also a uniform formal basis to analyze incompleteness, inconsistency and
integrity of information system specification. However, Enterprise modeling approach as
many others lack a complete set of verification rules to detect faults of specification. De-
tection of faults is very important because it enhances the quality of specification (Quality



348 R. Butkienė, R. Butleris

of specification can be analyzed in terms of such characteristic features as consistency,
cohesion, un-redundancy, ambiguity and completeness (Loucopoulos, 1992)). Well-done
specification of information system is a significant support to create software with high
functionality, low maintenance and adaptation costs. In this paper a set of verification
rules is presented to detect faults of specification.

Many powerful tools already exist to assist in system development, for instance Or-
acle Designer/2000 (Barker, 1990; Barker and Longman, 1992), Rational Rose (Muller,
1997). But these tools sometimes are not useful, because they use technology of the user
requirements specification, which is not adequate to the natural way of analysis of the user
needs. Information systems designers, experts of information systems development use
their knowledge and experience in their work (Cauvet et al., 1991; Rolland and Cauvet,
1992). They perform the analysis of the user requirements and make formal specification.
This paper is a part of research, in which the way the experts of information systems de-
sign follow in their work is analyzed and specified. This way of working was checked in
practice and is used successfully.

Verification rules presented in this paper can be implemented in CASE-tool to facili-
tate the specification of information systems.

2. The Basic Constructs and Model of Specification

The way the experts of information system analysis and design follow in their work
(Butkienė and Butleris, 1997) can be described as follows.

The specification of information system starts from the description of the purpose
of computerized information system (CIS). CIS is specific subsystem of organizational
system. The activity of the organization is based on the goals, which it wants to achieve.
The activity of CIS is based on the goals, which users of CIS want to achieve with help
of it. The basic purpose of CIS is – to process and convey information. What kind of
information CIS must present to the user depends on the user needs. In other words, CIS
is an assistant in the process of user goals achieving. The purpose of CIS can be very
common, for example accounting, so it is important to detail this purpose up to certain
reports, data flows. All of them will be named output reports. Output report is a result of
functionality of CIS. Output reports define the applicability of CIS.

The next step after specification of output reports is a specification of data resources.
Data resource is a resource of data (for example primary documents) to form the output
reports. The user of CIS gives to system analyst-designer information concerning data
resources: structure, presentation form, processing actions. The process of specification
of output reports and preliminary structure of data resources and requirements adjusted
to this process are discussed in (Butkienė and Butleris, 1998).

Specification of data resources is a background for modeling of entity-relationship
model of problem domain. Specification of actions processing the data resources speci-
fies not only the functionality of information system but gives an opportunity to specify
data resources more precisely. Therefore, integration of static and dynamic dependencies



Verification Rules of Computerized Information System Model 349

Fig. 1. Communication action and state transition dependency.

becomes necessary to get specification of higher quality. Enterprise modeling approach
was selected for specification of user requirements for CIS because of it possibility to
integrate static and dynamic dependencies. Typical communication action loop is a basic
construct of enterprise modeling approach (Gustas, 1997). Communication action loop
consists of communication actions and state transition dependencies. Graphical notation
of communication action and state transition dependency is depicted in Fig. 1.

When only computerized information system is specified using Enterprise modeling
approach (other subsystems of information system are not taken into account) then one
of the actors of communication action is CIS and other – user of CIS (or other CIS if two
different CIS are integrated). Graphical notation of typical communication action loop
used in this paper is depicted in Fig. 2. This typical communication action loop specifies
dependency of communication action between user and CIS, and dependency of state
transition of data resource. Actions, which process data resources, are analyzed only.
Actions, which process output reports, are not taken into account. Analysis of processes
related with output reports of CIS is a subject of further research.

Fig. 2. Typical communication action loop.



350 R. Butkienė, R. Butleris

This typical communication action loop represents a unit of work within a process of
processing of data resources. Typical communication action loop includes:

− two actors – user and CIS;

− action performed by user – action of input (user is an agent, and CIS is a recipient);

− action performed by CIS – action of displaying (CIS is an agent, and user is a
recipient);

− flow from user to CIS – inputted but not displayed data resource;

− flow from CIS to user – inputted and displayed data resource (for example, data
displayed in the screen of computer, warning what data are saved);

− current state of data resource with respect to action performed by user – not in-
putted data resource;

− next state of data resource with respect to the action performed by user – inputted
but not displayed data resource;

− current state of data resource with respect to action performed by CIS – inputted
but not displayed data resource;

− next state of data resource with respect to the action performed by CIS – inputted
and displayed data resource.

Typical communication action workflow loop shows that user is authorized to change
the state of data resource from state “Not inputted data resource” to state “Inputted data
resource” by using a predefined action of input. When user inputs data resource, then CIS
is obliged to display inputted data resource. Modeling of states of data resources is related
with modeling of structure of data resources. Inputted data resource has two states: “Not
displayed” and “Displayed”. These states and actions performed in respect to them are
typical for each accepted by CIS data resource in a certain state. More attention is not
given to them in this article. The actions of user require more attention because they are
not trivial and vary in different problem domain. Further in this article the actions of user
are analyzed only.

A formal definition of modelM of specification of user requirements to CIS prelimi-
nary is defined as tupleM =< O, I, T, P,A, S,H,R,Z >, where
O – set of output reports,
I – set of data resources,
T – set of attributes,
P – set of actions,
A – set of actors,
S – set of states of data resource,
H – set of saved corrections of data resource in certain state,
R – set of relationships, R = RD ∪RS , where



Verification Rules of Computerized Information System Model 351

RD – set of relationships among data resources,
RS – set of relationships among data resources being in a certain states,

Z – set of IS_A dependencies among possible states of data resources.
The first order predicate logic is used to specify dependencies between objects of sets

specified above. The Table 1 is presented to describe the meanings of certain predicates.
The specified output reports define what kind of data resources must be specified. For

each output report o at least one data resource i must be specified which is used to form
the output report o:

∀o[O(o) ⇒ ∃i[I(i) ∧ use data resources(o, i)]].

Here: “⇒” means logical implication, “∧” means logical AND.
The attributes describe the structure of output reports, data resources, and states of

data resources. For each output report o at least one attribute t must be specified which
describes the structure of output report o:

∀o[O(o) ⇒ ∃t[T (t) ∧ describe o(o, t)]].

