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Abstract. The paper deals with the minimization algorithms 
which enable us to economize the computing time during the co­
ordina!ed calculation of the values of an objective function on the 
nodes of a rectangularlattice by storing and using quantities that 
are common for several nodes. The algorithm of a uniform search 
with clustering, the variable metric algorithm and the polytope 
algorithm are modified. 
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1. Introduction. Extremal. probleJIlS that arise in the 
design of technical systems can be often transformed into the 
form 

min ·f(X) 
Xe[A,B] , 

(1) 

where the function f(X) : Rn -+ R is continuous and multiex­
tremal in a general case, A = (at, ... , an), B = (bt, . .. ;bn)~ 
X = (x}, ... ,xn ), [A,B] = {X: ai ~Xi ~ bi , i = 1,n}. 
The calculation of the value of an objective function in opti­
mization problems, occurring in practice, often requires much 
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eXpenditure of computing time. Sometimes the expenditure is 
so· great that it is impossible to solve the problem by classical 
methods. In such cases it is reasonable to base optimization 
methods not only on the functional characteristic of the ob­
jective function (linearity, convexity, etc.) . but also on the 
structure of a calculation process of the function value .. Thus, 
it is reasonabl~ to combine the algorithms of optimization and 
calculation of an objective function. 

The paper deals with the optimization",problems where 
the coordinated calculation of an objective function on some 
nodes of a rectangular lattice requires much less computing 
time than the individual calculation of all those values. Let 
us denote th~ values of f(· ) on nodes o~ the rectangular .lattice 
by f(x}, +sit, . .. , xn + s~n), where Sii E Si C R, 3 Sii = 0, 
ji = 1, Li, i = 1, n, Li is the number of dis'crete levels oLthe 
i-th coordinate of the lattice, X = (x 1, ... , X n) is the source 
point (node) of .the lattice. The total number of nodes is 

n 
L = II Li. 

i=1 

2. Models of the objective function. The struc­
ture of some functions in practice enables us to economize the 
computing time during the coordinated calculation of function 
values on the nodes of the rectangular lattice by storing and 
using the quantities that 'are common for several nodes. Let 
us define such an approach more in detail. 

Every function may be represented in such a form: 

(2) 

where Yi ~ {X1, ... ,Xn }. 

It is obvious that one of the reasons of economy is that 
it suffices to calculate the values of 9k(Yk), Xi ¢ Y~, but once 
when it is necessary to calculate Li values f(X1 +S{l, ... , Xi + 
sf\ ... , xn +s~n), ji = 1, L i . The process of calculation of f(- ) 
values on all the nodes of the rectangular lattice in a general 
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case must. be organized taking into ·account the computing 
time of all the functions composing f(· ). 

It is possible to construct a variety of models derived 
from (2) and to organize the correSpondent process of calcu­
lating the values of the objective function. Let us analyze such 
examples: . 

f(X,) =F1(~lil(.XiJ, i1 = 1,n, 9l(X»), (3) 

f(X) =F2(gili2(XillX~2)' i1 ~ i2 = 1,n, 92(X»), (4) 

f(X) =Fk (gil i2 ... i,( XillXi2, .. ;, Xi,,), i1 ~ i2 ~ ... 

.... ~ik=l,n, 9k(X»). (5) 

The functions of the type 9 and 9 in (3)-(5) may be vec­
tor functions in a general case, i.e., some different functions, 
depending, on the same combination of variables, may occUr 
in the expression of f(· ). 

The functions 

(6) 

n n 
f(X) = M :w gij(Xi,Xj) 

1=1 1=1 
(7) 

are the special cases of (3) and (4), respectively, where H, M, 
WE {~,II}. 

With the help of these examples we shall· analyze the 
economy of computing time. 

The computational economy (E) is characterized by the 
relation of the computing time (T1) of function values on all 
nodes of the rectangular lattice, without taking into account 
that the trial points are nodes of the lattice, and of the cor­
responding computational expenditure (T2) obtained makinF 
use of the coordinated calculations of these values: 
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Another criterion (N), derived from E, is useful compar­
ing the efficiency of optimization algorithms. Its meaning is 
the following: the number of values Of f(· ). calculated during' 
time T2 in an uncoordinated way: 

N =L/E. 

