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Abstract. One of the main problems in pattern classification and neural network training theory
is the generalization performance of learning. This paper extends the results on randomized lin-
ear zero empirical error (RLZEE) classifier obtained by Raudys, Dičiūnas and Basalykas for the
case of centered multivariate spherical normal classes. We derive an exact formula for an expected
probability of misclassification (PMC) of RLZEE classifier in a case of arbitrary (centered or non-
centered) spherical normal classes. This formula depends on two parameters characterizing the
“degree of non-centering” of data. We discuss theoretically and illustrate graphically and numeri-
cally the influence of these parameters on the PMC of RLZEE classifier. In particular, we show that
in some cases non-centered data has smaller expected PMC than centered data.

Key words: randomized linear classifier, generalization error, Gaussian classes, probability of
misclassification, non-centered data.

1. Introduction

One of the main problems in pattern classification and neural network training theory is
the generalization performance of learning, i.e., how well a classifier or network will per-
form in future (for unknown data) trained on a fixed-size training set (of known data). In
some cases of simply distributed data (for example, for two normal classes) very accurate
estimates of generalization error were obtained for many statistical classifiers (Wyman et
al., 1990). However, for neural networks and, in particular, for single layer perceptrons
only very pessimistic bounds of the generalization error are known; see, e.g., (Amari and
Murata, 1993; Dičiūnas and Raudys, 2000; Haussler et al., 1994).

In this paper we consider a randomized linear zero empirical error (RLZEE) classifier.
Since a single layer perceptron is also a linear classifier and its training can be considered
as a random process (Raudys and Dičiūnas, 1994), an estimation of RLZEE classifier can
be useful in neural network training theory, too (see Section 4).

*Part of this work was done while being at the Institute of Mathematics and Informatics, Vilnius, Lithuania.
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An RLZEE classifier shortly can be defined as follows. A training set

L =
{
X(1)

1 ,X(1)
2 , . . . ,X(1)

N , X(2)
1 ,X(2)

2 , . . . ,X(2)
N

}

of p-dimensional (p � 2) observation vectors from two different classes π1 and π2

is given. Let C1 and C2 be centers (means) of classes π1 and π2, respectively. We
call the data (i.e., classes π1 and π2) centered if C1 + C2 = 0 and non-centered
otherwise. According to some a priori distribution we randomly generate coefficients
a0, a1, . . . , ap ∈ R and verify if a hyperplane

a1x1 + · · · + apxp + a0 = 0

discriminates given vectors without errors, i.e., if it satisfies the following (ZEE) condi-
tion:

{
ATX1

j + a0 > 0 ∀X1
j ∈ L ∩ π1,

ATX2
j + a0 � 0 ∀X1

j ∈ L ∩ π2,
(ZEE)

where AT = (a1, . . . , ap). Suppose that we successfully found such a hyperplane
(a0,A) (in opposite case we generate new coefficients a0, a1, . . . , ap and so on). The
question is how well this hyperplane discriminates unknown data from classes π1 and
π2, i.e., we are interested in an expected probability of misclassification (PMC) of this
classifier. In neural networks literature the expected PMC usually is called generalization
error because it shows how well the given classifier generalizes. In this paper we will use
both these terms in arbitrary way.

RLZEE classifier since 1993 has been intensively studied by Raudys et al.; see, for ex-
ample, (Basalykas et al., 1996; Dičiūnas and Raudys, 2000; Raudys, 1993, 1997; Raudys
and Dičiūnas,1996). This classifier is worth for studying by following reasons:

(i) it allows to obtain an exact formula for an expected PMC while for the other in-
vestigated linear statistical classifiers only complicated asymptotic formulae are
known, see (Basalykas et al., 1996);

(ii) it works (i.e., gives a comparatively low expected PMC) in the cases when p > N

while Fisher’s and some other classifiers do not work in such cases;

(iii) an expected PMC of RLZEE classifier can be successfully applied as an upper
bound for a generalization error of single layer neural network classifiers.