For each data resource i at least one attribute t must be specified which describes the
data resource i:

∀i[I(i) ⇒ ∃t[T (t) ∧ describe i(i, t)]].

Each data resource i exist in a certain state s. For each data resource i at least one
state s must be specified:

∀i[I(i) ⇒ ∃s[S(s) ∧ state of data resources(i, s)]].

Table 1

Description of predicates.

Description Dependency to set Predicate

o is an output report o ∈ O O(o)

i is a data resource i ∈ I I(i)

t is an attribute t ∈ T T (t)

p is an action p ∈ P P (p)

a is an actor a ∈ A A(a)

s is a state of data resource s ∈ S S(s)

h is saved correction of data resource h ∈ H H(h)

r is an association r ∈ R R(r)

r is an association between data resources r ∈ RD RD(r)

r is an association between data resources being in certain states r ∈ RS RS(r)

z is an IS_A dependency z ∈ Z Z(z)



352 R. Butkienė, R. Butleris

Each state s is specified for only one data resource i:

∀s[S(s) ⇒ ∃![I(i) ∧ state of data resources(i, s)]].

At least one attribute t describes each data resource i being in certain state s:

∀i∀s[[I(i) ∧ S(s) ∧ state of data resources(i, s)] ⇒ ∃t[T (t) ∧
describe state(i, s, t)]].

Each attribute t, which describe data resource i, describes state s of data resource i:

∀i∀t[[I(i) ∧ T (t) ∧ describe(i, t)] ⇒ ∃s[S(s) ∧ state of data resources(i, s)
∧ describe s(i, s, t)]].

States of certain data resource are related by IS_A relationship. Each IS_A relation-
ship z relates two states s′ and s′′ (s′ is a specialization of s′′) specified for data resource
i:

∀z[Z(z) ⇒ ∃! i ∃!s′∃!s′′[I(i) ∧ S(s′) ∧ S(s′′) ∧ state of data resource(i, s′)
∧state of data resource(i, s′′) ∧ is a(r, i, s′, s′′)]].

Each association r relates two data resources i′ and i′′, and it is not important in
which state data resources are, or two data resources i′ and i′′ being in a certain states s′

and s′′ accordingly:

∀r[RD(r) ⇒ ∃!i′∃!i′′[I(i′) ∧ I(i′′) ∧ relate(r, i′, i′′)]],
∀r[RS(r) ⇒ ∃!i′∃!i′′∃!s′∃!s′′[I(i′) ∧ I(i′′) ∧ S(s′) ∧ S(s′′)

∧ relate(r, i′, s′, i′′, s′′)]].

For each action p an agent a′ and recipient a′′ must be specified:

∀p[P (p) ⇒ ∃a′∃a′′[A(a′) ∧A(a′′) ∧ agent(p, a′) ∧ recipient(p, a′′)]].

For each actor a at least one process p must be specified, in which an actor participate:

∀a[A(a) ⇒ ∃p[P (p) ∧ [agent(p, a) ∨ recipient(p, a)]]].

The data resource in each state must be associated with at least one action, which
transfer data resource to this state. And each action must process at least one data resource
being in a certain state. Associations among data resources and actions are discussed
below in more detail.



Verification Rules of Computerized Information System Model 353

3. Types of Actions

The actions of user can be of five types:

− action of creation – creates the item of data resource in a certain state;
− action of transference – transfers data resource from state to state;
− action of termination – deletes item of data resource being in a certain state;
− action of modification – modifies data resource without state changing;
− action of search – searches a specified data.

First four types of actions define life cycle of each data resource. The search of data
resource is analogous to formation of output report, and is not discussed in this paper.

A lot of database management systems (DBMS) automated programming packages
includes these actions in the menu of created CIS. But it is necessary to remember that
these actions in the each CIS can be specific, performed with different limitations, which
are determined by user requirements.

For each action p at least one data resource i being in state s′, and which this action
process, must be specified, and type of action must be defined. If action p is an action of
transference, then one more state s′′ of data resource i must be specified. An action p can
be one of type only respect to data resource i. Constraints mentioned above are defined
formally:

∀p[P (p) ⇒ ∃i∃s′[I(i) ∧ S(s′) ∧ [[create(p, i, s′) ∧ ¬∃s′′[S(s′′) ∧
trasite(p, i, s′, s′′)] ∧ ¬delete(p, i, s′) ∧ ¬modify(p, i, s′)] ∨
[¬create(p, i, s′) ∧ ∃s′′[S(s′′) ∧ trasite(p, i, s′, s′′)] ∧ ¬delete(p, i, s′) ∧
¬modify(p, i, s′)] ∨ [¬create(p, i, s′) ∧ ¬∃s′′[S(s′′) ∧ trasite(p, i, s′, s′′)] ∧
delete(p, i, s′) ∧ ¬modify(p, i, s′)] ∨ [¬create(p, i, s′) ∧ ¬∃s′′[S(s′′) ∧
trasite(p, i, s′, s′′)] ∧ ¬delete(p, i, s′) ∧modify(p, i, s′)]].

Action of Creation
This action starts the life cycle of data resource in CIS. The graphical notation of action
of creation is depicted in Fig. 3. For the each data resource i, at least one action p must
be specified which creates data resource i in a certain state s:

Fig. 3. The action of creation.



354 R. Butkienė, R. Butleris

∀i[I(i) ⇒ ∃p∃s[P (p) ∧ S(s) ∧ create(p, i, s)]].

State s is the expected (next) state of data resource i according to action of creation
p:

∀i∀p∀s[[I(i) ∧ P (p) ∧ S(s) ∧ create(p, i, s)] ⇒ next state(i, s, p)].

The current state s′ of data resource i corresponding to action of creation p is not
specified because it does not exist:

∀i∀p∀s′′[[I(i) ∧ P (p) ∧ S(s′′) ∧ create(p, i, s′′)] ⇒ ¬∃s′[S(s′) ∧
current state(i, s′, p)]].

Different actions of creation, specified for the same data resource, create this data re-
source in the different states. This requirement helps to avoid redundancy in specification
of processes.

Action of Transference
Action of transference p changes the state of certain data resource i from current state s′

to a next state s′′:

∀i∀p∀s′∀s′′[[I(i) ∧ P (p) ∧ S(s) ∧ transfer(p, i, s′, s′′)]
⇒ [current state(i, s′, p) ∧ next state(i, s′′, p)]].

