Mathematical Modeling of Metal Cutting Process

Jolanta JANUTĖNIENĖ
Klaipėda University
Bijūnu 17, 5800 Klaipėda, Lithuania
e-mail: mechanik@ku.jtf.lt
Donatas ŠVITRA
Klaipėda University
H. Manto 84, 5800 Klaipėda, Lithuania
e-mail: matkat@gmf.ku.lt

Received: November 2000

Abstract

In the practice of metal treatment by cutting it is frequently necessary to deal with selfexcited oscillations of the cutting tool, treated detail and units of the machine tool. In this paper are presented differential equations with the delay of self-excited oscillations. The linear analysis is performed by the method of D-expansion. There is chosen an area of asymptotically stability and area D_{2}. It is prove that, in the area D_{2} the stable periodical solution appears. The non-linear analysis is performed by the theory of bifurcation. The computational experiment of metal cutting process and results of these experiments are presented.

Key words: metal cutting, oscilations, stability.

1. Introduction

In the practice of metal treatment by cutting it is frequently necessary to deal with oscillations of the cutting tool, treated detail and units of the machine tool. These oscillations in many cases are an obstacle on the way to increase the productivity and quality of details treatment on a metal-cutting machines. Oscillations at metal cutting - phenomenon very diverse as owing to occurrence, and by the form of oscillatory movement.

The most difficult to eliminate and at the same time to investigate self-excited oscillations, i.e., oscillations, arising when there is no external periodic force. The self excited oscillations, stipulated by the process of cutting on metal-cutting machine tool can be divided into two kinds: the low frequency self excited oscillations and high-frequency self excited oscillations. The low-frequency self-excited oscillations is danger on break of the machine tool and the lathe tool. At high-frequency self excited oscillations, the machine tool work externally quiet, but on processed surface occurs small-sized inequality. The frequency of self-excited oscillations can reach up to 5000 Hz and higher. The stability of the process of chip formation is one of the main conditions, which should satisfy metal-cutting machine (Reshetov and Portman, 1986; De Bra, 1992).

2. Dynamics of Cutting Process

The stability of the process of chip formation is the main condition of metal cutting process. For the development of a theory of self excited oscillations at cutting it is necessary to use conformity with the law of the accompanying deformations of treated metal (Eljasberg, 1972). Specialty of the process of cutting is related to plastic properties of metal. Therefore delay cutting force, acting to lathe tool, in relation to coordinates of lathe tool. The self-excited oscillations at metal cutting are a result of delay of forces, which shake the system.

The reason of delay of forces at cutting of metal is the features of deformation process (Eljasberg, 1975). The edge a of lathe tool A (Fig. 1) does not constantly participates in deformation of the main chip, but only incises the layer of material and thus start the deformation process. At small oscillation of the system in direction x the oscillation of thickness of the chip and of the force P periodically detain.

The cutting force is variable (Ostholm, 1991). If to give for system some indignation in direction x, due to delay force P will get appropriate indignation, when lathe tool pass in direction y some path $l p$. An equation of delay of force P from coordinate

$$
\begin{equation*}
\Delta P(t)=B \Delta x\left(t-\tau_{p}\right) \tag{1}
\end{equation*}
$$

where $\Delta P(t)$ - function $(t), \Delta x\left(t-\tau_{p}\right)$ - function $\left(t-\tau_{p}\right)$.
If the force of cutting will receive finite increase ΔP, than increase ΔQ of friction force Q will reach size $\Delta Q=f \Delta P$ only in some time τ_{Q}, necessary for moving of a chip on way l_{Q}. Similarly to the Eq. 1 equation of delay of friction force

$$
\begin{equation*}
\Delta Q(t)=f \Delta P\left(t-\tau_{Q}\right) \tag{2}
\end{equation*}
$$

Fig. 1. The process of the chip formation.

