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Abstract. This paper considers the problem of likelihood ratio determination for recognition of
the stochastic processes with continuous time on the set continuous and discrete time memory
observations. The research of memory influence on the detection quality of anomalous noises in
the discrete channel observation with applying the general obtained results is realized for the one
particular problem.
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1. Introduction

For the recognition problem the likelihood ratio on the class of nonrandomized Bayes
strategies are sufficient statistics for construction of the decision rules (Middleton, 1960;
Van Trees, 1971; Sage and Melse, 1972; Fukunaga, 1972). Therefore determination of
likelihood ratio is a basic problem for the given problem solution. The modern stage in
the synthesis theory of the algorithms for stochastic process treatment began from papers
(Kalman, 1960; 1961). In the Kalman systems the pair of processes {xt; yt} with con-
tinuous and discrete time, where xt is an unobservable process, and yt is an observable
process, is the basic mathematical object. For the case where xt and yt are the processes
with the discrete time and xt is a Gaussian process, the problem of likelihood ratio deter-
mination in the detection problem, which is a particular case of recognition problem, was
considered in (Schweppe, 1965; Mc Lenndon and Sage, 1970; Sage and Melse, 1972).
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For the case where xt and yt are the discrete time processes and xt is the Gaussian pro-
cess, the likelihood ratio determination problem in the detection problem was considered
in (Kailath, 1969; Sage and Melse, 1972). The likelihood ratio determination problem in
the general problem of recognition was considered in (Willsky and Jones, 1976) for the
case where xt and yt are the discrete time processes, in (Grene, 1978) for the case where
xt and yt are the continuous time processes. The likelihood ratio determination problem
where yt = y(t, tm) = {zt, η(tm)}, i.e., the observable process is a set of the processes
with continuous zt and discrete η(tm) time, was considered in (Dyomin, 1979).

A new class of problems is about the situation when the observable processes zt and
η(tm) possess the memory relatively unobservable process, i.e., zt and η(tm) depend not
only on the current values but also on the arbitrary number N of the former values pro-
cesses xt. For the similar class of processes {xt; zt; η(tm)} and for the single multiplicity
memory (N = 1) the filtering problem was considered in (Kulman and Hametv, 1978;
Dyomin, 1987), the extrapolation problem was considered in (Dyomin, 1992), the prob-
lem of transmission schotastic signals through continuous-discrete channels was con-
sidered in (Dyomin and Korotkevich, 1987), the recognition problem was considered in
(Dyomin, 1985). For the arbitrary multiplicity memory, where N � 1 the filtering prob-
lem was considered in (Abakumova et al., 1995a; 1995b) and the extrapolation problem
was considered in (Dyomin et al., 1997; Dyomin et al., 1999). The present paper con-
siders the likelihood ratio determination problem in the general recognition problem of
arbitrary quantity of hypotheses, when the unobservable process xt is the process with
continuous time and the observable process is a set of the processes with continuous zt

and discrete η(tm) time with arbitrary multiplicity memory. This paper together with
(Abakumova et al., 1995a; 1995b; Dyomin et al., 1997; Dyomin et al., 1999; Dyomin
and Rozhkova, 1999) solves problems of optimal algorithms synthesis for treatment of
the continuous time stochastic processes with respect to continuous-discrete observations
with the arbitrary multiplicity memory.

Used notations: P{·} is event probability; M{·} is expectation; N{y; a,B} detotes
Gaussian probability density function with given parameters a and B; I and O are single
and zero matrix of appropriate sizes; � T � denote transpose of a matrix, as the upper
right index; | · | and tr[·] are determinant and trace of matrix; B > 0 (B < 0;B � 0) are
positively (negatively, nonnegatively) defined matrix.

2. Problem Formulation

Let the unobservable n-dimensional process xt and the observable l-dimensional process
zt with continuous time denoted by the stochastic differential equations

dxt = f(t, xt, zt, θ)dt + Φ1(t, xt, zt, θ)dwt, t � 0, (2.1)

dzt = h(t, xt, xτ1 , · · · , xτN , zt, θ)dt + Φ2(t, zt)dvt, (2.2)

and the observable q-dimensional discrete time process η(tm) is expressed by

η(tm) = g(tm, xtm , xτ1 , · · · , xτN , θ) + ξ(tm), m = 0, 1, . . . , (2.3)
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where 0 � t0 < τN < · · · < τ1 < tm � t. The parameter θ is the hypothesis iden-
tifier and can accept values from the set Ωθ = {θ0, θ1, · · · , θr} with the a priori prob-
abilities p0(θj) = P{θ = θj}, j = 0; r. It is assumed: 1) wt and vt are standard
Wiener processes of sizes r1 and r2; 2) for all θ ∈ Ωθ coefficients of the equations
(2.1), (2.2) satisfy to conditions (Liptser and Shiryayev, 1977; 1978; Kallianpur, 1980)
and g(·) is continuous for all arguments; 3) ξ(tm) is q-dimensional Gaussian sequence
with M{ξ(tm)|θ = θj} = bj(tm), M{ξ(tm)ξT (tm)|θ = θj} = V (tm, θ) and x0, wt,
vt, ξ(tm), θ are assumed to be statistically independent; 4) Q(·) = Φ1(·)ΦT

1 (·) > 0,
R(·) = Φ2(·)ΦT

2 (·) > 0, V (·) > 0 for all θ ∈ Ωθ; 5) the initial density func-
tions p0(x0|θj) = ∂P{x0 � x|θ = θj}/∂x, j = 0; r are given. The problem is
raised as follows: with respect to the realizations set zt

0 = {z(σ); 0 � σ � t} and
ηm
0 = {η(t0), η(t1), . . . , η(tm)} find the likelihood ratio Λt(θj : θα) for the hypotheses

recognition problem Hj{θ = θj} and Hα{θ = θα}, j = 0; r, α = 0; r.
The models of the processes zt and η(tm) of (2.2), (2.3) are adequate to the ob-

servations with fixed memory if τk = const and observations with sliding memory if
τk = t− t∗k in (2.2) and τk = tm − t∗k in (2.3), where t∗k = const, k = 1;N . The present
problem is considered for the case of fixed memory.