The graphical notation of action of transference is depicted in Fig. 4. For each data
resource several or none actions of transference can be specified.

Action of Termination
This action ends the life cycle of the data resource in the CIS. The graphical notation of
action of termination is depicted in Fig. 5. The action of termination p deletes the item
of data resource i from CIS. For each data resource i the action of termination p must be
specified which deletes data resource i being in a certain state s:

∀i[I(i) ⇒ ∃p∃s[P (p) ∧ S(s) ∧ delete(p, i, s)]].

Fig. 4. The action of transference.



Verification Rules of Computerized Information System Model 355

Fig. 5. The action of termination.

For each data resource several actions of termination can be specified. The user de-
cides to which states (for example, s) of data resource i the action of termination p can
be applied. The different actions of termination specified for the same data resource ter-
minate the existence of the data resources being in the different states.

Only the current state s of data resource i must be specified for the action of termina-
tion p:

∀i∀p∀s[I(i) ∧ P (p) ∧ S(s) ∧ delete(p, i, s)] ⇒ current state(i, s, p)].

The specification of next state is meaningless because it does not exist. For each data
resource i in state s′ and action of termination p, performed to current state s′, the next
state s′′ of data resource i is not possible:

∀i∀p∀s′[[I(i) ∧ P (p) ∧ S(s) ∧ delete(p, i, s′)]
⇒ ¬∃s′′[S(s) ∧ next state(i, s′′, p)]].

Action of Modification
An action of modification is a specific case of action of transference. An action of modi-
fication does not change the state of data resource: current and next state of data resource
according to action of modification is the same. It offends dependency of state transi-
tion. When Enterprise modeling approach is used to specify model of information system
including not only CIS then specification can be made without offences. For example,
sometime data resource is in need of correction when user inputted erroneous data. Cor-
rection can be made to the data resource in the certain state only. The user of CIS must
indicate states of data resource to which the corrections can be made because not in each
state data resource can be corrected. Action of correction is analogous to the action of
transference. When action p transfers (or creates) data resource i to (in) the state s, in
which action of correction is allowed (see Fig. 6), it transfers this data resource to the
state “Can be estimated”, which is a specialization of state s.

User of CIS can estimate data resource being in state “Can be estimated” and clas-
sify it as correct or not correct. Action of estimation transfers data resource to the state
“Estimated”. This action is an action of classification also: after estimation data resource



356 R. Butkienė, R. Butleris

Fig. 6. Model of process of correction.

transits to the states “Correct” or “Not correct”. States “Correct” or “Not correct” is a spe-
cialization of state “Estimated”. If data resource is estimated as “Not correct” user can
perform action of correction and transfer data resource to the state “Correct”. The user
of CIC is human, so, estimation of data resource is subjective: data resource estimated as
“Correct” really can be not correct, and data resource estimated as “Not correct” really
can be correct. User of CIS cannot ensure that data inputted by himself/herself are not
erroneous. Even, after performance of action of corrections he/she cannot be sure that no
error was made. Therefore, correct (possibly) data resource is returned to the state “Can
be estimated” (because repeated correction decreases probability of errors). The action of
estimation is not computerized in most cases because it is impossible (or very difficult) to
compare and estimate data presented in computerized and not computerized form. But,
action of correction is an action of additional service, which makes the CIS more flexible.
So, realization of them is desirable. However, actions of estimation and correction are not
business actions in the sense analyzed by us. So, computerization of states of data re-
source i “Can be estimated”, “Estimated”, “Correct”, and “Not correct” is not necessary.
In this case, model of process of correction becomes simpler (see Fig. 7).

Fig. 7. Simpler model of process of correction.



Verification Rules of Computerized Information System Model 357

In this model action of correction breaks dependency of state transition (from the
viewpoint of CIS after performance of action of correction data resource do not change
the state). But it is valid because action of correction changes values of the attributes,
which change the state of data resource. Action of correction is a case of action of modi-
fication. Another case of application of action of modification is discussed below.

Two types of dependencies (bijection and surjection) (Matuzevičius, 1982) specified
among data resources will be used in the formulas presented below. Bijection dependency
can be defined as follows:

− A and B are in bijection dependency (or A and B is in binary association of (1,1;1,1)
kind) if each instance of A is dependent on exactly one instance of B, and each
instance of B is dependent on exactly one instance of A.

Surjection dependency can be defined as follows:

− A and B are in surjection dependency (or A and B is in binary association of
(1,*;1,1) kind) if each instance of A is dependent on one or more instances of
B, and each instance of B is dependent on exactly one instance of A.

Graphical notation of bijection and surjection in Martin/Odell’s style (Martin and
Odell, 1996) are presented in Fig. 8.

If action p transfers (creates) data resource i′′ to the state s′′, in which data resource
i′′ is in surjection dependency with another data resource i′ being in certain state s′, then
action p modifies data resource i′ being in state s′ (see Fig. 8). When action p is not
computerized then this action p transfer data resource i′ from state s∗ to state s∗∗. An
action p∗ is needed to return data resource i′ to the state s∗ if repeated performance of
action p is allowed.

When action p is computerized, and different users perform actions p and p∗ then the
model presented in Fig. 11 is analogical to the previous model (see Fig. 9).

If action p is computerized, and the same user is obligated to perform action p and ac-
tion p∗, and states s∗ and s∗∗ are not used to form any result, and these states do not make
influence to any other action, then action p is an action of modification, which modifies
data resource i′ being in state s′, actions p∗ is merged with action p, and specification of
states s∗ and s∗∗ is not needed (see Fig. 11).

From the viewpoint of the CIS after performance of action p data resource i′ stays in
the same state s′.

Fig. 8. Graphical notation of bijection and surjection.



358 R. Butkienė, R. Butleris

Fig. 9. Not computerized modification of input specified as actions of transference.

Fig. 10. Computerized modification of input specified as actions of transference.

If each action p modifies data resource i being in state s then current (and next) state
of data resource i before (and after) performance of action p is state s:

∀p∀i∀s[P (p) ∧ I(i) ∧ S(s)modify(p, i, s)] ⇒ [current state(i, s, p)

∧ next state(i, s, p)]].

Two cases of action of modification can be identified: 1) the history of changes made
to data resource is not stored, and 2) the history of changes made to data resource is
stored.