Equations of the small oscillation of dynamic system:

$$
\begin{align*}
\ddot{x}(t)+\frac{b_{x}}{m_{x}} \dot{x}(t)+\omega_{x}^{2} x(t) & =-\frac{f B}{m_{x}} x\left(t-\tau_{p}-\tau_{Q}\right) \tag{3}\\
\ddot{y}(t)+\frac{b_{y}}{m_{y}} \dot{y}(t)+\omega_{y}^{2} y(t) & =-\frac{B}{m_{y}} x\left(t-\tau_{p}\right) \tag{4}
\end{align*}
$$

where $\omega_{x}^{2}=\frac{c_{x}}{m_{x}} ; m_{x}$ and $m_{y}-$ masses, c_{x} and c_{y}-coefficients of elasticity.
In the system of Eqs. (3)-(4) the time of delay depends on the functions x and y

$$
\begin{equation*}
\tau_{p}=\frac{l_{p}}{v_{s}+\dot{y}}, \quad \tau_{Q}=\frac{l_{Q}}{v_{s}+\dot{y}+\zeta \dot{x}} \tag{5}
\end{equation*}
$$

There l_{p} and l_{Q} - the path of delay, $v_{s}-$ cutting speed.
$B=k b_{c} \mu \delta^{\mu \varepsilon-1}$ - relative cutting force, δ - the thickness of the chip, μ - the power estimating the characteristic of metals and the form of lathe tool, b_{c} - the width of the chip , k - relative pressure.

The process of the chip formatting is presented more detail in (Eljasberg, 1972; Eljasberg, 1975) and there the linear analysis of the system of differential Eqs. (1)-(2) is conducted only. Our purpose will be the complete detailed linear and nonlinear analysis of system (3)-(4) by the methods of bifurcation theory, advanced in work (Kolesov and Švitra, 1979).

3. Linear Analysis

After linearising of Eq. 3, we get linear differential equation

$$
\begin{equation*}
\ddot{x}(t)+\frac{b_{x}}{m_{x}} \dot{x}(t)+\omega_{x}^{2} x(t)+\frac{f B}{m_{x}} x\left(t-\frac{l_{p}+l_{Q}}{v_{s}}\right)=0 . \tag{6}
\end{equation*}
$$

A characteristic quasi-polynomial of the Eq. 6 is

$$
\begin{equation*}
P(\lambda)=\lambda^{2}+\alpha_{1} \lambda+\alpha_{2}+k_{1} \mathrm{e}^{-\lambda h_{Q}} \tag{7}
\end{equation*}
$$

where $\alpha_{1}=\frac{b_{x}}{m_{x}} ; \alpha_{2}=\omega_{x}^{2} ; k_{1}=\frac{f B}{m_{x}} ; h_{Q}=\frac{l_{p}+l_{Q}}{v_{s}}$.
We will look at the distribution of radicals of Eq. 6 in the plane of parameters k_{1} and α_{2} using the method of D-expansion. The Eq. 7 has the radical equal zero when $\lambda=0$ and when $\alpha_{1}=-\alpha_{2}$. We will look when Eq. 7 have only imaginary radicals.

Let's put $\lambda=i \sigma$, then

$$
(i \sigma)^{2}+\alpha_{1} i \sigma+\alpha_{2}+k_{1} \mathrm{e}^{-i \sigma h_{Q}}=0
$$

and then let us separate real and imaginary parts

$$
\left\{\begin{array}{l}
-\sigma^{2}+\alpha_{2}+k_{1} \cos \left(\sigma h_{Q}\right)=0 \\
\alpha_{1} \sigma-k_{1} \sin \left(\sigma h_{Q}\right)=0
\end{array}\right.
$$

Fig. 2. D-expansion in the plane of parameters k_{1} and α_{2}.