We will use noninteger, N to ensure the greater accuracy of 
further estimations. ' 

E must be maximized and N 'minifuized. 
The following estimation of E is valid for any function 

f(·): E ~ L/Lmin , where L min, = ~nLi' The estimation can 
I 

be more accurate, depending on the degree of concretization 
of (2). 

The greatest economy E3 for model (3) is achieved when 
the computing time of 9 and Fl is negligible compared to 
that of all gI, ... ,gn' In this case L/Lmax ~ E3 ~ L/Lmin , 
where Lmax = in~ Li and Lmin = ~n Li. E3 = L / Lmin and 

I I 

N3 = Lmin as Li = Lmin, i = 1, n. These estimates of economy 
are the, same for the function (6) when the total computing 
time of all gi, i = 1, n, is considerably more than that of H. In 
a general case the computational expenditure of all the parts 
of f(· ) is weighty and the economy decreases significantly. For 
instance, let the computing time of all the functions in (3) be 
the same, Li = Lmin , i = 1, n. In this case the economy is as 
follows: E~ = (2L + nL)/(2L + nLmin). 

Let us also consider special cases of (4) and, (5), where 
there is. the strict inequality " < " instead of" ~ ". Let 
us denote these cases by (4a) and (5a) without writing the 
corresponding formulae. The values of E for these cases are 
not greater and the values of N are not smaller than those for 
(4) or (5), but the formulae of the estimations of E and N are 
simpler. 

The greatest. economy E4a for model (4a) is achieved 
when the computing time of 92 and F2 is negligible com-
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pared to that of all the other functions from (4a). In .this 
case L / L!tax ~ E4a ~ L / L!..in' E4a == L~in2 and N 4a = L!tin 
as Li = Lmin , i = 1, n. These estimates of economy are the 
same for function .(7), when the total computing time of all 
9ij, i =1= j = 1, n, is considerably more than that of M, W 
and 9ii, i = 1, n. The estimates are the following: 

-yv-hen 

E4 = L~in n/[L!in(n - 1) + Lmin], 

N4 = [L!..in(n - 1) + Lmin]/n, 

1) the total computing time of all 9ij, i,j ...:... 1, n, from (7) is 
considerably greater than that of M and W; 
2) the computing times qf all 9ij from (7) are the same. 

Analogously, the greatest economy for model (5a) is 
achieved when the computing time of gk and Fk is negligble 
compared to that of all the other functions from (5a). In this 
caseL/L!ax ~ Esa ~ L/L!in· Esa = L/Lfnin andNsa = L!in 
aSLi=Lmin, i=l,n. 

Let nand L i , i = 1, n, be fixed. From the results above 
we observe a tendency that the value of E will be greater if 
the ·greater part of computing time of a single value of f(· ) 
will be taken for the calculation of 9 j, depending on a small 
number of variables. 

The values of E~, E3 (the greatest possible economy), 
E4 , E4a , N 3 , N4 and'N4a are presented in Table 1 for the case 
Li = Lmin , i = 1,n. 

The investigation showed that a proper organization of 
calculations of the objective function values on the nodes of 
the rectangular lattice allows to obtain considerable economy 
of computation time in comparison with the calculation of 
th?se values without taking into account the specific character 
of the location of trial points .. It is expendient to use this result 
in the construction of optimization algbrithms. 
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Table 1. Investigation of computation economy 

n L min L E' a Ea Na, E4 N4 E4a N4a 

3 2 8 1.82 4 '2 2.4 3.3 2 4 
3 3 27 2.14 9 3 3.9 7.0 3 9 
4 3 81 ' 2.79 27 3 10.8 '7.5 9 9 
6 3 729 3.95 243 3 91.1 ' 8.0 81 9 
6 5 15625 4.00 3125 5 721.2 21.7 625 25 

3. Method of solution. The function I(X) is multiex­
tremal in a general case. Thus, both global and local search 
are necessary in solving problem (1). 

One of the ways 'to effectiyely solve the problem men­
tioned above is to, use the',well known methods of global and 
local optimization, where the possibility of ,calculation of ob­
jective function values on nodes of the rectangular lattice is in 
conformity with the main scheme of these methods. 

3.1. GlobalSearch. In search for an approximate value 
of global extremum, the values of an objective function are 
often calculated on nodes of some lattice covering the feasible 
set [A, B] unifoI:IDly in a sense. This is done in this paper as 
well. The ideas of such a global search with clustering (Torn, 
1986) are used. 