Only the user can say which of mentioned above cases to use for certain data resource
in certain state.



Verification Rules of Computerized Information System Model 359

Fig. 11. Model of computerized action of modification.

Fig. 12. The action of modification with history saving.

If user of CIS decides to store the history of changes made to the data resource i being
in state s after performance of action p then new static object h to store the history of
changes must be specified also (see Fig. 12). The object h is an aggregate of attributes,
which are specified to describe the state s of data resource i, and which can be modified.

The total functional dependency (1,*;0,1) must be specified among data resource i in
state s and object h. It means that data resource i in state s can be modified recurrently
or can never be modified, and object h depends on data resource i in state s. An action
of modification p, which is specified to modify the data resource i in state s, creates new
item of object h:

∀i∀s∀p[[I(i) ∧ S(s) ∧ P (p) ∧modify(p, i, s) ∧ correct and store(p, i, s)]
⇒ ∃h[H(h) ∧ total functional(i, s, h)∧ create(p, h)]].

4. Verification Rules to Estimate Dynamic and Static Dependencies Specified
Among Data Resources

The objective of verification is to check whether the specification is consistent, and
whether it correctly expresses the functional requirements stated by user. The verifica-
tion problem can be viewed at the syntactical and semantical levels. At the syntactical
level the problem is to prove that the specification is complete and free from contradic-
tions. At the semantical level we have to take into account the meaning of terms given



360 R. Butkienė, R. Butleris

in the specification, and to look for inconsistencies. Rules presented in this paper are for
verification of specification at syntactical level.

Rules presented in previous chapters define haw to specify certain objects (i.e., output
reports, data resources, states, actions, etc.) not estimating dependencies specified among
different data resources. It is necessary to note that the change of state of certain data
resource can change the state of other data resource if these data resources are associated.
The action specified for the data resource being in a certain state, which is associated
with other data resource, can be complex. Rules presented below help in finding of faults
made in specification estimating dynamic and static dependencies specified among data
resources.

Rules presented below are proper if states of data resource are disjoint.
Rule 1. If state s′ is a current state of data resource i′ before performance of action

p, and data resource i′ in state s′ is in association r′ kind of (1,1;1,1) or in at least one
association r′′ kind of (1,*;1,1) with data resource i′′ in state s′′ and action p according
to state s′ is not an action of modification then state s′′ is a current state of data resource
i′′ before performance of action p:

∀i′∀i′′∀s′∀s′′∀r′∀r′′∀p[[I(i) ∧ S(s) ∧RS(r) ∧ P (p) ∧
current state(i′, s′, p) ∧ ¬modify(p, i′, s′) ∧ [[relate(r′, i′, s′, i′′, s′′)

∧bijection(r′)] ∨ [relate(r′′, i′, s′, i′′, s′′) ∧ surjection(r′′)]]]
⇒ current state(i′′, s′′, p)].

The example of the situation, which illustrates the application of Rule 1, is depicted
in the Fig. 13. Designed product was assembled. “Designed” (s′) is a current state of
product (i′) before action “Assemble” (p). Parts will be used in production of designed
product are selected (i′′ in state s′′), i.e., designed product (i′ in state s′) is in surjection
dependency (r) with part for designed product (i′′ in state s′′). So, the current state of
this part before action “Assemble” is “Part for designed product”.

Rule 2. If state s′ is a next state of data resource i′ after performance of action p, and
data resource i′ in this state is in at least one association r′ kind of (1,1;1,1) or in at least
one association r′′ kind of (1,*;1,1) with data resource i′′ being in state s′′ and action p

according to state s′ is not an action of modification then state s′′ is a next state of data
resource i′′ after performance of action p:

∀i′∀i′′∀s′∀s′′∀r′∀r′′∀p[[I(i) ∧ S(s) ∧RS(r) ∧ P (p) ∧ next state(i′, s′, p)
∧¬modify(p, i′, s′) ∧ [[relate(r′, i′, s′, i′′, s′′) ∧ bijection(r′)]
∨[relate(r′′, i′, s′, i′′, s′′) ∧ surjection(r′′)]]] ⇒ next state(i′′, s′′, p)].

The example of the situation, which illustrates the application of Rule 2, is depicted in
the Fig. 13. Designed product was assembled. “Assembled” (s′) is a next state of product
(i′) after action “Assemble” (p). Assembled product does not exist without its parts (i′′



Verification Rules of Computerized Information System Model 361

Fig. 13. Model of production of product.

in state s′′), i.e., produced product (i′ in state s′) is surjection dependency (r) with part
in produced product (i′′ in state s′′). So, the next state of part after action “Assemble” is
“Part of product”.

Rule 3. If state s′′ is a current state of data resource i′′ before performance of action
p, and data resource i′′ in this state is in at least one association r kind of (1,1;1,*) with
data resource i′ being in state s′ then state s′ is just a current state of data resource i′

before performance of action p, or state s′ is a state, which is modified by action p:

∀i′∀i′′∀s′∀s′′∀r∀p[[I(i) ∧ S(s) ∧RS(r) ∧ P (p) ∧ current state(i′′, s′′, p) ∧
relate(r, i′, s′, i′′, s′′) ∧ surjection(r)] ⇒ [current state(i′, s′, p)

∨modify(p, i′, s′)]].

For example, if parts for designed product are used in assemblage (see Fig. 13) then
designed product is involved in this action also. If part of designed product can be rejected
(see Fig. 14) then after performance of action of rejection the designed product, which
part was rejected, is modified (action “Reject” is action of modification with respect to the
designed product, and action of termination with respect to the part of designed product).

Rule 4. If state s′′ is a next state of data resource i′′ after performance of action p,
and data resource i′′ in this state is in at least one association r kind of (1,1;1,*) with
data resource i′ being in state s′ then state s′ is just a next state of data resource i′ after
performance of action p, or state s′ is a state, in which data resource i′ is modified by
action p:

∀i′∀i′′∀s′∀s′′∀r∀p[[I(i) ∧ S(s) ∧RS(r) ∧ P (p) ∧ next state(i′′, s′′, p) ∧
relate(r, i′, s′, i′′, s′′) ∧ surjection(r)] ⇒ [next state(i′, s′, p)

∨modify(p, i′, s′)]].



362 R. Butkienė, R. Butleris

Fig. 14. Model of rejection of part of product and the usage of part of product.