The main results of above mentioned works are:
(1) an exact formula for an expected PMC in a case of centered multivariate spherical

normal classes π1, π2 (Raudys, 1993);

(2) asymptotics of expected PMC for the same classes as in item (1) (Basalykas et al.,
1996); and

(3) simple “thumb” asymptotics of expected PMC constructed heuristically on the
ground of the table of the values of exact formula (Raudys, 1997).
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This paper generalizes above mentioned results for a non-centered data. In Section 2 we
derive an exact formula for an expected PMC in a case of arbitrary (centered or non-
centered) multivariate spherical normal classes π1, π2. This formula depends on two pa-
rameters m1 and m2 characterizing the “degree of non-centering” of data. In Section 3
we investigate the influence of these parameters on the PMC of RLZEE classifier and
present the numerical simulations illustrating our theoretical results. Finally, in Section 4
we give some conclusions.

2. Mean Expected PMC of RLZEE Classifier

Let us consider RLZEE classifier defined in Section 1 in a simple case of two spherical
multivariate normal classes π1 and π2. We will make the following assumptions:

• classes π1, π2 ⊂ R
p have equal prior probabilities q1 = q2 = 1/2 and densities

N(X,C1, I) and N(X,C2, I), respectively; here C1,C2 are means (or centers) of
classes and I is a p× p identity matrix;

• training set L contains the same number of training vectors from the each class:
N1 = N2 = N (consequently, |L| = 2N );

• the training vectors X(1)
1 ,X(1)

2 , . . . ,X(1)
N ,X(2)

1 ,X(2)
2 , . . . ,X(2)

N are independently
and identically distributed in their own classes;

• the components of the vector (AT, a0) a priori have normal distribution with zero
mean and variance 1: ai ∼ N(0, 1), i = 0, . . . , p.

We will find a mean expected probability of misclassification of pattern vectors from π1

and π2 which did not participate in the training. An expectation is taken both with respect
to all possible random training sets of length 2N and with respect to the random character
of generating (p + 1)-variate weight vector (AT, a0). Our derivation of mean expected
probability of misclassification MEPN follows the derivation of analogical formula in
centered data case presented in (Basalykas et al., 1996). This method was proposed by
Raudys (1993). By definition,

MEPN =
∫ ∫

P(MC | A, a0)fapost(A, a0 | ZEE) dA da0, (1)

where P(MC | A, a0) is a conditional PMC given the vector of weights (AT, a0):

P(MC | A, a0) = 1
2P

{
ATX + a0 < 0 | X ∈ π1

}
+ 1

2P
{
ATX + a0 � 0 | X ∈ π2

}
(2)

and fapost(A, a0 | ZEE) is a posterior probability density function of vector (AT, a0) if
the training was successful, i.e., condition (ZEE) was satisfied. According to Bayes’ rule,

fapost(A, a0 | ZEE) =
P(ZEE,A, a0)

P(ZEE)

=
P(ZEE | A, a0)faprior(A, a0)∫ ∫

P(ZEE | A, a0)faprior(A, a0) dA da0
, (3)
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where the conditional probability of event (ZEE) is

P(ZEE | A, a0) =
[
P
(
ATX + a0 � 0 | X ∈ π1

)]N

×
[
P
(
ATX + a0 < 0 | X ∈ π2

)]N
. (4)

According to (Anderson, 1963, p. 39) if patterns belong to spherical normal classes
the values of discrimination function for these patterns also have normal distribution:

X ∼ N(Ci, I) ⇒ g(X) = ATX + a0 ∼ N
(
ATCi + a0,ATA

)
, i = 1, 2.

Then for i = 1, 2,

P
{
g(X) < 0 | X ∈ πi

}
= Φ

(
−ATCi + a0√

ATA

)
(5)

and

P
{
g(X) > 0 | X ∈ πi

}
= 1 − P

{
g(X) < 0 | X ∈ πi

}

= 1 − Φ
(
−ATCi + a0√

ATA

)

= Φ
(

ATCi + a0√
ATA

)
(6)

since 1 − Φ(−u) = Φ(u), where Φ is normal distribution function

Φ(u) =
1√
2π

∫ u

−∞
e−t2/2 dt.