3. The General Relations

With a view of compact representation of mathematical expressions we shall enter ex-
tended processes x̃N

τ , x̃N+1
t,τ and variables x̃N , x̃N+1 as

x̃N
τ =


xτ1

xτ2

...
xτN

 , x̃N+1
t,τ =

[
xt

x̃N
τ

]
, x̃N =


x1

x2

...
xN

 , x̃N+1 =
[

x

x̃N

]
. (3.1)

The method of evalution Λt(θj : θα) is based on the formula [1]

Λt(θj : θα) = [p0(θα)/p0(θj)]Pt(θj : θα), (3.2)

which unite the likelihood ratio and the a posteriori probabilities ratio

Pt(θj : θα) = pt(θj)/pt(θα), (3.3)

where

pt(θj) = P{θ = θj |zt
0, η

m
0 }, j = 0; r. (3.4)

PROPOSITION 1. The a posteriori probabilities of hypotheses Hj{θ = θj} for tm � t <

tm+1 are denoted by the equations

dtpt(θj) = pt(θj)
[
h(t, zt|θj) − h(t, zt)

]T
R−1(t, zt)[dzt − h(t, zt)dt], (3.5)
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with the initial conditions

ptm(θj) =
[
C
(
η(tm), ztm |θj

)
/C

(
η(tm), ztm

)]
ptm−0(θj), (3.6)

where

h(t, zt|θj) = M
{
h(t, xt, x̃

N
τ , zt, θ)|θ = θj , z

t
0, η

m
0

}
, (3.7)

h(t, zt) = M
{
h(t, xt, x̃

N
τ , zt, θ)|zt

0, η
m
0

}
, (3.8)

C
(
η(tm), ztm |θj

)
= M

{
C
(
η(tm), ztm , xtm , x̃N

τ , θ
)
|θ = θj , z

tm
0 , ηm−1

0

}
, (3.9)

C
(
η(tm), ztm

)
= M

{
C
(
η(tm), ztm , xtm , x̃N

τ , θ
)
|ztm

0 , ηm−1
0

}
, (3.10)

C
(
η(tm), ztm , x, x̃N , θj

)
=
∣∣V (tm, θj)

∣∣−1/2 exp
{
− 1

2
[
η(tm) − bj(tm) − g(tm, x, x̃N , ztm , θj)

]T
× V −1(tm, θj)

[
η(tm) − bj(tm) − g(tm, x, x̃N , ztm , θj)

]}
, (3.11)

and ptm−0(θj) = lim pt(θj) subject to t ↑ tm.

Proof. For

pt(x, x̃N , θj) = ∂N+1P{xt � x, x̃N
τ � x̃N , θ = θj |zt

0, η
m
0 }/∂x∂x̃N (3.12)

on the time intervals tm � t < tm+1 we have the equation

dtpt(x, x̃N , θj) = Lt,x

[
pt(x, x̃N , θj)

]
dt + pt(x, x̃N , θj)

[
h(t, x, x̃N , zt, θj)

− h(t, zt)
]T

R−1(t, zt)
[
dzt − h(t, zt)dt

]
, (3.13)

where Lt,x[·] denotes Kolmogorov operator and is adequate to to the process xt subject
to θ = θj . The equation (3.13) follows from the equation (II 26) in (Abakumova et al.,
1995a). Since

pt(x, x̃N , θj) = pt(x, x̃N |θj)pt(θj), (3.14)

where

pt(x, x̃N |θj) = ∂N+1P
{
xt � x, x̃N

τ � x̃N |θ = θj , z
t
0, η

m
0

}
/∂x∂x̃N , (3.15)

then integrating (3.13) with respect to {x, x̃N} taking into account (3.14) yields (3.5). By
the use of the Baies formula reduce

ptm(x, x̃N , θj) =
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=
p(η(tm)|xtm =x, x̃N

τ = x̃N , θ=θj, z
tm
0 , ηm−1

0 )ptm−0(x,x̃N , θj)
N∑

k=0

∫
p
(
η(tm)|xtm=x, x̃N

τ = x̃N , θ=θk, z
tm
0 , ηm−1

0

)
ptm−0(x,x̃N ,θk) dxdx̃N

, (3.16)

where ptm−0(x, x̃N , θj) = lim pt(x, x̃N , θj) subject to t ↑ tm. From (2.3) taking into
account suppositions 2), 3) reduce

p
(
η(tm)|x, x̃N , θj , z

tm
0 , ηm−1

0

)
= N

{
η(tm); bj(tm) + g(tm, x, x̃N , ztm , θj), V (tm, θj)

}
. (3.17)

Making use of (3.17) in (3.16) taking into account (3.10), (3.11) yields

ptm(x, x̃N , θj)

=
[
C
(
η(tm), ztm , x, x̃N , θj

)
/C

(
η(tm), ztm

)]
ptm−0(x, x̃N , θj). (3.18)

Integrating (3.18) with respect to {x, x̃N} taking into account (3.9), (3.14) yields (3.6).

COROLLARY 1. For pt(θj) we have

pt(θj) = pτ1−0(θj) exp
{ ∑

τ1�ti�t

ln
[
C(η(ti), zti |θj)
C(η(ti), zti)

]

+

t∫
τ1

[
h(s, zs|θj)−h(s, zs)

]T
R−1(s, zs)

[
dzs−

1
2
h(s, zs|θj)ds−

1
2
h(s, zs)ds

]}
. (3.19)

Proof. Let us denote p̃t(θj) = ln{pt(θj)}. As process z̃t, differential of which has rep-
resentation

dz̃t = dzt − h(t, zt)dt, (3.20)

is the Wiener process (Liptser and Shiryayev, 1977; 1978; Kallianpur, 1980) that differ-
entiating according to Ito formula, taking into account (3.5) yields for tm � t < tm+1

dtp̃t(θj) =
[
h(t, zt|θj) − h(t, zt)

]T
R−1(t, zt)

×
[
dzt −

1
2
h(t, zt|θj)dt−

1
2
h(t, zt)dt

]
. (3.21)

From (3.6) it follows that

p̃tm(θj) = p̃tm−0(θj) + ln
C
(
η(tm), ztm |θj

)
C
(
η(tm), ztm

) . (3.22)

As pt(θj) = exp{p̃t(θj)} then (3.19) for t � τ1 follows from (3.21), (3.22).
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Theorem 1. The likelihood ratio Λt(θj : θα) in the problem of hypotheses recognition
Hj{θ = θj} and Hα{θ = θα}, j = 0; r, α = 0; r, subject to tm � t < tm+1 is denoted
by the equation

dtΛt(θj : θα) = Λt(θj : θα)
[
h(t, zt|θj) − h(t, zt|θα)

]T
×R−1(t, zt)

[
dzt − h(t, zt|θα)dt

]
, (3.23)

with the initial condition

Λtm(θj : θα) =
[
C
(
η(tm), ztm |θj

)
/C

(
η(tm), ztm |θα

)]
Λtm−0(θj : θα), (3.24)

where Λtm−0(θj : θα) = limΛt(θj : θα) subject to t ↑ tm.