After rearrangement we get equations of remaining curves of D-expansion in the following parametrical forms

$$
\left\{\begin{align*}
k_{1} & =\frac{\alpha_{1} \sigma}{\sin \left(\sigma h_{Q}\right)} \tag{8}\\
\alpha_{2} & =\sigma^{2}-\alpha_{1} \sigma \operatorname{ctg}\left(\sigma h_{Q}\right)
\end{align*}\right.
$$

When is $\sigma \rightarrow 0$, from (8) and (9) equations we define the return point with the coordinates

$$
\lim _{\sigma \rightarrow 0} \alpha_{2}=-\frac{\alpha_{1}}{h_{Q}} ; \quad \lim _{\sigma \rightarrow 0} k_{1}=\frac{\alpha_{1}}{h_{Q}}
$$

According the experimental results (Eljasberg, 1975; Eljasberg and Binder, 1989; Ostholm, 1991) we can calculate the values of the coefficient α_{1} and time of delay h_{Q}. Let choose the speed of cutting $v_{s}=140 \mathrm{~m} / \mathrm{min}$, the delay path of cutting force $P-l_{p}=0.35 \mathrm{~mm}$, the delay path of friction force $Q-l_{Q}=0.32 \mathrm{~mm}, c_{x}=40000$ $\mathrm{N} / \mathrm{mm}, m_{x}=4.64 \cdot 10^{-3} \mathrm{Ns}^{2} / \mathrm{mm}, b_{x}=0.0118 \mathrm{Ns} / \mathrm{mm}$.

We get $\alpha_{1}=25 \mathrm{~s}^{-1}, h_{Q}=2.8710^{-4} \mathrm{~s}$. When we put those values in the equations (8) and (9) then we get D-expansion in the plane parameters k_{1} and α_{2}. We can see D-expansion in the Fig. 2.

We have to emphasize that in the real cutting process only positive values of parameters α_{2} and k_{1} are important. From the separated areas of D-expansion we are interested in the area D_{0} of asymptotical stability and areas D_{2} and D_{4} which describe self excited oscillations arising during process of cutting.

1. Let us say $k_{1}=0, \alpha_{1}>0, \alpha_{2}>0$. Then quasi-polynomial (7) has two real negative radicals.
2. Let us say $k_{1}=0, \alpha_{1}>0, \alpha_{2}<0$. Then quasi-polynomial (7) has one real positive and one real negative radical.

Thus in the plane of parameters k_{1} and α_{2} we can separate the area D_{0} of asymptotical stability and area D_{1}, where quasi-polynomial (7) has one radical with the positive real part. The real parts of other radicals are negative (Fig. 2). This conclusion follows from the essence of the method of D-expansion.
3. Let us say $\alpha_{1}>0, \alpha_{2}=0$. When

$$
\begin{equation*}
k_{0}=\sigma_{0} \sqrt{\alpha_{1}^{2}+\sigma_{0}^{2}} \tag{10}
\end{equation*}
$$

and when σ_{0} is the only radicals in the interval $\left(0, \pi / 2 h_{Q}\right)$ of the equation

$$
\begin{equation*}
\operatorname{ctg} \sigma h_{Q}=\frac{\sigma}{\alpha_{1}} \tag{11}
\end{equation*}
$$

then quasi-polynomial (7) has a couple solely imaginary radicals $\pm i \sigma_{0}$. The real parts of other radicals are negative.

Lemma 1. When, $\alpha_{1}>0, \alpha_{2}=0$ and $k_{1}>k_{10}$ quasi-polynomial has a couple of complex joint radicals with the positive real part while real parts of other radicals are negative.

Proof. Let say $k_{1}=k_{1}+\varepsilon$ and $\lambda(\varepsilon)=\tau(\varepsilon) \pm i \sigma(\varepsilon)$. Then $\tau(0)=0, \sigma(0)=\sigma_{0}$.
We have to display, that

$$
\begin{equation*}
\tau_{0}^{\prime}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \tau(\varepsilon)\right|_{\varepsilon=0}>0 \tag{12}
\end{equation*}
$$