Fig. 15. Model of change of price of part of product.

For example, if parts in product designed were used in assemblage (see Fig. 13) then
assembled product was involved in assemblage also. If new part was used to produce
product (see Fig. 14) then after performance of action of use the produced product (for
which part was used) is modified (action “Use” is action of modification with respect to
the produced product, and action of creation with respect to the part of produced product).

Rule 5. If state s′′ of data resource i′′ can be modified by action p, and data resource
i′ in state s′ is in at least one association r′ of (1,1;1,1) kind or in at least one association
r′′ of (1,*;1,1) kind with data resource i′′ being in state s′′, then data resource i′ in state
s′ is modified by action p also:

∀i′∀i∀s′∀s′′∀r′∀r′′∀p[[′′I(i) ∧ S(s) ∧RS(r) ∧ P (p) ∧
modify(p, i′′, s′′) ∧ [[relate(r′, i′, s′, i′′, s′′) ∧ bijection(r′)] ∨
[relate(r′′, i′, s′, i′′, s′′) ∧ surjection(r′′)]]] ⇒ modify(p, i′, s′)].

For example (see Fig. 15), if price of part of designed product was changed then price
of product is changed also.



Verification Rules of Computerized Information System Model 363

Rule 6. If state s′ is a next state of data resource i′ after performance of action p,
and state s′′ is a current state of data resource i′′ before performance of action p then
state s∗ of data resource i′ exist, and this state is a current state of data resource i′ before
performance of action p, and/or state s∗∗ of data resource i′′ exist, and this state is a next
state of data resource i′′ after performance of action p:

∀i′∀i′′∀s′∀s′′∀p[[I(i′) ∧ I(i′′) ∧ S(s′) ∧ S(s′′) ∧ P (p) ∧
next state(i′, s′, p) ∧ current state(i′′, s′′, p)] ⇒ ∃s∗[S(s∗) ∧
current state(i′, s∗, p)] ∨ ∃s∗∗[S(s∗∗) ∧ next state(i′′, s∗∗, p)]].

For example (see Fig. 13), if “Assembled” is a next state of product after perfor-
mance of action “Assemble”, and if “Part for product” is a current state of part before
performance of action “Assemble” then current state of product (for example “Designed”)
and/or next state of part (for example “Part in product”) must be specified.

Rule 7. If data resource i′ in state s′ is in at least one association r of (1,*;1,1) kind
with data resource i′′ being in state s′′, and data resource i′ being in state s′ can be
modified by action p, and state s′′ is a next state of data resource i′′ after performance
of action p, and action p is not an action of modification according to data resource i′′

being in state s′′ then action p can not be applied for first data resource i′′ being in state
s′′ and relating data resource i′ in state s′:

∀i′∀i′′∀s′∀s′′∀r∀p[[I(i′) ∧ I(i′′) ∧ S(s′) ∧ S(s′′) ∧RS(r) ∧ P (p)

∧relate(r, i′, s′, i′′, s′′) ∧ surjection(r) ∧modify(p, i′, s′) ∧
next state(i′′, s′′, p) ∧ ¬modify(p, i′′, s′′)] ⇒ not for first(p, i′, s′, i′′, s′′)].

For example (see Fig. 14), produced product can have at least one part. If new part is
used to produce product (“Part of produced product” is a next state of part after perfor-
mance of action of use), and action of use modifies produced product and do not modifies
part of produced product then action of use is not applied to usage of the first part of
certain produced product.

Rule 8. If data resource i′ in state s′ is in at least one association r of (1,*;1,1)
kind with data resource i′′ being in state s′′ and data resource i′ being in state s′ can be
modified by action p and state s′′ is a current state of data resource i′′ before performance
of action p, and action p is not an action of modification according to data resource i′′

being in state s′′ then action p can not be applied for last data resource i′′ being in state
s′′ and relating with data resource i′ in state s′:

∀i′∀i′′∀s′∀s′′∀r∀p[[I(i′) ∧ I(i′′) ∧ S(s′) ∧ S(s′′) ∧RS(r) ∧ P (p) ∧
relate(r, i′, s′, i′′, s′′) ∧ surjection(r) ∧modify(p, i′, s′) ∧
current state(i′′, s′′, p)∧¬modify(p, i′′, s′′)] ⇒ not for last(p, i′, s′, i′′, s′′)].

For example (see Fig. 14), designed product can have at least one part. If part of de-
signed product can be rejected (“Part of designed product” is a current state of part before



364 R. Butkienė, R. Butleris

performance of action of rejection), and action of rejection modifies designed product and
do not modifies part of designed product then action of rejection is not applied to reject
the last part of certain designed product.

Rule 9. If state s′ is a next state of data resource i′ after performance of action p, and
state s′′ is a next state of data resource i′′ after performance of action p, or if state s′ is a
current state of data resource i′ before performance of action p, and state s′′ is a current
state of data resource i′′ before performance of action p then at least one association r

between data resource i′ being in state s′ and data resource i′′ being in state s′′ exist:

∀i′∀i′′∀s′∀s′′∀p[[I(i′) ∧ I(i′′) ∧ S(s′) ∧ S(s′′) ∧ P (p) ∧ [[next state(i′, s′, p)

∧next state(i′′, s′′, p)] ∨ [current state(i′, s′, p) ∧ current state(i′′, s′′, p)]]
⇒ ∃r[RS(r) ∧ relate(r, i′, s′, i′′, s′′)]].

For example (see Fig. 13), “Designed product” and “Part for product” are current
states of action “Assemble”. So, association between data resources in these states must
exist (in this case a dependency of surjection is specified). “Assembled product” and “Part
in product” are next states of action “Assemble”. So, association between data resources
in these states must be specified (in this case a dependency of surjection is specified).

Rule 10. If state s∗ of data resource i is related with other state s′ of data resource i

by IS_A dependency z(s∗ ⇒ s′) and state s′ is current state of data resource i according
to action p, and action p is not an action of modification, then state s∗ is current state of
data resource i according to action p also:

∀i∀p∀s∗∀s′∀z[[I(i) ∧ P (p) ∧ S(s∗) ∧ S(s′) ∧ Z(z) ∧ is a(z, i, s∗, s′) ∧
current state(i, s′, p) ∧ ¬modify(p, i, s′)] ⇒ current state(i, s∗, p)].