The algorithm of global search is: 
1. Construction of several lattices, totally of m points 

, distributed uniformly in a sense in the set [A, B], on the ba­
sis of m2 source points, and calculation of. the values of the 
function at those'points. ' 

,2. Seleetion of mI least calculated values of the function 
and the cor~esponding points Xi . (xL ... ,x~), i = 1, mI. 

3. Clustering' of the obtained mI points into p, group' 
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and selection of the point, corresponding to the least value of 
the function, for each group. 

We assume these selected p points to be the approximate 
values of local minimizers. 

The number of nodes of the rectangular lattice obtairied 
from one source point is chosen equal to 3n , i.e., Li = 3, i = 
1, n. That is limited by insufficien~y of computer resources. 
m2 =2n source points are used. 

Two modes are proposed for construction of the lattice 
in [A, B]. We sh~ll detail these modes. 

Mode 1. The rectangular lattice with a uniform distri­
bution of nodes on individual variables (Sobolj, 1979) is con­
structed in the first mode. The source points for the lattice 
are the following: 

bk -ak -
Ck = 5 ,k = 1, n. 

The ·sets Sl,"" Sn (see, their description in Introduc­
tion) are the same for any source point X = (XI, . .. , xn) : 

-However, such a lattice is not effective when the objec­
tive function depends weakly on some variables. That was 
analyzed by ValeviCiene and co-workers (1988). For instance, 
let the Values of f(· ) be dependent in fact only on one variable. 
In this case we shall have only 6 values of f(· ) in order to eval­
uate the point of its minimum. This mode is also not effective 
for separable functions like a sum of functions depending on 
a single variable. 

Mode 2. This mode allows to avoid the mentioned above 
imperfections of mode i. It requires to spread out 3n points 
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for calculating the objective function in each of 2n subsets of 
the same volume, covering the feasible set [A, B] completely. 
The length of each edge of any subset is equal to half of the 
corresponding edge of [A,B]. The coordinates of the source 
point X = (XI, ... ,xn ) are chosen iIi each subset at random 
with constraillt on the distance between this point and the 
subset boundary: 

. [ . (2 Xle - ale 2 ble - Xk)] A c = mIn mIn • . > L.l 

Ie=l,n hie - ale ' hie - ak ' 

where .6. is a certaill constant, ale and bk are the lower and 
the upper boundaries, respectively, of the k-th edge of the 
investigated subset, bl; - ale = (h,. - alc)/2. 

In order to construct the rectangular lattice, on the basis 
of the chosen source point in the subset, the follOWIng sets 

Sle = { - c· (blc - ale); 0; c· (b - ak)}, k = 1, n, 

are proposed to be used. 
The examples of location of trial points by modes 1 and 

2 are presented in Fig.1 for n = 2, A = (0; 0), B = (1; 1). The 
source points are denoted by •. The dotted line bounds the 
region of random generation of the source points. 

Clustering. The problem is to find the partition of ml 

points Xi = (xL ... ,x~), i = I,m, from [A,B] into p nonin­
tersecting and homogeneous in a sense groups. The cluster-

. procedure based on the extremal parameter grouping is used. 
It is proposed by Dzemyda and ValeviCiene (1988). This 
nonhierarchical cluster-procedure enables us to determine the 
clusters which can be unconvex, i.e., it is possible that the clus­
ters obtained should not be separated by hyperplanes. The 
square matrix R = {rij, i,j = 1, m} is analyzed. 

rij = exp { - ap2(Xi' Xj)}, a > 0, 
n 

p2(Xi,Xj) = L (x~ - xi? j(bk - ak? 
k=l 
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The procedure maximizes some functional of partition 
quality. It allows to select the value of p automatically. The 
results of Dzemyda (1990) . are also related with this cluster­
procedure. 

Any other chister-procedure can be used. 

Efficiency. Let- us denote the versions ofglQbal Search 
algorithms with different mOdes for construction of the lattice 
in [A, B] (mode 1 and mode ~) by G1 and G2, respectively. 

The property of G1 and G2 is the following: the number 
of calculations of objective function values depends on n and is 
equal to V = 6n • This number grows significantly for greater 
n. The problem arises to economize the computing time of 
these values taking into account the fact of location of trial 
points on the nodes of 2n rectangular lattices. 