From the identity $P[\lambda(\varepsilon) ; \varepsilon]=0$, where $P(\lambda)$ is quasi-polynomial (7), we get

$$
\begin{equation*}
\tau_{0}^{\prime}=-\operatorname{Re} \frac{P_{0 \varepsilon}^{\prime}}{P_{0 \lambda}^{\prime}} \tag{13}
\end{equation*}
$$

where $P_{0 \varepsilon}^{\prime}=P_{\varepsilon}^{\prime}(\lambda ; \varepsilon), P_{0 \lambda}^{\prime}=P_{\lambda}^{\prime}(\lambda ; \varepsilon), \varepsilon=0, \lambda=i \sigma_{0}$.
As $i \sigma_{0}$ is a radical of quasi-polynomial (7) when $k_{1}=k_{10}$ and $\alpha_{2}=0$, then we get

$$
\begin{equation*}
\tau_{0}^{\prime}=\frac{\sigma_{0}^{2}\left\lfloor\alpha_{1}+h_{Q}\left(\sigma_{0}^{2}+\alpha_{1}^{2}\right)\right\rfloor}{k_{10}\left|P_{0 \lambda}^{\prime}\right|^{2}} \tag{14}
\end{equation*}
$$

Obviously, that $\tau_{0}^{\prime}>0$. Lemma is proved.

Thus we separated the area D_{2}. We can separate the areas D_{3}, D_{4} and so on. Accordingly it was done D-expansion in the plane of parameters k_{1} and α_{1}.

4. Nonlinear Analysis

Let's investigate system of differential equations with delay, depending of searching function:

$$
\begin{align*}
& \ddot{x}(t)+\alpha_{1} \dot{x}(t)+\alpha_{2} x(t)+k_{1}(\varepsilon) x\left(t-\tau_{p}-\tau_{Q}\right)=0 \tag{15}\\
& \ddot{y}(t)+\beta_{1} \dot{y}(t)+\beta_{2} x(t)+k_{2} x\left(t-\tau_{p}\right)=0 \tag{16}
\end{align*}
$$

Let take in to linear part a small parameter ε and

$$
k_{1}(\varepsilon)=k_{10}+\varepsilon .
$$

We change time

$$
\begin{equation*}
t=(1+c) \tau \tag{17}
\end{equation*}
$$

and get

$$
\begin{equation*}
x^{\prime \prime}(\tau)+\alpha_{1} x^{\prime}(\tau)(1+c)+\alpha_{2}(\varepsilon) x(\tau)(1+c)^{2}=-(1+c)^{2}\left(k_{1}+\varepsilon\right) x\left(\tau-h_{Q}+W\right) \tag{18}
\end{equation*}
$$

where $W=h_{Q} c+\Delta_{H}-\Delta_{H} c$.

$$
\Delta_{H}=\left(p_{2}+q_{2}\right) y^{\prime}+q_{2} x^{\prime}-\left(p_{3}+q_{3}\right) y^{\prime 2}-2 q_{3} x^{\prime} y^{\prime}-q_{3} x^{\prime 2}
$$

where $p_{2}=\frac{l_{p}}{v_{s}^{2}}, q_{2}=\frac{l_{Q}}{v_{s}^{2}}, p_{3}=\frac{l_{p}}{v_{s}^{3}}, q_{3}=\frac{l_{p}}{v_{s}^{3}}$.
We will expend the functions in power series by ξ

$$
\begin{align*}
& x(\tau)=\xi \cos \sigma_{0} \tau+\xi^{2} x_{2}(\tau)+\xi^{3} x_{3}(\tau)+\ldots \tag{19}\\
& y(\tau)=\xi y_{1}(\tau)+\xi^{2} y_{2}(\tau)+\xi^{3} y_{3}(\tau)+\ldots \tag{20}\\
& c=\xi^{2} c_{2}+\xi^{4} c_{4}+\ldots \tag{21}\\
& \varepsilon=\xi^{2} b_{2}+\xi^{4} b_{4}+\ldots \tag{22}
\end{align*}
$$

We will expend the function $\left(\tau-h_{+} W\right)$ by the series of Taylor:

$$
\begin{equation*}
x\left(\tau-h_{Q}+W\right)=x\left(\tau-h_{q}\right)+x^{\prime}\left(\tau-h_{q}\right) W+\frac{1}{2} \ddot{x}\left(\tau-h_{q}\right) W^{2}+ \tag{23}
\end{equation*}
$$