State “Drafted” is a current state (s′) of data resource “Product” (i) according to
action “Reject drafted product” (see Fig. 16). State “Designed” (s∗) is a specialization of
data resource “Product” in state “Drafted”. So, state “Designed” is a current state of data
resource “Product” according to action “Reject drafted product”. State “Not designed”

Fig. 16. Model of rejection of product.



Verification Rules of Computerized Information System Model 365

(s∗) is a specialization of data resource “Product” in state “Drafted” also. So, state “Not
designed” is a current state of data resource “Product” according to action “Reject drafted
product”. In other words, if user can reject drafted product he/she can reject designed or
not designed product also (depends on in which state (“Designed” or “Not designed”)
drafted product is at the moment of rejection).

Rule 11. If state s∗ of data resource i is related with other state s′ of data resource i

by IS_A dependency z(s∗ ⇒ s′) and state s′ is next state of data resource i according to
action p, and action p is not an action of modification, then state s∗ is next state of data
resource i according to action p also:

∀i∀p∀s∗∀s′∀z[[I(i) ∧ P (p) ∧ S(s∗) ∧ S(s′) ∧ Z(z) ∧ is a(z, i, s∗, s′) ∧
next state(i, s′, p) ∧ ¬modify(p, i, s′)] ⇒ next state(i, s∗, p)].

State “Paid” is a next state (s′) of data resource “Invoice” (i) according to action
“Pay” (see Fig. 17). State “Fully” (s∗) is a specialization of data resource “Invoice” in
state “Paid”. So, state “Fully” is a next state of data resource “Invoice” according to action
“Pay”. State “Partially” (s∗) is a specialization of data resource “Invoice” in state “Paid”
also. So, state “Partially” is a next state of data resource “Invoice” according to action
“Pay”. In a other words, if user can pay not paid invoice he/she can pay invoice fully or
partially (amount of payment describe to which state invoice will get).

For the description of the rules presented below two sub-sets of data resources can be
defined according to the number of states of data resources:
I = I ′ ∪ I ′′, where
I ′ – subset of data resources having more than one state,
I ′′ – subset of data resources having one state only,

∀iI ′(i) ⇒ ∃s∃s∗[S(s) ∧ state of data resources(i, s) ∧
state of data resources(i, s∗)],

∀iI ′′(i) ⇒ ∃!s[S(s) ∧ state of data resources(i, s)].

Fig. 17. Model of payment.



366 R. Butkienė, R. Butleris

Fig. 18. Model of design of product.

Rule 12. If state s is a next state of data resource i after performance of action p and
state s is only state of data resource i then action p creates data resource i in state s:

∀i∀s∀p[[I ′′(i) ∧ S(s) ∧ P (p) ∧ next state(i, s, p)] ⇒ create(p, i, s)].

The example of the situation, which illustrates the application of Rule 12, is depicted
in the Fig. 18. Product was designed. State “Designed” (s) is a next state of data resource
“Product” (i) after action “Design” (p). Only state “Designed” of data resource “Product”
is specified, i.e., there are no other states of data resource “Product” specified, and this
specification is right (there are no requirements to specify more states). So the action
“Design” is the action of creation of data resource “Product” (i) in state “Designed” (s).

Rule 13. If state s is a current state of data resource i before performance of action p

and state s is only state of data resource i then action p deletes data resource i in state s:

∀i∀s∀p[[I ′′(i) ∧ S(s) ∧ P (p) ∧ current state(i, s, p)] ⇒ delete(p, i, s)].

The example of the situation, which illustrates the application of Rule 13, is depicted
in the Fig. 19. Designed product was rejected. State “Designed” (s) is a current state of
data resource “Product” (i) before action “Reject” (p). Only state “Designed” of data
resource “Product” is specified, i.e., there are no other states of data resource “Product”
specified, and this specification is right (there are no requirements to specify more states).
So the action “Reject” is the action of deletion of data resource “Product” (i) being in
state “Designed” (s).

Fig. 19. Model of rejection of product.



Verification Rules of Computerized Information System Model 367

Rule 14. If state s′′ is a next state of data resource i after performance of action p and
state s′′ is not only state of data resource i, then action p creates data resource i in state
s′′ or transfers state of data resource i from state s′ to state s′′:

∀i∀s′′∀p[[I ′(i) ∧ S(s′′) ∧ P (p) ∧ next state(i, s′′, p)] ⇒ [create(p, i, s′′) ∧
¬∃s′[S(s′) ∧ transfer(p, i, s′, s′′)] ∧ ¬modify(p, i, s′′)] ∨
[¬create(p, i, s′′) ∧ ∃s′[S(s′) ∧ transfer(p, i, s′, s′′)]] ∧ ¬modify(p, i, s′′)]
∨[¬create(p, i, s′′) ∧ ¬∃s′[S(s′) ∧ transfer(p, i, s′, s′′)] ∧modify(p, i, s′′)]].

If data resource has more than one state there are no verification rule, which gives
only correct solution. The Rule 14 gives two possible solutions: kind of action p must be
“create” or “transfer”. If problem domain is such that it is possible to reach state s′′ of
data resource i in two ways, then two different actions must be specified.

For example see Fig. 20. State “Designed” (s′′) is the next state of data resource
“Product” (i) after action “Design”. Kind of action “Design” can be “create” or “trans-
fer”. If kind of action “Design” is “create” then this action creates new data resource
“Product” in state “Designed”, and it means that for the design of the new product no
preconditions are required (for example draft of product). If kind of action “Design” is
“transfer” then: 1) one more state s′ (in this case state “Drafted”) of data resource “Prod-
uct” exists, 2) this state is a current state of data resource “Product” before action “De-
sign”, 3) action “Design” transfers state of data resource “Product” from state “Drafted”
to state “Designed”. It means that for the design of product the draft of this product is
required. If problem domain is such that it is possible to get a design of product in two
ways, then two different actions of design must be specified: “Design without draft” and
“Design from draft”. Only user who knows problem domain can explain the ambiguous
situations.

Rule 15. If state s′ is a current state of data resource i before performance of action
p, and state s′ is not the only state of data resource i, then action p deletes data resource
i in state s′, or transfers state of data resource i from state s′ to state s′′:

∀i∀s′∀p[[I ′(i) ∧ S(s) ∧ P (p) ∧ current state(i, s′, p)] ⇒ [delete(p, i, s′) ∧
¬∃s′′[S(s′′) ∧ transfer(p, i, s′, s′′)]] ∧ ¬modify(p, i, s′′)] ∨

Fig. 20. Model of two cases of design of product.