Let us consider functions (6) and (7). Let the assump­
tions on the calculation durations of their constituent parts 
be made as in Chapter 2. In this case the coordinated calcu­
lation of V values of function (6) requires the same time as 
P6 = 2n N3 values calculated in an uncoordinated way. The 
coordinated calculations of V values of function (7) require the 
same time as P7 = 2n N4 or P74 = 2n N44 values, calculated 
in an uncoordinated way. The dependences V, P6 , P7 and P74 

on n are presented in Table 2 forL i = 3, i = 1, n. 

Table 2. The dependence V, P6 , P7 and P74 on n 

n V P6 P7 ,P7a 

2 36 12 24 36 
3 216 24 56 72 
4 1296 48 120 144 
5 7776 96 249.6 288 
6 46656 192 512 576 
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Fig.I. The examples of location of trial points: 
a) mode 1, 
b) mode 2. 
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lue results of Table 2 enable us to forecast that the efficiency . 
of G1 and G2 for most of the' 'functions of such a type will be 
significantly better in comparison with that of any algorithm, 
which uses uncoordinat,eq. calculations of values of f(· }, when 
the fixed calculating time for values of f (. ) is 2n T2 • An~ogous 
results can be forecasted for any function of type (3), (4) and 
(4a), when the total computing time of all gI,'" ,gn in (3), 
all gij in (4) and (4a) is considerably greater than that of FI 
and 91 in (3), F2 and 92 in (4) and (4a). In a genaral case it 
is necessary to analyze the structure of the function for better 
organization of coordinated calculations of its values. 

3.2 •. Local search. Variable metric algorithms 'are very 
effective in the regions of convexity of objective functions. A 
polytope algorithm is" robust for nonsmooth and unconvex 
functions. These algorithms make t.he basis for our modifi:-
cations. . 

The variable metric algorithm. The variable met­
ric algorithm, proposed by Tiesis (1975) and presented in 
the· description of the package MINIMUM edited by Dzemyda 
(1985), was modified. "This algorithm combines the algorithms 
of Biggs (1971) and Goldfarb (1969). The nodes of the rectan­
gular lattice are formed consecutively for numerical differenti­
ation by either a forward or a second order difference formula. 
The differentiation step is .selected in depending on the func­
tion values calculated earlier. Any realization of model (2) can 
be used in the calculation of values of the objective function 
on nodes of the lattice. The main scheme of the variable met­
ric algorithm remains the same and the trajectory of descent 
remains the same as in the algorithm proposed by Tiesis. The­
oretically, with the help of such an approach in the best cas~ 
it is possible to accelerate the calculation of the gradient by 
n times in comparison with uncoordinated calculations of ob­
jective function values on the lattice nodes. The acceleration 
of calculation of the gradient is n /2 or n / k times when the 
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objective function corresponds to the data needed to obtain 
E4a or Esa; respectively. 

The polytope algorithm. The ideas of the polytope 
algorithm are taken from the algorithm of NeIder and Mead 
(1963). We lise the rectangular lattice of 3 levels inste~ of 
the ,simplex: Li = 3, sf ::;:: -sl = di, s~ -:- 0, i = 1, n. We 
construct a new lattice in each iteration. This lattice can be 
shrunken or expanded. The source point Xk = (xt, ... , x!) of 
the new k-th lattice can be transferred or remains the same. 

k -k-1 
The s~nkage is performed when Z -1 = X or 

Zk-2 = Zk-1, where Zk = (zf, ... , z!) is the point from 
the set of nodes of the k-th lattice with a minimal value of 
the objective function. Then, Xk = Zk-1 and d~ = d~-1f32 
if the shrinkage was performed in the (k -1)-th iteration, or 
d~ = d~-l (3 otherWise. Here 0 < (3 < l. 

In other cases the lattice moves towards the minimum of 
the objective function. Then x~ = x~-l and df = df-1 f3' if 
k-1 ...... k-1 H k-1 ...... k-1 dk- 1 th ...... k k-1 dk H 

Zi . = Xi '. zi = Xi + i , en Xi = Zi + i' ere 
d~ = d~-l~_\a > 1) i~ J(x~-l-d~-l» J(x~-l) > J(zf-1), 
and d~ = djotherwlse. J{Yi) denotes, the value of the func-
t · J() t h . t Y ( ...... k ...... k-1 "'k-1 IOn . a suc a pOln: = Xj, ... ,Xj_1,Yi,xi+1"'" 
x!-l). The definition of x~ for the case zf-1 = xf-1 - d~-l is 
analogous as above. 