After expansion of right and left parts in to series in accordance with ξ and after sorting coefficients nearby the same powers of ξ, we get the sequence of linear nonhomogeneous differential equations with the period $2 \pi / \sigma_{0}$

$$
\begin{align*}
& x_{1}^{\prime \prime}(\tau)+\alpha_{1} x_{1}^{\prime}(\tau)+\alpha_{2} x_{1}(\tau)+k_{1} x_{1}\left(\tau-h_{Q}\right)=0, \tag{24}\\
& x_{2}^{\prime \prime}(\tau)+\alpha_{1} x_{2}^{\prime}(\tau)+\alpha_{1} x_{2}(\tau)+k_{1} x_{2}\left(\tau-h_{Q}\right) \\
& \quad=-\left[k_{1} x_{1}^{\prime}\left(\tau-h_{Q}\right)\left(p_{2}+q_{2}\right) y_{1}^{\prime}+k_{1} x_{1}^{\prime}\left(\tau-h_{Q}\right) q_{2} x_{1}^{\prime}\right] \tag{25}
\end{align*}
$$

$$
\begin{align*}
& x_{3}^{\prime \prime}(\tau)+\alpha_{1} x_{3}^{\prime}(\tau)+\alpha_{1} x_{3}(\tau)+k_{1} x_{3}\left(\tau-h_{Q}\right) \\
& =-b_{2} x_{1}^{\prime}\left(\tau-h_{Q}\right)-c_{2}\left[\alpha_{1} x_{1}^{\prime}(\tau)+2 \alpha_{1} x_{1}(\tau)\right. \\
& \left.+2 k_{1} x_{1}\left(\tau-h_{Q}\right)+k_{1} h_{Q} x_{1}^{\prime}\left(\tau-h_{Q}\right)\right]-\varphi(\tau) \tag{26}\\
& y_{1}^{\prime \prime}(\tau)+\beta_{1} y_{1}^{\prime}(\tau)+\beta_{2} y_{1}(\tau)=-k_{2} x_{1}\left(\tau-h_{P}\right), \\
& y_{2}^{\prime \prime}(\tau)+\beta_{1} y_{2}^{\prime}(\tau)+\beta_{2} y_{2}(\tau)=-\left\lfloor k_{2} x_{2}\left(\tau-h_{p}\right)+k_{2} p_{2} x_{1}^{\prime}\left(\tau-h_{p}\right) y_{1}^{\prime}\right\rfloor \tag{27}\\
& y_{3}^{\prime \prime}(\tau)+\beta_{1} y_{3}^{\prime}(\tau)+\beta_{1} y_{3}(\tau) \\
& =-k_{1} x_{3}\left(\tau-h_{p}\right)-b_{2} x_{1}^{\prime}\left(\tau-h_{p}\right)-c_{2}\left[\beta_{1} y_{1}^{\prime}(\tau)+2 \beta_{1} y_{1}(\tau)\right. \\
& \left.+2 k_{2} x_{1}\left(\tau-h_{p}\right)+k_{2} h_{p} x_{1}^{\prime}\left(\tau-h_{p}\right)\right]-\phi(\tau), \tag{28}
\end{align*}
$$