Inserting (5) and (6) into (2) and (4) we obtain

P(MC | A, a0) =
1
2
Φ

(
−ATC1 + a0√

ATA

)
+

1
2
Φ

(
ATC2 + a0√

ATA

)
(7)

and

P(ZEE | A, a0) =
[
Φ

(
ATC1 + a0√

ATA

)]N[
Φ

(
−ATC2 + a0√

ATA

)]N

. (8)

Conditional probabilities (7) and (8) depend on (p+ 1)-variate vector (AT, a0). Fol-
lowing (Raudys, 1993) we will perform a special orthogonal transformation T reducing
the number of variables. This transformation is a superposition of the following orthogo-
nal transformations:

(i) first transformationR1 is a rotation in the space R
p around the origin of coordinates

which transfers the plane through the points C1, C2 and 0 into the plane x3 =
· · · = xp = 0;
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Fig. 1. Transformation T in R
2.

(ii) second transformation, rotation R2, transfers the vector R1(C1 − C2)/2 lying on
the plane x3 = · · · = xp = 0 into the vector (δ/2, 0, . . . , 0)T of the same plane,
where δ = |C1−C2| is a Euclidean distance between C1 and C2; ifR2R1((C1 +
C2)/2) < 0 we additionally make a reflection with respect to the line Ox′1 (see
below).

Let T = R2 ◦R1. Then T is an orthogonal p× p matrix satisfying T TT = I and

T

(
C1 − C2

2

)
=




δ/2
0
0
...
0



, T

(
C1 + C2

2

)
=




m1

m2

0
...
0



,

where m1,m2 ∈ R are the new coordinates of vector (C1 + C2)/2 after transformation
T (see Fig. 1).

Two first rows TT
1 and TT

2 of T are the following:

T1 =
C1 − C2

δ
, T2 = ± δ

2
C1 + C2 − C2

1−C2
2

δ2 (C1 − C2)√
C2

1C
2
2 − (C1C2)2

,
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where we choose the suitable sign of T2 to make m2 � 0. Then after simple algebra we
have

m1 =
C2

1 − C2
2

2δ
and m2 =

1
δ

√
C2

1C
2
2 − (C1C2)2. (9)

The parameters m1 ∈ R and m2 ∈ R
+ characterize a “degree of non-centering” of data.

Obviously,

m1 = m2 = 0 ⇐⇒ C1 = −C2,

i.e., data is centered.
Now we will derive the formula for MEPN for arbitrary m1 and m2. An influence of

parameters m1 and m2 on generalization error will be investigated in Section 3.
Let us denote

V = TA =



v1
v2
...
vp


 .

Then using the property T TT = I we have

ATC1 + a0√
ATA

=
AT(C1−C2

2 + C1+C2
2 ) + a0√

ATA

=
(TA)T(T C1−C2

2 + T C1+C2
2 ) + a0√

ATT TTA

=
v1δ/2 + v1m1 + v2m2 + a0√∑p

i=1 v
2
i

= u
δ

2
+ w, (10)

and, analogously,

ATC2 + a0√
ATA

= −uδ
2

+ w, (11)

where

u =
v1√∑p
i=1 v

2
i

and w =
v1m1 + v2m2 + a0√∑p

i=1 v
2
i

.