The i-th coordinate of a new source point is transferred 
ftom the i-th bound [ai, bi] by the distance d~ = d~-l (32 when 
the calculated above x~ is beyond [ai, bi]. The coordinates of 
some nodes of the lattice can be calculated as being beyond 
[A, B]. These nodes are placed on the bound of the set. ' 

More complicated polytope transformations enable us to 
accelerate the algorithm. That was obtained for the simplex 
algorithm by Gill, Murray and Wright (1981). 

4. Vector optimization. The objective function in (1) 
is a vector function, i.e., J(X) = (P(X), ... ,JM(X)), when 
the problem of vector optimization is solved. The computing 
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time economy in this case may be obtained in two ways. First 
of all, the values of the individual ~ctions p (. ), ... , f M (. ) 

must be calculated on nodes of the restangular lattice by a 
coordinated way. On the other hand, it is necessary to look for 
the constituent parts, common to all the functions fl (. ), ... , 
fM(.). In control problems such a common constituent part 
is often the solution of differential equations and this takes 
the greatest part of computing time during the calculation of 
values of these functions (see, e.g., Didzgalvis and coworkers 
(1976)). 

In the case of vector optimization the Pareto set is usually 
accepted as a primary solution. We approximate the Pareto 
set by the set of points chosen with the help of the Pareto crite­
rion from the points generated in [A,11]. The Pareto criterion 
is verified and improper points are rejected after constructing 
a new lattice. 

S. Results of experimental investigation. All the 
algorithmS proposed are realized in FORl'RAN and can be 
used on the IBM/370 or mM PCI AT type computer. 

S.l. Test Problems. The experiments were carried out 
with nine test functions: 

1) Rastrigin's function: 

n 2 
h(xI, ... ,xn ) = L -. (x~ - cos (18xd), 

. n 
.=1 

Xi E [-0.3; 0.6J, i = 1, n. 

2) Rastrigin's function, n = 4, XI, X3 E [-0.25; 0.5J, 
X2, X4 E [~0.125; 0.625J. 

3) Branin's function, presented by Dixon and Szego (1978): 

f3(XI, X2) = a(x2 - bxi + eXI ....:. d)2 + e(1 - f) cos Xl + e, 

where a = 1, b = 5.1/(47r2), c = 5/7r, d = 6, e = 10, f = 
1/(87r), Xl E [-5; 10], X2 E [0; 15]. 
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4) the sum of Branin's functions: 

14(Xl, ... ,X4) = !a(Xl,X2) + !a(X3,X4), 

Xl,X3 E [-5;10], X2,X4 E [0; 15]. 

5) the first version of Shekel's function, presented by 
Dixon and Szego (1978), n - 4, Xi E [0; 10],i = 1, n. 

6) the second version of Sheke1's function, n = 4, Xi E 
[0; 10], i = 1, n. 

7) Hartman '.s function, presented by Dixon and Szego 
(1978), n = 3, X E [0; 1], i = 1, n. 

8) the test function No.26 from the list of test functions, 
proposed by Himmelblau (1972), n = 4, Xi E [0; 1], i = 1, n. 

n n 
9) fg(X) = E E sin[(i + j)XiXj], 

i=1 j=i+l 
Xi E [0; 1], i = l,n. 

Let us denote the problems of search for the minima of 
these functions by TI-T9. 

5.2. Efficiency of global search. 

5.2.1. Search for optimal ..4 in G2. The problems 
Tl (n = 4), T2 andT4 have been solved 50 times because it 
is impossible to estimate the efficiency of this algorithm by a 
single solution, and the optimization results (the least function 
values obtained) have b~en averaged for each fixed value of 6.. 
The results are presented in Table 3. 

The investigation showed that the optimal 6. value is in 
[0.2; 0.3]. . 