368 R. Butkienė, R. Butleris

[¬delete(p, i, s′) ∧ ∃s′′[S(s′′) ∧ transfer(p, i, s′, s′′)] ∧ ¬modify(p, i, s′′)] ∨
[¬delete(p, i, s′) ∧ ¬∃s′′[S(s′′) ∧ transfer(p, i, s′, s′′)] ∧modify(p, i, s′′)]].

If data resource has more than one state there are no verification rule, which gives only
one correct solution. The Rule 15 gives two possible solutions: kind of action p must be
“delete” or “transfer”. If problem domain allows exit from state s′ of data resource i in
two ways, then two different actions must be specified. For example see Fig. 21.

State “Designed” (s′) is the current state of data resource “Product” (i) before ac-
tion “Reject”. Kind of action “Reject” can be “delete” or “transfer”. If kind of action
“Reject” is “delete”, then this action deletes data resource “Product” being in state “De-
signed”. It means that designed product can be rejected as not useful, and all information
about it is deleted. If kind of action “Reject” is “transfer” then one more state s” (in this
case state “Drafted”) of data resource “Product” exists. This state is a next state of data
resource “Product” after action “Reject”, and action “Reject” transfers state of data re-
source “Product” from state “Designed” to state “Drafted”. It means that if only design
of product is rejected, then the product becomes not designed. If it is allowed in a prob-
lem domain to behave in two ways with a designed product, then two different “Reject”
actions must be specified: “Reject design” and “Reject product”. Only user who knows
problem domain can explain such ambiguous situation.

More rules can be defined if states of data resource would not be disjoint, or if static
dependencies would be weaker. If states are not disjoint and have associations with states
of other data resource, then some weak static dependencies can be inferred. Weak binary
associations are full of semantic holes. Semantic holes create ambiguity of actions, so,
model with not disjointed states and weak associations must be re-modeled to delete
ambiguous situations. Not disjoint states must be re-modeled in order to become disjoint
by including new states or by accepting precondition that specified states are disjoint
because new states are not relevant to CIS. Semantic holes can be deleted by conceptual
operations of prefixing, restriction, association, grouping and negation (Gustas, 1994).

Fig. 21. Model of two cases of rejection of designed product.



Verification Rules of Computerized Information System Model 369

5. Verification Rules for Identification of Missing and not Relevant to CIS Data
Resources, States, and Actions

When specification of data resources, states of data resources and actions, which process
the data resources, are specified such kind of questions arise:

1. Are all the data resources of CIS specified?
2. Are all the specified data resources relevant to CIS?
3. Are all the states of data resources of CIS specified?
4. Are all the specified states of data resources relevant to CIS?
5. Are all the actions, which process the data resources of CIS, specified?
6. Are all the specified actions, which process the data resources, relevant to CIS?

Answers to the questions:

1. Yes, if it is possible to form all output reports of CIS from the specified data re-
sources, i.e., for each output report o and attribute t′, which describes output report
o, data resource i and attribute t′′, which describes data resource i, must be speci-
fied which is used to form the attribute t′ of output report o:

∀o∀t′[O(o) ∧ T (t′) ∧ describe(o, t′) ⇒ ∃i∃t′′[I(i) ∧ T (t′′) ∧
describe(i, t′′) ∧ use attribute(o, t′, i, t′′]].

Otherwise:

a) A specific data resource is not specified, or
b) A specific state of certain data resource is not specified.

2. Yes, if there is no data resource, which is not used to form any output report of
CIS. I.e., for each data resource i attribute t′ must specified which describes data
resource i, and is used to form the attribute t′′, which describes output report o:

∀i[I(i) ⇒ ∃t′∃o∃t′′[T (t′) ∧ describe(i, t′) ∧O(o) ∧ T (t′′) ∧
describe(o, t′′) ∧ use attribute(o, t′′, i, t′)]].

Data resource, which is not used to form any output report of CIS, is redundant, or
the user of CIS has forgotten to indicate the output report, for which formation the
specified data resource is used. In latter case, the output report must be specified
and all specification of CIS must be reviewed and made more accurate. But, if user
does not confirm the need of specified data resource, this redundant data resource
must be deleted from the specification of CIS.

3. Yes, if it is possible to form all output reports of CIS from the specified states of
data resources, i.e., for each output report o and attribute t′, which describes output



370 R. Butkienė, R. Butleris

report o, attribute t′′ must be specified which describes data resource i being in
state s, and is used to form the attribute t′′ of output report o:

∀o∀t′[O(o) ∧ T (t′) ∧ describe(o, t′) ⇒ ∃t′′∃i∃s[T (t′′) ∧ I(i) ∧ S(s)

∧ describe state(i, s, t′′) ∧ use attribute(o, t′, i, t′′]].

No, if all data resources (used to form output reports of CIS) are specified, but there
is not enough of specified states of data resources to form all output reports of CIS.

4. Yes, if there is no such state of data resource, which is not used to form at least one
output report of CIS, i. e., for each data resource i being in state s attribute t′ must
specified which describes data resource i being in state s, and is used to form the
attribute t′′, which describes output report o:

∀i∀s[I(i) ∧ S(s) ∧ state of data resource(i, s)] ⇒ ∃t′∃o∃t′′[T (t′)

∧ describe state(i, s, t′) ∧O(o) ∧ T (t′′) ∧ describe(o, t′′) ∧
use attribute(o, t′′, i, t′)]].

State of data resource, which is not used to form any output report of CIS, is re-
dundant, or the user of CIS has forgotten to indicate the output report, for which
formation the specified state of data resource is used. In latter case, such output re-
port must be specified, and all specification of CIS must be revised and made more
accurate. But, if user does not confirm the need of specified state of data resource,
this redundant state of data resource must be deleted from specification of CIS, and
the specification of CIS must be revised, also.

5. Yes, if it is possible to reach all specified states of data resources of CIS, i.e., for
each state s of input i at least one action p must be specified which transfer (create)
input i to (into) state s (state s is a next state respect to the action p):

∀i∀s[[I(i) ∧ S(s) ∧ state of data resource(i, s)]
⇒ ∃p[P (p) ∧ next state(i, s, p)]].