Proof. Differentiating (3.3) arcording to Ito formula taking into account (3.5), (3.20)
yields

dtPt(θj : θα) = Pt(θj : θα)
[
h(t, zt|θj) − h(t, zt|θα)

]T
×R−1(t, zt)

[
dzt − h(t, zt|θα)dt

]
. (3.25)

Substituting (3.2) into (3.25) yields (3.23). Substituting (3.6) into (3.3) taking into ac-
count (3.2) we have (3.24).

COROLLARY 2. For Λt(θj : θα) we have

Λt(θj : θα) = Λτ1−0(θj : θα) exp
{ ∑

τ1�ti�t

ln
[
C(η(ti), zti |θj)
C(η(ti), zti |θα)

]

+

t∫
τ1

[
h(s, zs|θj) − h(s, zs|θα)

]T
R−1(s, zs)

×
[
dzs −

1
2
h(s, zs|θj)ds−

1
2
h(s, zs|θα)ds

]}
. (3.26)

Proof. Equation (3.23) is rewritten as

dtΛt(θj : θα) = Λt(θj : θα)
[
h(t, zt|θj) − h(t, zt|θα)

]T
×R−1(t, zt)

[
h(t, zt) − h(t, zt|θα)

]
dt

+ Λt(θj : θα)
[
h(t, zt|θj) − h(t, zt|θα)

]T
×R−1(t, zt)

[
dzt − h(t, zt)dt

]
. (3.27)

Let us denote Λ̃t(θj : θα) = ln{Λt(θj : θα)}. Differentiating according to Ito formula
taking into account (3.20), (3.27) yields for tm � t < tm+1

dtΛ̃t(θj : θα) =
[
h(t,zt|θj) − h(t,zt|θα)

]T
R−1(t,zt)
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×
[
dzt −

1
2
h(t,zt|θj)dt−

1
2
h(t,zt|θα)dt

]
. (3.28)

From (3.24) it follows that

Λ̃tm(θj : θα) = Λ̃tm−0(θj : θα) + ln
C(η(tm), ztm |θj)
C(η(tm), ztm |θα)

. (3.29)

As Λt(θj : θα) = exp{Λ̃t(θj : θα)}, then (3.26) for t � τ1 follows from (3.28), (3.29).

From the Theorem 1 it follows that the effective calculation Λt(θj : θα) is
realized provided that there is a possibility of effective calculation h(t, zt|θj) and
C(η(tm), ztm |θj). In the folowing item the particular case of the processes xt, zt, η(tm)
supposing such possibility is considered.

4. The case of Effective Calculation Λt(θj : θα)

Let us denote τ̃N = (τ1, τ2, · · · , τN ),

µ(t|θj) = M{xt|θ = θj , z
t
0, η

m
0 }, µ(τk, t|θj) = M{xτk

|θ = θj , z
t
0, η

m
0 },

µ̃N+1(τ̃N , t|θj) =
[

µ(t|θj)
µ̃N (τ̃N , t|θj)

]
=
[

µ(t|θj)
µ(τk, t|θj)

]
, k = 1;N, (4.1)

Γ(t|θj) = M
{[

xt − µ(t|θj)
][
xt − µ(t|θj)

]T |zt
0, η

m
0

}
,

Γkk(τk, t|θj) = M
{[

xτk
− µ(τk, t|θj)

][
xτk

− µ(τk, t|θj)
]T |zt

0, η
m
0

}
,

Γ0k(τk, t|θj) = M
{[

xt − µ(t|θj)
][
xτk

− µ(τk, t|θj)
]T |zt

0, η
m
0

}
,

Γlk(τl, τk, t|θj) = M
{[

xτl
− µ(τl, t|θj)

][
xτk

− µ(τk, t|θj)
]T |zt

0, η
m
0

}
, (4.2)

Γ̃N+1(τ̃N , t|θj) =

[
Γ(t|θj) Γ̃0N (τ̃N , t|θj)
Γ̃T

0N (·) Γ̃N (τ̃N , t|θj)

]

=

 Γ(t|θj) Γ01(τ1, t|θj) Γ0k(τk, t|θj)
ΓT

01(·) Γ11(τ1, t|θj) Γlk(τl, τk, t|θj)
ΓT

0k(·) ΓT
lk(·) Γkk(τk, t|θj)

, l = 1;N − 1, k = 2;N, k > l.

PROPOSITION 2. Assume (see (2.1)–(2.3)):

f(·) = F (t, zt, θ)xt, Φ1(·) = Φ1(t, zt, θ),

h(·) = H0(t, zt, θ)xt +
N∑

k=1

Hk(t, zt, θ)xτk
,

g(·) = G0(t, zt, θ)xtm +
N∑

k=1

Gk(tm, ztm , θ)xτk
, (4.3)
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p0(x|θj) = N{x;µj
0,Γ

j
0}, j = 0; r.

Then (see (3.1), (3.15))

pt(x̃N+1|θj) = N
{
x̃N+1; µ̃N+1(τ̃N , t|θj), Γ̃N+1(τ̃N , t|θj)

}
, j = 0; r. (4.4)

Block components of the distribution (4.4) parameters µ̃N+1(·) and Γ̃N+1(·) (see (4.1),
(4.2)) for tm � t < tm+1 are defined by the equations

dtµ(t|θj) = F (t, zt, θj)µ(t|θj)dt + H̃T
0 (t, zt|θj)R−1(t, zt)dz̃t(θj), (4.5)

dtµ(τk, t|θj) = H̃T
k (t, zt|θj)R−1(t, zt)dz̃t(θj), k = 1;N, (4.6)

dΓ(t|θj)/dt = F (t, zt, θj)Γ(t|θj) + Γ(t|θj)FT (t, zt, θj) + Q(t, zt, θj)