5.2.2. Investigation of the algorithms Gl and G2. 
The algorithms Gl and G2 belong to the class of algorithms 
of passive global search. The comparison of their efficiency 
with that of the random search with a uniform distribution 
of trial points"in the feasible set [A, B] and with that of LP­
search proposed by Sobolj (1979) was performed. Let us de­
note these algorithms by RS and LP. These algorithms also 
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Table 3. The search for optimal ~ 

~ T1 T2 T3 

0 -1.64 -1.63 5.99 
0.05 -1.68 -1.73 6.03 
0.1 -1.73 -1.77 4.51 
0.15 -1.77 -1.79 3.94 
0.2 --1.76 -1.80 3.18 
0.25 -1.77 -1.84 2.96 
0.3 -1.75 -1.81 2.76 
0.35 -1.66 -1.71 2.97 

perform the passive global search. LP is one of the most effi­
cient algorithms of this class. The coordinates of a new trial 
point depend on its number in LP and are selected randomly 
in RS. The Bayesian method for active global search, pro­
posed by Mockus (1980) and modified by Tiesis (1980), was 
also used. Let us denote it by BA. 

The experimental investigation was divided into two sta­
ges. The goal of the first one was to estimate the efficiency of 
G1 and G2 (in the sense of the obtained values of f(· ) ) in 
comparison with RS and LP when RS and LP use the same 
number of values of f(· ) as G1 and G2 (BA was not used in 
these experiments since it requires much more computing time 
as the number of trial points is large). The goal of the second 
stage was to estimate the efficiency of Gl as compared to LP 
and BA when the last two algorithms use the same amount of 
computing time for values of f(· ) as G1 (G2 arid RS were not 
used in these algorithms because the results of the first stage 
enable us to compare the efficiency of G2 to that of G1, and 
of RS to that of LP). ~ = 0.25 and p = 1 were used in Gl 
and G2. 



186 On the Use of coordinated calculations 

The' first stage. The procedure, similar to that pro­
posed by Saltenis (1984), generating'the test problem class 

. r 

min fi(X), X= (Xl, ... , x n ), i = 1, M, 
xeD 
D = {O ~ Xj ~ bj, j = 1,n}, 

on the base of the problem 

min leX) XeD 

was used, trying to reach a greater objectivity of experimental 
results. . 

The basic problem was transformed by moving the point 
of its minimum into a random place in D : 

fi(X') = f(X), X = (Xl,'''' x n ), X' = (X~, .... , X~) 

, { x j + e; as x j + e; ~ bj . 

Xj = Xj + e;.- bj as Xj + e; > bj 

where e; is the random value, distributed uniformly in' the 
interval [OJ bj], j = 1, n, i = 1, M. 

The investigation results for M = 50 are presented in 
Table 4. 

Table 4. The performance of Gl, G2, RS and LP 

Class Gl G2 RS LP 

G1 G2 G1 G2 

T5 -1.37 -1.79 0.49 1.40 0.42 1.29 
T6 -1.64 -2.00 0.50 1.17 0.45 1.27 
T7 -3.46 -3.62 0.30 0.53 0.17 0.50 
T8 1.49 0.54 0.05 0.25 0.04 0.17 
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The columns G1 andG2 of Table 3 indicate the aver­
aged best values (obtained by these algorithms) ~f the func­
tions from the corresponding classes. The columns RS/G1 
and RS / G2 indicate the ratio of the averaged nu~ber of cal­
culations of objective function values by RS and that by Gl 
and G2, correspondingly, (it is equal to 6n ) in Qrder to at­
tain the same optimization result. The columns LP/G1 and 
LP/G2 have the same meaning for LP-search as RS/Gl and 
RS I G2 for the random search, respectively. The experiments 
witnessed to the possible gain of Gl and G2 usage as com­
pared to RS and LP (e.g., the caseT5, RS/G2), though the 
loss is also possible (e.g., the case T8, LP/G1). The result is 
very dependent on a concrete function and it is impossible to 
determine it in advance without some investigation. 

The second stage. The problem T9 was solved. The 
results of investigation (obtained minimal values of function 
/9) are presented in Table 5 for various n. Function /9 is a 
detailed case of (7). Thus, LP and BA used P7a (see, Table 
2) values of the objective function during minimization. Here 
we assume that the summation of gij is considerably faster 
than the calculation of all gij. 

The best results are obtained .by G1., They are consider-
ably better than those obtained by LP and B A. . 

Table 5. Comparison of Gl, LP and BA 

n 

3 
4 
5 
6 

Gl 

-1.57 
-3.96 
-7.19 

-11.56 

LP BA. 