Now conditional probabilities (7) and (8) depend only on two scalar variablesu andw.
Let us find their distribution. We have to consider cases p � 3 and p = 2 separately.
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2.1. Distribution of u and w for p � 3

Denoting y =
∑p

i=3 v
2
i and adding two new variables s and t we have four random

variables

u =
v1√

v2
1 + v2

2 + y
,

w =
v1m1 + v2m2 + a0√

v2
1 + v2

2 + y
,

s =
v2√

v2
1 + v2

2 + y
,

t = y,

depending on four random variables v1, v2, a0 and y.
It is well known that a linear combination of normal variables

vi =
p∑

j=1

tijaj , where aj ∼ N(0, 1),

also has normal distribution N(0,
∑p

j=1 t
2
ij) = N(0, 1); see, for example, (Kruopis,

1993). Then y ∼ C(p − 2), i.e., variable y has χ2-distribution. Now we have the fol-
lowing densities:

f1(v1) =
1√
2π

e−v2
1/2,

f2(v2) =
1√
2π

e−v2
2/2,

(12)
f3(a0) =

1√
2π

e−a2
0/2,

f4(y) =
y(p−2)/2−1e−y/2

2(p−2)/2Γ((p− 2)/2)
, y > 0.

It is easy to obtain the inverse transformation of random variables:

v1 =
u
√
t√

1 − u2 − s2
= g1(u,w, s, t),

v2 =
s
√
t√

1 − u2 − s2
= g2(u,w, s, t),

a0 = (w − um1 − sm2)
√
t√

1 − u2 − s2
= g3(u,w, s, t),

y = t = g4(u,w, s, t).

According to the formula for the density of functions of random variables we have

f(u,w, s, t) = f1(g1)f2(g2)f3(g3)f4(g4)|J(u,w, s, t)|, (13)
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where J is the Jacobian of functions g1, g2, g3, g4. Denoting by ∗ the terms which will be
multiplied by zero below, we have

J =

∣∣∣∣∣∣∣∣∣∣∣∣

√
t(1−u2−s2)+ u2√

t√
1−u2−s2

1−u2−s2 0 su
√

t
(1−u2−s2)3/2 ∗

su
√

t
(1−u2−s2)3/2 0

√
t(1−u2−s2)+ s2√

t√
1−u2−s2

1−u2−s2 ∗
∗

√
t√

1−u2−s2 ∗ ∗
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= −

√
t√

1 − u2 − s2

[
t(1 − s2)(1 − u2)
(1 − u2 − s2)3

− s2u2t

(1 − u2 − s2)3

]

= −
√
t√

1 − u2 − s2
t

(1 − u2 − s2)2
= − t3/2

(1 − u2 − s2)5/2
. (14)

Inserting (12) and (14) into (13) we obtain

f(u,w, s, t) = c1 · exp

{
− t

2
1 + (w − um1 − sm2)2

1 − u2 − s2

}
· t(p−1)/2

(1 − u2 − s2)5/2
,

where

c1 =
1

2(p+1)/2π3/2Γ((p− 2)/2)
.

Now we are ready to calculate

f(u,w) =
∫ √

1−u2

−
√

1−u2

( ∫ ∞

0

f(u,w, s, t) dt

)
ds. (15)

Let

α =
1 + (w − um1 − sm2)2

2(1 − u2 − s2)
.

By integrating by parts is easy to show that (Prudnikov et al., formula 2.3.3.1, p. 322)

∫ ∞

0

e−αtt(p−1)/2 dt =
Γ((p+ 1)/2)
α(p+1)/2

. (16)

Inserting (16) into (15) we finally obtain

f(u,w) =
Γ((p+ 1)/2)

π3/2Γ((p− 2)/2)

∫ √
1−u2

−
√

1−u2

(1 − u2 − s2)(p−4)/2 ds
[1 + (w − um1 − sm2)2](p+1)/2

. (17)

It is easy to verify that for the particular case of centered data (m1 = m2 = 0) the
density f(u,w) coincides with the density obtained by Basalykas et al. (1996).
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2.2. Distribution of u and w for p = 2

We have

u =
v1√
v2
1 + v2

2

,

w =
v1m1 + v2m2 + a0√

v2
1 + v2

2

,

t = v2,

where v1, v2, a0 ∼ N(0, 1) (see Section 2.1). Inverse transformation is the following:

v1 =
u|t|√
1 − u2

,

v2 = t,

a0 =
(w − um1)|t|√

1 − u2
− tm2

with Jacobian

J =

∣∣∣∣∣∣∣∣∣∣

|t|
√

1 − u2 + u2|t|√
1−u2

1 − u2
0 ∗

0 0 1

∗ |t|√
1 − u2

∗

∣∣∣∣∣∣∣∣∣∣
= − t2

(1 − u2)2
.