here

$$
\begin{align*}
& \varphi(\tau)=k_{1} x_{1}^{\prime}\left(\tau-h_{Q}\right)\left[\left(p_{2}+q_{2}\right) y_{2}^{\prime}-\left(p_{3}+q_{3}\right) y_{2}^{\prime 2}+q_{2} x_{2}^{\prime}-2 q_{3} y_{1}^{\prime} x_{1}^{\prime}-q_{3} x_{2}^{\prime 2}\right] \\
& \quad+\frac{1}{2} k_{1} x_{1}^{\prime \prime}\left(\tau-h_{Q}\right)\left[\left(p_{2}^{2}+q_{2}^{2}\right) y_{1}^{\prime 2}+2 p_{2} q_{2}\left(y_{1}^{\prime 2}+y_{1}^{\prime} x_{1}^{\prime}\right)+q_{2}^{2}\left(y_{1}^{\prime} x_{1}^{\prime}+x_{1}^{\prime 2}\right)\right] \\
& \quad+k_{1} x_{2}^{\prime}\left(\tau-h_{Q}\right)\left[\left(p_{2}^{2}+q_{2}^{2}\right) y_{1}^{\prime}+q_{2} x_{1}^{\prime}\right] \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
\phi(\tau)= & k_{2}\left[x_{1}^{\prime}\left(\tau-h_{p}\right)\left(p_{2} y_{2}^{\prime}+y_{1}^{\prime 2}\right)+x_{2}^{\prime}\left(\tau-h_{p}\right) p_{2} y_{1}^{\prime}\right. \\
& \left.+\frac{1}{2} x_{1}^{\prime \prime}\left(\tau-h_{p}\right) p_{2}^{2} y_{1}^{\prime 2}\right] \tag{30}
\end{align*}
$$

where

$$
\begin{aligned}
& y_{1}=A_{s} \sin \sigma_{0} \tau+A_{c} \cos \sigma_{0} \tau \\
& x_{2}=B_{0}+B_{s} \sin 2 \sigma_{0} \tau+B_{c} \cos 2 \sigma_{0} \tau \\
& y_{2}=D_{0}+D_{s} \sin 2 \sigma_{0} \tau+D_{c} \cos 2 \sigma_{0} \tau
\end{aligned}
$$

Calculation of this members is presented in (Janutėniené and Švitra, 2000).
The obtained values we put in to Eq. 26. It is known that we can solve the periodical function with the period $2 \pi / \sigma_{0}$ only is case if the function meet the following condition

$$
\left\{\begin{array}{l}
\int_{0}^{\frac{2 \pi}{\sigma_{0}}} x(\tau, \xi) \sin \sigma_{0} \tau \mathrm{~d} \tau=0 \tag{31}\\
\int_{0}^{\frac{2 \pi}{\sigma_{0}}} x(\tau, \xi) \cos \sigma_{0} \tau \mathrm{~d} \tau=0
\end{array}\right.
$$

After estimation of those conditions from the Eq. 26 we get two equations. We will get b_{2} and c_{2} from those two equations

$$
\left\{\begin{array}{l}
c_{2}\left(-\frac{2}{\sigma_{0}} \alpha_{2}-\frac{2}{\sigma_{0}} k_{1} \cos \sigma_{0} h_{Q}-k_{1} h_{Q} \sin \sigma_{0} h_{Q}\right)-b_{2} \frac{1}{\sigma_{0}} \cos \sigma_{0} h_{Q}=k_{1} \sigma_{0} S_{1}, \tag{33}\\
c_{2}\left(\alpha_{1}-\frac{2}{\sigma_{0}} k_{1} \sin \sigma_{0} h_{Q}+k_{1} h_{Q} \cos \sigma_{0} h_{Q}\right)-b_{2} \frac{1}{\sigma_{0}} \sin \sigma_{0} h_{Q}=k_{1} \sigma_{0} S_{2},
\end{array}\right.
$$

where

$$
\begin{aligned}
& S_{1}=E \cos \sigma_{0} h_{Q}+F \sin \sigma_{0} h_{Q}+G \cos 2 \sigma_{0} h_{Q}+H \sin 2 \sigma_{0} h_{Q} \\
& S_{2}=L \cos \sigma_{0} h_{Q}-M \sin \sigma_{0} h_{Q}-H \cos 2 \sigma_{0} h_{Q}+G \sin 2 \sigma_{0} h_{Q}
\end{aligned}
$$

We get forms of b_{2} and c_{2}

$$
\begin{align*}
& c_{2}=\frac{k_{1} \sigma_{0}^{2}\left(S_{2}-S_{1} t g \sigma_{0} h_{Q}\right)}{I_{2}-I_{1} t g \sigma_{0} h_{Q}} \tag{35}\\
& b_{2}=\frac{c_{2} I_{1}-k_{1} \sigma_{0}^{2} S_{1}}{\cos \sigma_{0} h_{Q}} \tag{36}
\end{align*}
$$