−H̃T
0 (t, zt|θj)R−1(t, zt)H̃0(t, zt|θj), (4.7)

dΓkk(τk, t|θj)/dt = −H̃T
k (t, zt|θj)R−1(t, zt)H̃k(t, zt|θj), k = 1;N, (4.8)

dΓ0k(τk, t|θj)/dt = F (t, zt, θj)Γ0k(τk, t|θj)

−H̃T
0 (t, zt|θj)R−1(t, zt)H̃k(t, zt|θj), k = 1;N, (4.9)

dΓlk(τl, τk, t|θj)/dt = −H̃T
l (t, zt|θj)R−1(t, zt)H̃k(t, zt|θj), (4.10)

l = 1;N − 1, k = 2;N , k > l, with the initial conditions

µ(tm|θj) = µ(tm − 0|θj) + G̃T
0 (tm, ztm |θj)

×W−1(tm, ztm |θj)[η̃(tm|θj) − bj(tm)], (4.11)

µ(τk, tm|θj) = µ(τk, tm − 0|θj) + G̃T
k (tm, ztm |θj)

×W−1(tm, ztm |θj)[η̃(tm|θj) − bj(tm)], (4.12)

Γ(tm|θj) = Γ(tm − 0|θj) − G̃T
0 (tm, ztm |θj)

×W−1(tm, ztm |θj)G̃0(tm, ztm |θj), (4.13)

Γkk(τk, tm|θj) = Γkk(τk, tm − 0|θj) − G̃T
k (tm, ztm |θj)

×W−1(tm, ztm |θj)G̃k(tm, ztm |θj), (4.14)

Γ0k(τk, tm|θj) = Γ0k(τk, tm − 0|θj) − G̃T
0 (tm, ztm |θj)

×W−1(tm, ztm |θj)G̃k(tm, ztm |θj), (4.15)

Γlk(τl, τk, tm|θj) = Γlk(τl, τk, tm − 0|θj) − G̃T
l (tm, ztm |θj)

×W−1(tm, ztm |θj)G̃k(tm, ztm |θj), (4.16)

where

dz̃t(θj) = dzt −
[
H0(t, zt, θj)µ(t|θj) +

N∑
i=1

Hi(t, zt, θj)µ(τi, t|θj)
]
dt, (4.17)

H̃0(t, zt|θj) = H0(t, zt, θj)Γ(t|θj) +
N∑

i=1

Hi(t, zt, θj)ΓT
0i(τi, t|θj), (4.18)
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H̃k(t, zt|θj) = Hk(t, zt, θj)Γkk(τk, t|θj)

+
N∑

i�=k

Hi(t, zt, θj)ΓT
ki(τk, τi, t|θj), (4.19)

η̃(tm|θj) = η(tm) −G0(tm, ztm , θj)µ(tm − 0|θj)

−
N∑

i=1

Gi(tm, ztm , θj)µ(τi, tm − 0|θj), (4.20)

G̃0(tm, ztm |θj) = G0(tm, ztm , θj)Γ(tm − 0|θj)

+
N∑

i=1

Gi(tm, ztm , θj)ΓT
0i(τi, tm − 0|θj), (4.21)

G̃k(tm, ztm |θj) = Gk(tm, ztm , θj)Γkk(τk, tm − 0|θj)

+
N∑

i�=k

Gi(tm, ztm , θj)ΓT
ki(τk, τi, tm − 0|θj), (4.22)

W (tm, ztm |θj) = V (tm, θj) + G0N (tm, ztm , θj)Γ̃N+1

×(τ̃N , tm − 0|θj)GT
0N (tm, ztm , θj), (4.23)

G0N (tm, ztm , θj)=[G0(tm, ztm , θj)
...G1(tm, ztm , θj)

... · · ·
...GN (tm, ztm , θj)], (4.24)

and ϕ(·, tm − 0) = limϕ(·, t) by t ↑ tm is the solution of the appropriate differential
equation on the previous interval time calculated at the point t = tm.

As the fixed memory is a particular case of sliding memory then the formulated propo-
sition is referred to as a particular case from the results (Abakumova et al., 1995b).

Theorem 2. The likelihood ratio Λt(θj : θα) is denoted by the Theorem 1 expressions,
where

h(t, zt|θj) = H0(t, zt, θj)µ(t|θj) +
N∑

k=1

Hk(t, zt, θj)µ(τk, t|θj), (4.25)

C(η(tm), ztm |θj) = exp
{
− 1

2
[
η(tm) − bj(tm)

]T
V −1(tm, θj)

×
[
η(tm) − bj(tm)

]}∣∣V (tm, θj)
∣∣−1/2

×
∣∣Γ̃N+1(τ̃N , tm|θj)

∣∣1/2∣∣̃ΓN+1(̃τN , tm − 0|θj)
∣∣1/2

×
exp

{
1
2 µ̃

T
N+1(̃τN , tm|θj)Γ̃−1

N+1(̃τN , tm|θj)µ̃N+1(̃τN , tm|θj)
}

exp
{

1
2 µ̃

T
N+1(̃τN , tm − 0|θj)Γ̃−1

N+1(̃τN , tm − 0|θj)µ̃N+1(̃τN , tm − 0|θj)
}. (4.26)
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Proof. The formula (4.25) follows immediately from (3.7) taking into account (4.1),
(4.3). Using (3.9), (3.15) we obtain

C(η(tm), ztm |θj) =
∫

C
(
η(tm), ztm , x̃N+1, θj

)
ptm−0(x̃N+1|θj)dx̃N+1. (4.27)

From (3.1), (3.11), (4.3), (4.4), (4.24) it follows that

C(η(tm), ztm , x̃N+1, θj

)
ptm−0(x̃N+1|θj)

= (2π)−n(N+1)/2
∣∣V (tm, θj)

∣∣−1/2
C1 exp

{
− 1

2
E

}
, (4.28)

C1 =
∣∣Γ̃N+1(τ̃N , tm − 0|θj)

∣∣−1/2
, (4.29)

E =
[
η(tm) − bj(tm) −G0N (tm, ztm , θj)x̃N+1

]T
V −1

×(tm, θj)
[
η(tm) − bj(tm) −G0N (tm, ztm , θj)x̃N+1

]
+
[
x̃N+1 − µ̃N+1(τ̃N , tm − 0|θj)

]T Γ̃−1
N+1

×(τ̃N , tm − 0|θj)
[
x̃N+1 − µ̃N+1(τ̃N , tm − 0|θj)