For t > 0, in the same way as in Section 2.1 we obtain

f1(u,w, t) =
1

(2π)3/2
exp

{
− u2t2

2(1 − u2)
− t2

2
− t2(w − um1 −

√
1 − u2m2)2

2(1 − u2)

}

× t2

(1 − u2)2

=
t2

(2π)3/2(1 − u2)2

× exp

{
− t2

2(1 − u2)
(
1 +

(
w − um1 −

√
1 − u2m2

)2)}
.

Analogically, for t < 0,

f2(u,w, t)

=
t2

(2π)3/2(1 − u2)2
exp

{
− t2

2(1 − u2)
(
1 +

(
w − um1 +

√
1 − u2m2

)2)}
.
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Then

f(u,w) =
∫ ∞

0

f1(u,w, t) dt+
∫ 0

−∞
f2(u,w, t) dt

=
1

(2π3/2(1 − u2)2

(∫ ∞

0

t2e−αt2/2 dt+
∫ ∞

0

t2e−βt2/2 dt

)
,

where

α =
1 + (w − um1 −

√
1 − u2m2)2

1 − u2
,

β =
1 + (w − um1 +

√
1 − u2m2)2

1 − u2
.

It is easy to show that

∫ ∞

0

t2e−αt2/2 dt =
1

α3/2

∫ ∞

0

z2e−z2/2 dz = − 1
α3/2

∫ ∞

0

z de−z2/2

= − 1
α3/2

(
ze−z2/2

∣∣∣∞
z=0

−
∫ ∞

0

e−z2/2 dz

)
=

1
α3/2

√
π

2
.

We obtain

f(u,w) =
1

4π
√

1 − u2

{
1

[1 + (w − um1 −
√

1 − u2m2)2]3/2

+
1

[1 + (w − um1 +
√

1 − u2m2)2]3/2

}
. (18)

For m1 = m2 = 0 this density also coincides with the density given by Basalykas et al.
(1996).

Inserting (3), (7), (8), (10) and (11) into (1) we finally obtain the following exact for-
mula for an expected PMC of RLZEE classifier for arbitrary (centered or non-centered)
spherical normal classes:

MEPN =

∫ ∞
−∞

∫ 1

−1 P(MC | u,w)P(ZEE | u,w)f(u,w) du dw∫ ∞
−∞

∫ 1

−1
P(ZEE | u,w)f(u,w) du dw

(19)

with

P(MC | u,w) =
1
2

[
Φ

(
−uδ

2
+ w

)
+ Φ

(
−uδ

2
− w

)]
,

P(ZEE | u,w) =
[
Φ

(
uδ

2
+ w

)]N[
Φ

(
uδ

2
− w

)]N

,

and f(u, v) given by (17) (p � 3) or (18) (p = 2).
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3. On Influence of Parametersm1 and m2 on the Generalization Error

In this section we discuss the dependence of generalization error MEPN on parameters
m1 and m2. Let us consider only the case p = 2, for simplicity. However, most of the
arguments presented below are also valid in general case (see the end of the section).

The analytical investigation is very complicated. Let

E(m1,m2) = MEPN (p,N, δ,m1,m2),

where p,N, δ are fixed, m1 ∈ R and m2 ∈ R
+. Since E(m1,m2) = E(−m1,m2)

below we consider only the case m1 � 0 (i.e., |C1| � |C2|, see (9)).
We only succeeded to show that ∂E/∂m1, ∂E/∂m2 → 0 for fixedm1 andm2 → ∞

and for fixed m2 and m1 → ∞. Indeed, let us denote

g(u,w) � P(MC | u,w)P(ZEE | u,w) and h(u,w) � P(ZEE | u,w).