-0.51 -0.81 
-1.51 -3.40 
-3.59 -6.53 
-7.16 -10.38 
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5.3. Efficiency of local search. The economy of 
the proposed modification of the variable metric algorithm 
is achieved by accelerating calculations of the gradient. The 
'main part of computer time during the minimization of func-
tions in practice is used for the calculation of values of the ob­
jective function. So we shall estimate the economy (in times) 
of computing time by the formula: 

where N f is the number of values of f (. ) lying on the descent. 
trajectory, N g is the number of addit.ional values of f(· ) used 
for calculations of the gradient N = Nf + N g, Eg is the rat.io, 
indicating how much faster (in times) the calculation of a sin­
gle additional value of f(· ) continues in comparison with t.hat 
of a single value of f(· ) on the descent trajectory. 

The experiments were carried out with the problems Tl, 
T3, T4 and T9. The function II can be considered as a de­
tailed case of (6), fa and 14 that of (3), fg that of (7). The 
main charge of computing time of their values falls on the cal­
culation of 91, ... ,9n for II, 91 for fa, 91 and 93 for 14, and 
9ij for f9. The estimates of E are presented in Table 6. They 
are obtained without regard to comput.ing times of the other 
functions composing fl' fa, f4 and fg. So, Egis equal to n for 
iI, fa, 14, and Eg is equal to n/2 for f9. 

The investigation showed that a greater computational 
economy can be achieved for larger n. 

The efficiency of the polytope algorithm was compared t.o 
that of the simplex one, proposed by Himmelblau (1975). Let 
us denote these algorithms by PA and S1, correspondingly. 

The problem Tl (n = 4) was solved. Function II is a 
detailed case of (6). 50 descents were performed by P A and 
S1 from random points. The averaged results of minimization 
are presented in Fig.2. 
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Table 6. Economy of the variable metric algorithm 

The problem. n N g Nj Eg E 

T1 2 19 27 2 1.26 
T1 4 47 34 4 1.77 
T1 6 122 46 6 2.53 
T1 10 218 44 10 3.98 
T3 2 11 12 2 1.31 
T4 4 45 24 4 1.96 
T9 4 40 22 2 1.48 
T9 6 77 27 3 1.97 

SI 

~----PA 

-2.1~_...a-_---L __ -I----'--'-_---' __ -;r~ 
o 8 OC 

Fig.2. The results of PA and S1 comparison. 
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The numb~rs of generated lattices (GL) by PA are put on the 
argument axis. One iteration of PA takes the same computing 
time for 3n values of fI as Sf for 3 values offI (see N3 in Table 
1 for n = 4 and Lmin = 3). This correspondence is used in 
Fig.2. P A was found to be much more effective. 

5.4. Illustration of minimization. The performance 
of the proposed algorithms is illustrated by the test problem 
T3. Branin's function has three minima' which are all global. 
Minimization results are presented in Fig.3. 

'\ 
I 
I 
I 
I 
I 
I 

* I 
I 
I 

~~~~~~~-+~~4-~~~+---~[ 
.... -~- _...:':) 

Fig.3. The minimization results. 
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The values of the function were calculated on the nodes of 
the lattice constructed by mode 1. 12 points were selected, 
having the least values of the function, and were clustered. 
Two symbols (ffi and. ~ ) denote these points. The number of 
clusters was selected automatically. The dotted lines denote 
3 obtained clusters. The symbol ffi denotes the point of the 
cluster where the value of the function is least. There are 3 
such points. The symbol * denotes the points of local minima. 
These points were obtained by the local search from the points 
denoted by ffi. Thus, all the local minima of Branin's function 
were found. 

6. Conclusions. The proposed minimization algorithms 
are oriented to use the values of the objective function calcu­
lated on nodes of the rectangular lattice. The investigations 
showed that the coordinated calculations of values of the ob-. 
jective function on nodes of the rectangular lattice allow to 
economize-the computing time in comparison with uncoor­
dinated calculations of these values. The' extent of such an 
economy depends on the structure of the objective function 
and can vary in a wide range. 

The proposed algorithms enable us to solve the problems' 
with the restricted ,number of variables (iIi fact n ~ 7). 

The ideas implied by these algorithms can be applied in 
the construction of minimization algorithms for parall,el com­
puters. 
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