]
. (4.30)

Quadratic form [x̃N+1−a]T Ψ[x̃N+1−a] selection in (4.30) with consequent substitution
into (4.28) is given by

C(η(tm), ztm , x̃N+1, θj)ptm−0(x̃N+1|θj) =
∣∣V (tm, θj)

∣∣−1/2
C1C2C3C4C5

×N
{
x̃N+1; µ̃N+1(τ̃N , tm|θj), Γ̃N+1(τ̃N , tm|θj)

}
, (4.31)

where

C2 =
∣∣Γ̃N+1(τ̃N , tm|θj)

∣∣1/2
,

C3 = exp
{
− 1

2
µ̃T

N+1(τ̃N , tm−0|θj)Γ̃−1
N+1(τ̃N , tm−0|θj)µ̃N+1(τ̃N , tm−0|θj)

}
,

C4 = exp
{

1
2
µ̃T

N+1(τ̃N , tm|θj)Γ̃−1
N+1(τ̃N , tm|θj)µ̃N+1(τ̃N , tm|θj)

}
, (4.32)

C5 = exp
{
− 1

2
[
η(tm) − bj(tm)

]T
V −1(tm, ztm)

[
η(tm) − bj(tm)

]}
,

µ̃N+1(τ̃N , tm|θj) = Γ̃N+1(τ̃N , tm|θj)
[
GT

0N (tm, ztm , θj)V −1(tm, ztm)

×
[
η(tm) − bj(tm)

]
+ Γ̃−1

N+1(τ̃N , tm−0|θj)µ̃N+1(τ̃N , tm−0|θj)
]
, (4.33)

Γ̃N+1(τ̃N , tm|θj) =
[
Γ̃−1

N+1(τ̃N , tm − 0|θj) + GT
0N (tm, ztm , θj)

×V −1(tm, ztm)G0N (tm, ztm , θj)
]−1

. (4.34)

Substituting (4.31) into (4.27) by the use of (4.29), (4.32) yields (4.26).
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REMARK 1. Using the matrix identity [A + BCBT ]−1 = A−1 − A−1B[C−1

+BTA−1B]−1BTA−1 into (4.34) we have for Γ̃N+1(τ̃N ,tm|θj) equivalent (4.34) for-
mula

Γ̃N+1(̃τN ,tm|θj) = Γ̃N+1(̃τN , tm−0|θj)−Γ̃N+1(̃τN , tm−0|θj)GT
0N (tm, ztm , θj)

×W−1(tm,ztm |θj)G0N (tm,ztm ,θj)Γ̃N+1(̃τN ,tm−0|θj), (4.35)

where W (tm,ztm |θj) is denoted by (4.23). Using (4.35) into (4.33) yields for µ̃N+1(τ̃N ,

tm|θj) an equivalent (4.33) formula

µ̃N+1(̃τN , tm|θj) = µ̃N+1(̃τN , tm−0|θj) + Γ̃N+1(̃τN , tm−0|θj)GT
0N (tm, ztm , θj)

×W−1(tm, ztm |θj)
[
η̃(tm|θj) − bj(tm)

]
, (4.36)

where η̃(tm|θj) is denoted by (4.20). Block rewriting (4.35), (4.36) taking into account
(4.1), (4.2), (4.21)–(4.24) result in (4.11)–(4.16). From (3.6), (3.14), (3.18) it follows that

ptm(̃xN+1|θj)=
[
C
(
η(tm),ztm ,x̃N+1, θj

)
/C

(
η(tm), ztm |θj

)]
ptm−0(̃xN+1|θj). (4.37)

From (4.37) taking into account (4.26), (4.31) it folows that

ptm(x̃N+1|θj) = N
{
x̃N+1; µ̃N+1(τ̃N , tm|θj), Γ̃N+1(τ̃N , tm|θj)

}
. (4.38)

Therefore (4.4) for t = tm and (4.11)–(4.16) is proved immediately in the process of
Theorem 2 proof.

REMARK 2. Theorem 2 together with Proposition 2 gives a closed system of differential-
reccurent expressions for determination Λt(θj : θα) as in the general case of memory
continuous-discrete observations and for foliowing particular cases: á) discrete observa-
tions are absent (G0(·) ≡ O, Gk(·) ≡ O, k = 1;N) and continuous observations are
with memory, without memory (Hk(·) ≡ O, k = 1;N), with pure lag time (H0(·) ≡ O);
b) continuous observations are absent (H0(·) ≡ O, Hk(·) ≡ O, k = 1;N) and discrete
observations are with memory, without memory (Gk(·) ≡ O, k = 1;N), with the pure
lag time (G0(·) ≡ O); c) various combinations of situations, when are present both
continuous and discrete observations (for example, continuous observations are with-
out memory, discrete observations are with pure lag time). The results (Sage and Melse,
1972) for cases, when the process xt is continuous time process and also results (Kailath,
1969; Greene, 1978; Dyomin, 1979, 1985) folow as particular cases from the formulated
above Theorems and Corollaries.

REMARK 3. The obtained results are obviously extended for the case when the coeffi-
cients dependence into (2.1)–(2.3) of θ is not only functional, but also index, i.e.,

f(·) = f θ(t, xt, zt) ∈
{
f0(·), f1(·), · · · , f r(·)

}
,
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Φ1(·) = Φθ
1(t, xt, zt) ∈

{
Φ0

1(·),Φ1
1(·), · · · ,Φr

1(·)
}
, (4.39)

h(·) = hθ(t, xt, xτ1 , · · · , xτN , zt) ∈
{
h0(·), h1(·), · · · , hr(·)

}
,

g(·) = gθ(tm, xtm , xτ1 , · · · , xτN , ztm) ∈
{
g0(·), g1(·), · · · , gr(·)

}
.

5. Detection of Anomalous Noises

The obtained results allow by virtue of Λt(θj : θα) make the optimal minimum average
risk solution (Middleton, 1960; Van Trees, 1971; Sage and Melse, 1972; Fukunaga, 1972)
in any time t � 0 while obtaining the observations {zt; η(tm)} but an analysis of the
recognition procedure quality in the general case is difficult. In some particular cases for
some problems such analysis is possible. In this section we consider a similar problem.