From (22) we can consider, that

$$
\xi_{*}=\sqrt{\frac{\varepsilon}{b_{2}}}+\mathrm{O}(\varepsilon)
$$

then $\tau \approx \frac{t}{1+\frac{c_{2}}{b_{2}} \varepsilon}$.
We get the periodical solution of system differential equations (15)-(16):

$$
\left\{\begin{array}{l}
x(t)=\sqrt{\frac{\varepsilon}{b_{2}}} \cos \frac{\sigma_{0} t}{1+\frac{c_{2}}{b_{2}} \varepsilon}+\mathrm{O}(\varepsilon) \\
y(t)=\sqrt{\frac{\varepsilon}{b_{2 *}}}\left(A_{s} \sin \sigma_{0} \tau+A_{c} \cos \sigma_{0} \tau\right)+\mathrm{O}(\varepsilon)
\end{array}\right.
$$

The approximate values obtained, when $t=1.5 \mathrm{~mm}, v_{s}=120 \mathrm{~m} / \mathrm{min}, s=0.25$ $\mathrm{mm} / \mathrm{rev}$ (Fig. 3). The periodical solution of system (15)-(16) differential equations is stable, then $\tau_{0}^{\prime} \varepsilon>0$.

5. Computational Experiments

We will solve the system of differential equations (3) and (4) by the method of Oiler.

Fig. 3. The self excited oscillation by coordinates x and y.

We know, that acceleration $-\ddot{x}=\frac{\mathrm{d} v}{\mathrm{~d} t}$ and speed $-\dot{x}=v=\frac{\mathrm{d} x}{\mathrm{~d} t}$.

$$
\left\{\begin{array}{l}
\mathrm{d} v_{x}=\left(-\alpha_{1} v_{x}-\alpha_{2} x-k_{1} x\left(t-\tau_{p}-\tau_{Q}\right)\right) \mathrm{d} t \\
\mathrm{~d} v_{y}=\left(-\beta_{1} v_{y}-\beta_{2} y-k_{2} x\left(t-\tau_{p}\right)\right) \mathrm{d} t \\
\mathrm{~d} x=v_{x} \mathrm{~d} t \\
\mathrm{~d} y=v_{y} \mathrm{~d} t
\end{array}\right.
$$

In accordance with initial conditions $x(0)=0, y(0)=0, v_{x}(0)=v_{x 0}, v_{y}(0)=0$ we calculate:

$$
\left\{\begin{array}{l}
x_{n}=x_{(n-1)}+v_{x(n-1)} \mathrm{d} t \\
y_{n}=y_{(n-1)}+v_{y(n-1)} \mathrm{d} t \\
v_{x n}=v_{x(n-1)}+\left(-\alpha_{1} v_{x(n-1)}-\alpha_{2} x_{(n-1)}-k_{1} x\left(t_{1}-\tau_{p}-\tau_{Q}\right)\right) \mathrm{d} t \\
v_{y n}=v_{y(n-1)}+\left(-\beta_{1} v_{y(n-1)}-\beta_{2} y_{(n-1)}-k_{2} x\left(t_{1}-\tau_{p}\right)\right) \mathrm{d} t
\end{array}\right.
$$

$\mathrm{d} t-$ step of the time; let's select $\mathrm{d} t=0.00001 \mathrm{~s}$.
The members $x\left(t_{n}-\tau_{p}-\tau_{Q}\right)$ and $x\left(t_{n}-\tau_{p}\right)$ depends of searching function. We find them by the computation program presented in Fig. 5

Results of computational experiment present in Fig. 4.

6. Conclusions

Results of computational experiment correspond with theoretical solution of system differential equation (3)-(4). We can model the metal cutting process, when we change the parameter k_{1}. Thus, when coefficients $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} have a different values, we can find conditions, when the system of differential equations have a stable periodical solution or assymptotical stable solution.