But if a certain state of data resource cannot be reached, it means that specific
action is not specified. If not reachable state is relevant to CIS then the missing
action must be specified. Otherwise, not reachable state must be deleted from the
specification of CIS. Specifications of CIS must be revised after each change.

6. Yes, if there is no action, which transfer the data resource of CIS to a state not
relevant to CIS, i.e., for each action p, which transfer (create) data resource i to
(into) state s, attribute t′ must be specified which describe data resources i being
in state s and is used to form attribute t′′ of output report o:

∀p∀i∀s[P (p) ∧ I(i) ∧ S(s) ∧ next state(i, s, p)] ⇒ ∃t′∃o∃t′′[T (t′)

∧ describe state(i, s, t′) ∧O(o) ∧ T (t′′) ∧ describe(o, t′′) ∧
use attribute(o, t′′, i′, t′)]].



Verification Rules of Computerized Information System Model 371

If such action is specified and if user confirms not relevance of state of data resource
(see answer 4), then this action and corresponding not relevant state (to which this
action transfers) must be deleted from the specification of CIS, and specification of
CIS must be revised.

Deleted specified states of the data resources and actions, which transfer data re-
sources to these deleted states, are possibly needful to achieve the goals of the organi-
zation, but they are not needful to realize functions of CIS (to serve the purpose of the
CIS). All actions (specified and not specified) are performed in organization, but actions
performed by CIS must be specified. CIS purpose (which is based on the output reports)
determines what kinds of data resources, states, and actions must be specified.

6. Conclusion

It is well-known fact that deficiencies introduced in the early phases of systems devel-
opment are the most difficult and costly ones to correct, unless detected early. Rules
presented in the paper can be applied for detection of certain shortages in specification of
data resources of CIS and actions processing them.

Qualities of this research can be defined as follows:

− classification of actions gives an opportunity to describe the life cycle of data re-
sources;

− rules presented take into account static and dynamic dependencies;

− rules presented check the specified data resources and actions to achieve the speci-
fied purpose of CIS.

Verification rules presented in this paper can be implemented in CASE-tool to facili-
tate the specification of computerized information system.

The future work is planned on evolution of the model for the user requirement spec-
ification, and on preparation of verification rules in the later stages of CIS development
(for instance, development of entities and relationships among them from the specified
data resources).

Acknowledgement

The authors are very grateful to the anonymous Referee that has helped to improve the
previous versions of this paper.

References

Barker, R. (1990). CASE*METHOD: Tasks and Deliverables, Addison – Wesley Publ. Co., New York.



372 R. Butkienė, R. Butleris

Barker, R., C. Longman (1992). CASE*METHOD: Function and Process Modelling, Addison – Wesley Publ.
Co., New York.

Booch, G. (1994). Object Oriented Analysis and Design with Applications. 2nd ed. Benjamin/Cummings, Red-
wood City, CA.

Butkienė, R., R. Butleris (1997). Ekspertinio informacijos sistem ↪u projektavimo kompiuterizavimas, Informa-
cinės Technologijos’97, Technologija, Kaunas, 3–6 (in Lithuanian).

Butkienė, R., R. Butleris (1998). A Framework for the user requirements specification. Informacinės Tech-
nologijos ir Valdymas, 2(8), 40–53.

Coad, P., E. Yourdan (1991). Object-Oriented Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
Cauvet, C., C. Proix, C. Rolland (1991). ALECSI: An expert system for requirements engineering. In Proceed-

ings of Third International Conference CAiSE’91. Trondhein, Norway, pp. 31–49.
Gustas, R. (1994). Towards Uderstanding and Formal Definition of Conceptual Constraints, Information Mod-

elling and Knowledge Bases VI, IOS Press, pp. 381–399.
Gustas, R. (1997). Semantic and Pragmatic Dependencies of Information Systems, Monograph, Technologija,

Kaunas.
Jacobson, I., M. Christerson, P. Jonnson, G. Overgaard (1992). Object-Oriented Software Engineering: A Use

Case Driven Approach, Addison-Wesley Publ. Co., New York.
Loucopoulos, P. (1992). Conceptual Modeling. Conceptual Modeling, Databases and Case: An Integrated View

of Information Systems Development, John Wiley, 1–26.
Martin, J., J.J. Odell (1995). Object-Oriented Methods: A Foundation, Prentice-Hall, Englewood Cliffs, New

Jersey.
Matuzevičius, A (1982). Topologija, Mokslas, Vilnius, 228–233.
Muller, P.A. (1997). Instant UML. Wrox Press Ltd.
Rolland, C., C. Cauvet (1992). Trends and Perspectives in Conceptual Modelling. Conceptual Modeling,

Databases & Case. John Wiley &Sons.
Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, W. Lorensen (1991). Object-Oriented Modelling and Design,

Prentice Hall Int.

R. Butkienė received the M.S. degree from Kaunas University of Technology in 1995.
Currently she is Ph.D. student in the Department of Information Systems at Kaunas Uni-
versity of Technology. Her research interest includes requirements engineering, informa-
tion systems design, and databases.
R. Butleris is an Associate Professor in information systems at Kaunas University of
Technology, member of ECCAI and Computer Society of Lithuania. In 1980 he graduated
from Kaunas Institute of Polytechnics (now it is Kaunas University of Technology). In
1988 he received a Ph.D. of management in technical systems from Kaunas Institute of
Polytechnics. Currently his research interest includes requirements engineering, business
rules specification, information system design and reengineering.

Kompiuterizuotos informacijos sistemos model ↪i verifikuojančios
taisyklės duomen ↪u šaltinius apdorojanči ↪u veiksm ↪u atžvilgiu

Rita BUTKIENĖ, Rimantas BUTLERIS

Straipsnyje pateiktos taisyklės, kuri ↪u pagalba randamos klaidos kompiuterizuot ↪u informacijos
sistem ↪u modeliuose. Kompiuterizuotos informacijos sistemos modeliui sudaryti naudojamas Enter-
prise modeling metodas, kuris integruoja statines ir dinamines priklausomybes. Šio metodo pagrin-
dinis konstruojantysis elementas yra tipinė komunikacini ↪u akcij ↪u kilpa. Straipsnyje nagrinėjami tik
informacijos sistemos duomen ↪u šaltinius apdorojantys veiksmai.