Let the process xt be a scalar stationary process and described by the equation

dxt = −axtdt + Φ1dwt, a > 0. (5.1)

The given process, wich is known as process Ornstein-Uhlenbeck (Davis, 1977) is Gaus-
sian with the correlation function in a stationary state K(s) = [Q/2a] exp{−a|s|},
Q = Φ2

1, and the correlation time sk = 1/a. Let contituous observations be absent
(situation b) from Remark 2), and the process η(tm) is scalar stationary process with the
single multiplicity memory (N = 1, τ1 = τ)

η(tm) = G0xtm + G1xτ + ξ0(tm) + θξ1(tm), (5.2)

where θ ∈ Ωθ = {θ0; θ1} = {0; 1}, ξ0(tm) and ξ1(tm) are independent white Gaus-
sian sequences with the expectations b0 = 0, b1 �= 0 and the intensities V0, V1. The
noise ξ0(tm) is a regular noise and ξ1(tm) is an anomalous noise. Therefore the prob-
lem of hypotheses recognition H1{θ = θ1} and H0{θ = θ0} is a problem of anoma-
lous noise detection. The case of rare observations are considered when on the intervals
t ∈ (tm, tm+1) solutions of the equationts (4.7)–(4.9) for matrix Γ̃2(τ̃2, t) elements γ(t),
γ01(τ, t), γ11(τ, t) (see (4.2)) reach stationary values

γ = γ11 =
Q

2a
, γ01 = γ exp{−at∗}, (5.3)

where t∗ = t − τ is the memory depth. For lack of continuous observations dtΛt(θ1 :
θ0) = 0, then in the case of rare observations η(tm) it is meaningful to make a decision
with respect to the values Λtm(θ1 : θ0), which is according to Theorem 1 as follows

Λtm(θ1 : θ0) =
C(η(tm)|θ1)
C(η(tm)|θ0)

. (5.4)
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The calculations with respect to Theorem 2, Proposition 2 and (5.3) performed for the
considered problem regarding (5.4) give the following expression for Λtm(θ1 : θ0)

Λtm(θ1 : θ0) =
(
W0

W1

)1/2

exp
{
− [η̃(tm) − q

√
V0]2

2W1

}
exp

{
η̃2(tm)
2W0

}
, (5.5)

η̃(tm) = η(tm) −G0µ(tm − 0) −G1µ(τ, tm − 0), (5.6)

W0 = V0 + g(t∗)γ, W1 = (l + 1)V0 + g(t∗)γ,

g(t∗) = G2
0 + G2

1 + 2G0G1 exp{−at∗}. (5.7)

The scale expectation b1 and the intencity V1 of the anomalous noise ξ1(tm) as regards
the intencity V0 of regular noise as V1 = lV0, b1 = q

√
V0 are used in (5.5), (5.6). Let α =

P{θ = θ1|θ = θ0} be a probability of false detection and β = P{θ = θ0|θ = θ1} be a
probability of anomalous noise omission. Let Λ̃tm(θ1 : θ0) = ln{Λtm(θ1 : θ0)} and

Itm(1 : 0) = M{Λ̃tm(θ1 : θ0)|θ = θ1},
Itm(0 : 1) = −M{Λ̃tm(θ1 : θ0)|θ = θ0}

(5.8)

be Kullback divergences (Kullback, 1960). Then α, β and Itm(1 : 0), Itm(0 : 1) are
linked by inequalities

Itm(1 : 0) � β ln[β/(1 − α)] + (1 − β) ln[(1 − β)/α],

Itm(0 : 1) � α ln[α/(1 − β)] + (1 − α) ln[(1 − α)/β],
(5.9)

from which the lower boundaries α∗ = infα subject to fixed β and β∗ = infβ subject to
fixed α can be defined. From (5.2), (5.6) are obtained (see (4.1), (4.24))

η̃(tm) = G01ε̃2(τ̃2, tm − 0) + ξ0(tm) + θξ1(tm), (5.10)

where

ε̃2(τ̃2, tm − 0)=
[

ε(tm − 0)
ε(τ, tm − 0)

]
=
[
xtm − µ(tm − 0)
xτ − µ(τ, tm − 0)

]
, G01 = [G0

...G1]. (5.11)

Then from (4.4), (4.23), (5.7), (5.10) follows that

ptm(η̃|θ0) = N{η̃; 0,W0}, ptm(η̃|θ1) = N{η̃; q
√

V0,W1}. (5.12)

The calculations with respect to (5.8) with the help of (5.5), (5.12) yield

Itm(1 : 0) =
1
2

[
ln
( V0 + g(t∗)γ
(l + 1)V0 + g(t∗)γ

)
+

(q2 + l)V0

V0 + g(t∗)γ

]
, (5.13)

Itm(0 : 1) =
1
2

[
ln
(

(l + 1)V0 + g(t∗)γ
V0 + g(t∗)γ

)
+

(q2 − l)V0

(l + 1)V0 + g(t∗)γ

]
. (5.14)
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Let Ĩtm(1 : 0), Ĩtm(0 : 1), α̃, β̃, α̃∗, β̃∗ denote the corresponding values in the case
of observance channel without memory, when G1 = 0. It is obvious that Ĩtm(1 : 0) and
Ĩtm(0 : 1) are expressed by (5.13), (5.14), where g(t∗) are substituted by G2

0. Then the
values ∆Itm(1 : 0) = Itm(1 : 0)− Ĩtm(1 : 0), ∆Itm(0 : 1) = Itm(0 : 1)− Ĩtm(0 : 1) and
the adequate values ∆α∗ = α∗ − α̃∗, ∆β∗ = β∗ − β̃∗ will characterize the observation
effectiveness with memory as regards the observations without memory in the problem
of anomalous noise detection. If ∆Itm(1 : 0) > 0, which yields ∆α∗ < 0, then a channel
with memory is more effective than a channel without memory with respect to the false
detection. If ∆Itm(0 : 1) > 0, which yields ∆β∗ < 0, then a channel with memory
is more effective than a channel without memory with respect to the anomalous noise
omission. The carried out research yields the following

PROPOSITION 3. Let

(G0, G1) ∈ M = M+ ∪M− = {(G0, G1) : G2
1 + 2G0G1 < 0}. (5.15)