Let also f be given by (18) and let us denote

f1(u,w) � ∂f(u,w)
∂m1

=
3u

4π
√

1 − u2

(
w − um1 −

√
1 − u2m2

[1 + (w − um1 −
√

1 − u2m2)2]5/2

+
w − um1 +

√
1 − u2m2

[1 + (w − um1 +
√

1 − u2m2)2]5/2

)
.

and

f2(u,w) � ∂f(u,w)
∂m2

=
3
4π

(
w − um1 −

√
1 − u2m2

[1 + (w − um1 −
√

1 − u2m2)2]5/2

− w − um1 +
√

1 − u2m2

[1 + (w − um1 +
√

1 − u2m2)2]5/2

)
.

Then we have

∂MEPN

∂mi
=

[∫ ∞

−∞

∫ 1

−1

g(u,w)fi(u,w) du dw ·
∫ ∞

−∞

∫ 1

−1

h(u,w)f(u,w) du dw

−
∫ ∞

−∞

∫ 1

−1

g(u,w)f(u,w) du dw ·
∫ ∞

−∞

∫ 1

−1

h(u,w)fi(u,w) du dw

]

× 1

(
∫ ∞
−∞

∫ 1

−1
h(u,w)f(u,w) du dw)2

, i = 1, 2.

For m1 = const, m2 → ∞ we have

lim
m2→∞

∂MEPN

∂mi
(m1,m2) = lim

m2→∞

(1/m4
2) · (1/m3

2)
(1/m3

2)2
= lim

m2→∞

1
m2

= 0.
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Fig. 2. Surface of the generalization error (19). p = 2, N = 10, δ = 4, m1, m2 ∈ [0, 20].

Table 1

Generalization error (19) values for p = 2, N = 10, δ = 4, m1, m2 ∈ [0, 20].

m1 \ m2 0 2 4 6 8 10 20

0 0.0503 0.0478 0.0457 0.0447 0.0442 0.0439 0.0434

2 0.0726 0.0671 0.0554 0.0499 0.0473 0.0459 0.0439

4 0.0731 0.0889 0.0788 0.0645 0.0565 0.0521 0.0455

6 0.0725 0.0930 0.1029 0.0852 0.0709 0.0622 0.0482

8 0.0724 0.0900 0.1181 0.1073 0.0889 0.0755 0.0521

10 0.0724 0.0863 0.1230 0.1263 0.1081 0.0912 0.0570

20 0.0726 0.0781 0.1017 0.1439 0.1689 0.1653 0.0953

Similarly,

lim
m1→∞

∂MEPN

∂mi
(m1,m2) = 0.

The results of numerical simulations are presented in Fig. 2. The figure shows the sur-
face of the functionE(m1,m2) for the case p = 2,N = 10, δ = 4 andm1,m2 ∈ [0, 20].
The exact values of E(m1,m2) for this particular case are given in Table 1. The numeri-
cal simulations show thatE(m1,m2) does not have finite local minima or maxima points.
We conclude that E(m1,m2) tends to its minimum value at the infinite point m1 = 0,
m2 = ∞ and E(m1,m2) tends to its maximum value along some curve h(m1,m2)
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which depends on p,N and δ. In our particular case (see above) this curve approximately
can be presented as m2 = m0.75

1 .
A bit surprising result we obtained is that the centered data case is not the best one

(for the normal prior distribution of the coefficients of random hyperplanes). However,
this can be easily explained from geometrical point of view. Let us find the distribution
of random hyperplanes in R

2 (i.e., lines) with normal coefficients.
The line a1x1 + a2x2 + a0 = 0 can be represented by its normal equation x1 cosα+

x2 sinα− n = 0 with parameters n and α, where

n = |'n| =
|a0|√
a2
1 + a2

2

is the distance between the line and the origin of coordinate system, and

α = arcctg

(
a1

a2

)

is the angle between the line’s normal vector 'n and the axis Ox1. Here α ∈ [0, π].
Strictly speaking, for a0/a2 > 0 (i.e., for a0 and a2 of the same sign) we have
α = arcctg(a1/a2) + π but this does not change the matter.