Fig. 4. The oscillations by coordinate x, when $s=0.25 \mathrm{~mm}, t=1.5 \mathrm{~mm}, v_{s}=120 \mathrm{~m} / \mathrm{min}$.

```
Function FindRow(FirstRow, AValue)
Dim}i\mathrm{ As Integer
Dim Difference
i=FirstRow
Do
Difference=Abs(AValue-Cells(i,1).Value)
i=i+1
Loop Until (Difference <= Abs(AValue-Cells(i,1).Value))
FindRow=i-1
End Function
Sub Macro2()
Dim}r\mathrm{ , RowNo
r=10
For RowNo = 10 To 1000
r=FindRow(r, Cells(RowNo, 4).Value)
Cells(RowNo, 8).Value=Cells(r, 3).Value
Next RowNo
End Sub
```

Fig. 5. The algorithm of computation program for find $x\left(t_{n}-\tau_{p}-\tau_{Q}\right)$.

References

De Bra, D. (1992). Vibration isolation of precision Machine Tools and instruments. CIRP, 41(2), 711-716.
Eljasberg, M.E. (1971). The theory and calculation of stability on metal cutting process. Stanki i Instrument, 11, 6-11 (in Russian).
Eljasberg, M.E. (1972). The theory and calculation of stability on metal cutting process. Stanki i Instrument, 1, 3-7 (in Russian).
Eljasberg, M.E. (1975). About calcutalion of stability of metall cutting process. Stanki i Instrument, 2, 19-27 (in Russian).
Eljasberg, M.E., M.G. Binder (1989). Stable of oscillation system of metal cutting machine. Stanki i Instrument,

10, 19-22 (in Russian).
Janutėniené, J., D. Švitra (1998). Linear analysis of differecial equations of metall cutting process. LMD mokslo darbai, Vol 2. Vilnius, Technika, pp. 470-474.
Janutènienė, J., D. Švitra (2000). Investigation of self excited oscillation in metal cutting process. Mechanika, 26(6), 69-74.
Kolesov, Yu., D. Švitra (1979). Oscillation in Systems with the Delay. Vilnius, Mokslas
Ostholm, S. (1991). Simulering och Identifiering av Skareggars Mekaniska Belastringsbild. Institutionen for mekanisk teknologi och verktysmaskiner lunds tekniska horskola.
Reshetov, D.N., V.T. Portman (1986). Precision of Machine Tools. Mashinostroenije, Moscow (in Russian).
J. Janutènienė received the Dipl.Eng. degree from Kaunas Polytechnic Institute, Lithuania, in 1990. Currently she is a person maintaining a doctor's thesis in Klaipeda University. Her research interents include mathematical modelling of technical system.
D. Švitra has received the degree of habil.doctor of mathematics from the Academy of Sciences of USSR in 1989. He is a professor of mathematics at the Klaipeda University. His research interests include nonlinear modelling in biology and ecology.

Metalu pjovimo proceso matematinis modeliavimas

Jolanta JANUTĖNIENĖ, Donatas ŠVITRA

Straipsnyje nagrinėjamos metalu pjovimo proceso metu atsirandančius autosvyravimus aprašančios diferencialinės lygtys. Atlikta diferencialiniu lygčiú su vèlavimu, priklausančiu nuo ieškomos funkcijos, tiesinė analizė. D- suskaidymo metodu išskirta asimptotinio stabilumo sritis, kurioje autosvyravimai nesusižadina bei sritis, kurioje atsiranda stabilus periodinis sprendinys. Taikant bifurkacijų teoriją atlikta diferencialinių lygčių netiesinė analizė ir gauta stabilaus periodinio sprendinio išraiška. Atliktas diferencialinių lygčių skaitinis eksperimentas ir jo rezultatai palyginti su teorinio sprendinio reikšme. Naudojantis gautais rezultatais galima matematiškai modeliuoti metalu pjovimo procesa.