Then ∆Itm(1 : 0) and ∆Itm (0 : 1) subject to t∗ ↑∞0 are monotonically diminishing from
the values ∆I0

tm
(1 : 0) > 0 and ∆I0

tm
(0 : 1) > 0 denoted by

∆I0
tm

(1 : 0) =
1
2

ln[C0
2/C

0
1 ] +

1
2
(q2 + l)V0

(
[V0 + (G0 + G1)2γ]−1

− [V0 + G2
0γ]−1

)
, (5.16)

∆I0
tm

(0 : 1) =
1
2

ln[C0
1/C

0
2 ] +

1
2
(q2 − l)V0

([
(l + 1)V0 + (G0 + G1)2γ

]−1

− [(l + 1)V0 + G2
0γ]−1

)
, (5.17)

where

C0
1 =

[
(l + 1)V0 + (G0 + G1)2γ

]
[V0 + G2

0γ],

C0
2 =

[
V0 + (G0 + G1)2γ

][
(l + 1)V0 + G2

0γ],
(5.18)

up to the values ∆I∞tm
(1 : 0) < 0 and ∆I∞tm

(0 : 1) < 0 denoted by

∆I∞tm
(1 : 0) =

1
2

ln[C∞
2 /C∞

1 ] +
1
2
(q2 + l)V0

([
V0 + (G2

0 + G2
1)γ

]−1

− [V0 + G2
0γ]−1

)
, (5.19)

∆I∞tm
(0 : 1) =

1
2

ln[C∞
1 /C∞

2 ]+
1
2
(q2−l)V0

([
(l+1)V0+(G2

0+G2
1)γ

]−1

− [(l + 1)V0 + G2
0γ]−1

)
, (5.20)

where

C∞
1 =

[
(l + 1)V0 + (G2

0 + G2
1)γ

]
[V0 + G2

0γ],

C∞
2 =

[
V0 + (G2

0 + G2
1)γ

][
(l + 1)V0 + G2

0γ
]
.

(5.21)
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The value t∗ subject to ∆Itm(1 : 0) = 0, ∆Itm(0 : 1) = 0 and which can be defined the
effective memory depth t∗eff expressed by

t∗eff =
1
a

ln
(

2|G0|
|G1|

)
. (5.22)

If (G0, G1) ∈ M = {(G0, G1) : G2
1 + 2G0G1 > 0} then ∆Itm(1 : 0) < 0, ∆Itm(0 :

1) < 0 (∆α∗ > 0, ∆β∗ > 0) for all t∗ � 0, i.e., in this case the observations without
memory is more effective than the observations with memory.

A physical interpretation of this result is the following. If (G0, G1) ∈ M , then |G0 +
G1| < |G0|. From (5.2) it follows that η(tm) = (G0+G1)xtm +ξ0(tm)+θξ1(tm) subject
to t∗ = 0. This allows the anomal noise ξ1(tm) to dominate a greater degree over the
signal Y (tm) = (G0+G1)xtm +ξ0(tm) rather than the signal Ỹ (tm) = G0xtm +ξ0(tm)
provided that (G0, G1) ∈ M since intencities of the signal X(tm) = (G0 + G1)xtm and
X̃(tm) = G0xtm are proportional to |G0+G1|2 and |G0|2, respectively. This explains the
property ∆I0

tm
(1 : 0) > 0, ∆I0

tm
(0 : 1) > 0 and ∆α∗

0 < 0, ∆β∗
0 < 0, respectively. The

property t∗ � sk, where sk = 1/a is a correlation time of the process xt, is adeguate to
the case of t∗ → ∞. With the correlations lack between xtm and xτ the signal intencity
X(tm, τ) = G0xtm + G1xτ is proportional to the value G2 = G2

0 + G2
1. Thus, by a

great depth of the memory, when t∗ → ∞, the anomal interference ξ1(tm) dominates to
a greater degree over the signal Ỹ (tm) = G0xtm + ξ0(tm) rather than over the signal
Y (τ, tm) = G0xtm + G1xτ + ξ0(tm). By virtue of this the property ∆I∞tm

(1 : 0) < 0,
∆I∞tm

(0 : 1) < 0 is explained and ∆α∗
∞ > 0, ∆β∗

∞ > 0, respectively.

COROLLARY 3. Let (5.15) be satisfied. Then ∆α∗ subject to fixed β and ∆β∗ subject to
fixed α are monotonically increaseing provided that t∗ ↑∞0 from the values ∆α∗

0 < 0 and
∆β∗

0 < 0 to the values ∆α∗
∞ > 0 and ∆β∗

∞ > 0 is equal zero in the point t∗ = t∗eff

denoted by (5.22).

This property arises from Proposition 3 taking into account (5.9). The results of
Proposition 3 and Corollary 3 are illustrated by the performed calculations. In Fig. 1,
2 ∆Itm(1 : 0) and ∆α∗ are shown as functions of the memory depth t∗ subject to var-
ious l and a. As it is subjected for a minor of the memory depth, when t∗ → 0, the
behaviour of ∆Itm(1 : 0) and ∆Itm(0 : 1) depends on the ratio between G0 and G1,
then the dependences for ∆I0

tm
(1 : 0) from G0 subject to fixed G1 and from G1 subject

to fixed G0 are shown in Fig. 3 and 4, where ∆I0
tm

(1 : 0) = lim∆Itm(1 : 0) provided
that t∗ ↑∞0 . The behaviour ∆α∗

0 = lim ∆α∗
0 subject to t∗ → 0 adequate to these depen-

dences is obvious. The dependences shown in the Fig. 3 and 4 correspond to the carried
out researches. Analogous dependence are obtained for ∆I0

tm
(0 : 1), ∆β∗

0 .
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Fig. 1. Dependence of ∆Itm(1 : 0) and ∆α∗ from the memory depth subject to various l.

Proposition 3 and Copollary 3 characterize a potential effectiveness of observation
with memory relative to those without memory. The following result deals with the prop-
erties of detector

Λ̃tm(θ1 : θ0)
H1
>
<
H0

d. (5.23)

PROPOSITION 4. Let (5.15) be satisfied and l = 0. Then ∆α and ∆β are denoted by

∆α = Φ

(
d− h̃

b̃
√

W̃

)
− Φ

(
d− h

b
√
W0

)
, (5.24)

∆β = Φ
(

(d− h) − bq
√
V0

b
√
W0

)
− Φ

(
(d− h̃) − b̃q

√
V0

b̃
√

W̃

)
, (5.25)

where W̃ = V0 + γG2
0, b = q

√
V0/W0, b̃ = q

√
V0/W̃ , h = −q2V0/2W0, h̃ =
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Fig. 2. Dependence of ∆Itm(1 : 0) and ∆α∗ from the memory depth subject to various α.