Let us find distributions of parameters n and α for normally distributed a1, a2, a0.

Distribution of the distance n. Let a1, a2, a0 ∼ N(0, 1) with the density

f(x) =
1√
2π

e−x2/2.

Then n = |x|/
√

2, where random variable

x =
a0√

(a2
1 + a2

2)/2
∼ S(2)

has Student’s distribution (Kruopis, 1993, p. 75) with the density

f(x) =
Γ(3/2)√
2πΓ(1)

(
1 +

x2

2

)−3/2

.

We obtain (Kruopis, 1993, p. 29)

g(n) =
√

2
(
f
(√

2n
)

+ f
(
−
√

2n
))

= 2
√

2 ·
1
2

√
π√

2π · 1
(
1 + n2

)−3/2

=
1

(1 + n2)3/2
. (20)
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Fig. 3. Distribution of 100 lines with random normal weights in R
2.

Distribution of the angle α. Let x, y ∼ N(0, 1) and z = x/y. Then (Kruopis, 1993,
p. 29)

g(z) =
∫ ∞

−∞
|y| · 1√

2π
e−z2y2/2 · e−y2/2 dy

=
1
π

∫ ∞

0

ye−y2(z2+1)/2 dy

=
1

π(z2 + 1)

∫ ∞

0

e−y2(z2+1)/2 d
(
y2(z2 + 1)

2

)

= − 1
π(z2 + 1)

e−t

∣∣∣∣
∞

t=0

=
1

π(z2 + 1)
.

Let α = arcctg z, then z = h−1(α) = ctgα; therefore (Kruopis, 1993, p. 27)

f(α) = g(ctgα)
1

sin2 α
=

1
π( cos2 α

sin2 α
+ 1)

· 1
sin2 α

=
sin2 α

π
· 1
sin2 α

=
1
π
, α ∈ (0, π). (21)

Equations (20) and (21) show that the number of random lines decreases moving away
from the origin of coordinates and the angle between the line and any axis of coordinates
is distributed uniformly. In Fig. 3 we see 100 random lines a1x1 + a2x2 + a0 = 0
with a1, a2, a0 ∼ N(0, 1). The generalization error becomes smaller when the data is far
from the origin and |C1| = |C2|, i.e., m1 = 0 and m2 → ∞ (see Fig. 5) because in
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Fig. 4. Distribution of the lines with zero empirical error in “very bad” case.

such situation we have much more lines with zero empirical error and small test error and
significantly less lines with zero empirical error and big test error. The following example
gives more detailed explanation of the behaviour of MEPN .

EXAMPLE 1. In our numerical simulation we used the same data located, however, in
different places of the plane R

2 (p = 2). Let classes πi ∼ N(Ci, I), where |C1 − C2| =
δ = 3

√
2. Using N = 10 random training vectors from the each class πi, we choose

one by one random lines with normal weights and verify if these lines separate training
vectors without errors. For any random line with zero empirical error we calculate its
test error. Finally, we obtain an experimental generalization error MEPexp as the mean of
these test errors. Instead of calculating the test error by means of the test set, we used its
theoretical value (7).

We considered 3 cases: “very bad”, “very good” and “good”. Case “good” was the
case of the centered data. The following results were obtained:

Case 1, very bad: C1 = (5, 12), C2 = (2, 9),m1 = 7
√

2,m2 = 3.5
√

2 (
√
m2

1 +m2
2 =

|(C1 + C2)/2| ≈ 11.068) (see Fig. 4). Theoretical generalization error MEPN =
0.1207, experimental generalization error MEPexp = 0.1242 (the mean is taken for
134 lines with zero empirical error of total number 50000 random lines).