−q2V0/2W̃ , W0 are described in (5.7) and

Φ(y) =
1√
2π

y∫
−∞

exp
{
− 1

2
s2

}
ds. (5.26)

The functions ∆α(t∗) and ∆β(t∗) are monotonically increaseing subject to t∗ ↑∞0 from
the values ∆α0 < 0 and ∆β0 < 0 to the values ∆α∞ > 0 and ∆β∞ > 0, whilst
∆α0, ∆β0 are expressed by (5.24), (5.25), where W0 = V0 + γ(G0 + G1)2, and ∆α∞,
∆β∞ are expressed by the same formulae, where W0 = V0 + γ(G2

0 +G2
1). The property

∆α(t∗) = 0 and ∆β(t∗) = 0 are justified at the point t∗ = t∗eff denoted by (5.22).

Proof. From (5.5)–(5.7) by l = 0 it follows that Λ̃tm(θ1 : θ0) = bη̃(tm) + h. Then
according to (5.12)

ptm(Λ̃|θ0) = N{Λ̃;h, b2W0}, ptm(Λ̃|θ1) = N{Λ̃; bq
√

V0 + h, b2W0}. (5.27)
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Fig. 3. Dependence of ∆I0
tm

(1 : 0) from G1 subject to fixed G0.

Since

α =

∞∫
d

ptm(Λ̃|θ0) dΛ̃, β =

d∫
−∞

ptm(Λ̃|θ1) dΛ̃, (5.28)

then making use of (5.27) in (5.28) taking into account (5.26) yields

α = 1 − Φ
(

d− h

b
√
W0

)
, β = Φ

(
(d− h) − bq

√
V0

b
√
W0

)
. (5.29)

Then (5.24), (5.25) arise from (5.29). The properties ∆α(t∗) = 0 and ∆β(t∗) = 0 are
proved immediately taking into account the properties Φ(y).

COROLLARY 4. Let suppositions of Proposition 4 be satisfied and d = 0. Then ∆α =
∆β = ∆ and ∆(t∗) is monotonically increaseing subject to t∗ ↑∞0 from ∆0 < 0 to
∆∞ > 0, where

∆0 = Φ

(
1
2

q
√
V0√

V0 + γG2
0

)
− Φ

1
2

q
√
V0√

V0 + γ(G0 + G1)
2

 , (5.30)
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Fig. 4. Dependence of ∆I0
tm

(1 : 0) from G0 subject to fixed G1.

∆∞ = Φ

(
1
2

q
√
V0√

V0 + γG2
0

)
− Φ

(
1
2

q
√
V0√

V0 + γ(G2
0 + G2

1)

)
. (5.31)

The property ∆(t∗) = 0 is satisfied at the point t∗ = t∗eff denoted by (5.22).

The formulated result arises immediately from Proposition 4 subject to d = 0 taking
into account the property Φ(−y) = 1 − Φ(y).

6. Estimation

In the framework of the considered recognition problem a solution for the problem of de-
termining the mean-root-square optimal estimation θ̂(t) for the parameter θ, the filtering
estimation µ(t) and the interpolation estimations µ(τk, t), k = 1;N for the process xt

has been obtained. Indeed, since a posteriori mean (Liptser and Shiryayev, 1977; 1978;
Kallianpur, 1980) is in the mean-root-square optimal estimation, i.e.,

θ̂(t)=M{θ|zt
0, η

m
0 }, µ(t)=M{xt|zt

0, η
m
0 }, µ(τk, t)=M{xτk

|zt
0, η

m
0 }, (6.1)
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then according to (3.4), (3.14), (3.15)

θ̂(t) =
r∑

j=0

θjpt(θj), µ(t) =
r∑

j=0

µ(t|θj)pt(θj),

µ(τk, t) =
r∑

j=0

µ(τk, t|θj)pt(θj),
(6.2)

where µ(t|θj) and µ(τk, t|θj) are defined in (4.1). Consequently subject to (4.3) are sat-
isfied with respect to Propositions 1 and 2, where h(t, zt|θj) and C(η(tm), ztm |θj) are
denoted by (4.25), (4.26),

h(t, zt) =
r∑

j=0

h(t, zt|θj)pt(θj), (6.3)

C
(
η(tm), ztm

)
=

r∑
j=0

C
(
η(tm), ztm |θj

)
ptm−0(θj), (6.4)

and arise from (3.7)–(3.10). Thus, in the Lainiotis sense adaptive estimations (Lainiotis,
1971) of the filtering µ(t) and the interpolation µ(τk, t), k = 1;N , for the process xt in
the case of continuous-discrete observations with fixed memory have been obtained.

7. Conclusion

1. The derived problem solution of likelihood ratio determination in the general
hypothesises recognition problem, when are observed the set of the processes
with continuous and discrete time which depend both on current and former
values of an unobservable process includes a solution of particular problems (see
Remark 2).

2. An approach applied to the recognition problem consideration allowed to solve a
combined problem of adaptive filtering and adaptive interpolation.

3. As it follows from the particular problem considered on the basis of general
results in i.5 the presence of memory can either improve or worsen the quality of
recognition procedure, which is determined by a memory depth, a ratio between
the transmission coefficients of signal through the observation channels and its
statistical properties.

4. The obtained theoretical results can be applied at solving practical recognition
problems of complex systems, characterized by the continuous-discrete
information availability and inertial observation channels (inertial information
transmission channels).
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Tikėtinumo santykio nustatymas stochastini ↪u proces ↪u atpažinimo
uždaviniuose, priimant domėn aib ↪e ↪isimint ↪u tolygi ↪u ir diskreči ↪u
stebėjim ↪u

Nikolas DYOMIN, Svetlana ROZHKOVA, Olga ROZHKOVA

Straipsnyje nagrinėjamas tikėtinumo santykio nustatymas tolygaus laiko stochastini ↪u proces ↪u at-
pažinimo uždaviniuose, priimant domėn aib ↪e ↪isimint ↪u tolygi ↪u ir diskreči ↪u stebėjim ↪u. Ištirta tokios
atminties ↪itaka anomali ↪u triukšm ↪u nustatymo kokybei stebint diskretin ↪i kanal ↪a.