Case 2, very good: C1 = (1.5
√

2, 11.068), C2 = (−1.5
√

2, 11.068), m1 = 0, m2 =
11.068 (see Fig. 5). Theoretical generalization error MEPN = 0.0376, experimen-
tal generalization error MEPexp = 0.0373 (the mean is taken for 51 lines with zero
empirical error of total number 2000 random lines).
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Fig. 5. Distribution of the lines with zero empirical error in “very good” case.

Fig. 6. Distribution of the lines with zero empirical error in “good” case.

Case 3, good: C1 = (1.5
√

2, 0), C2 = (−1.5
√

2, 0), m1 = m2 = 0 (see Fig. 6). The-
oretical generalization error MEPN = 0.0431, experimental generalization error
MEPexp = 0.0458 (the mean is taken for 173 lines with zero empirical error of
total number 1000 random lines).



Generalization Error of Randomized Linear Zero Empirical Error Classifier 237

Figures 4–6 show that in “very bad” case there are much more lines with zero empiri-
cal error and big test error and significantly less lines with zero empirical error and small
test error while in “very good” case almost all lines with zero empirical error have small
test error; in centered data (“good”) case we have many lines with a big test error as well
as with a small test error.

The numerical simulations and intuition show that similar situation is characteristic
also for general case p � 3. Namely, in space R

p (p � 3) most part of randomly generated
(p− 1)-dimensional hyperplanes with normal prior distribution of there coefficients will
lay “near” the origin of the coordinates. Consequently, for some non-centered normally
distributed data RLZEE classifier will have smaller generalization error than for the same
but centered data.

4. Summary and Conclusions

In this paper we derived an exact formula for an expected PMC in a case of arbitrary mul-
tivariate spherical normal classes. We also found the distribution in R

2 of random lines
with normally distributed their coefficients. Our analytical investigation and numerical
simulations show that the centered data case is not the best one for the RLZEE classifier
with normal prior distribution of the coefficients of random hyperplanes.

Our investigation confirms the well-known result that single layer perceptron (SLP)
learns better in centered data case due to a random procedure of generating its initial
weights. Indeed, according to results of Section 3, the initial separating hyperplane of
SLP with higher probability has smaller empirical error for centered data case than for
non-centered one (because this hyperplane with higher probability lays near the origin of
the coordinates as well as centered data does). Consequently, in centered data case the
initialization is better and the training ends sooner.

On the other hand, if we want to use the generalization error of RLZEE classifier as
an upper bound of generalization error of the well-trained (i.e., with zero empirical error)
SLP classifier we must consider centered data because for the non-centered data RLZEE
classifier in some cases can outperform the SLP classifier.
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Atsitiktinio nulinės empirinės klaidos tiesinio klasifikatoriaus vidutinė
tikėtina klaida: necentruot ↪u duomen ↪u atvejis

Valdas DIČIŪNAS

Šis straipsnis praplečia Raudžio ir kit ↪u autori ↪u rezultatus, gautus nagrinėjant atsitiktin ↪i nulinės em-
pirinės klaidos tiesin ↪i (ANEKT) klasifikatori ↪u centruot ↪u duomen ↪u atveju. Straipsnyje išvesta tik-
sli ANEKT klasifikatoriaus vidutinės tikėtinos klaidos formulė, tinkanti tiek centruotiems, tiek ir
necentruotiems duomenims. Ši formulė priklauso nuo dviej ↪u parametr ↪u, charakterizuojanči ↪u klasi-
fikuojam ↪u duomen ↪u “necentruotumo laipsn ↪i”. Pateikiama teorinė ir skaitinė ši ↪u parametr ↪u ↪itakos
vidutinei tikėtinai klaidai analizė. Tame tarpe buvo parodyta, kad tam tikro pavidalo necentruotiems
duomenims gaunama mažesnė klaida negu centruotiems duomenims. Šiais atvejais ANEKT klasi-
fikatoriaus vidutinė tikėtina klaida gali būti mažesnė už be klaid ↪u apmokyto netiesinio perceptrono
vidutin ↪e tikėtin ↪a klaid ↪a.


