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Abstract. The paper deals with a flow distribution problem with a piecewise-linear cost function.
The problem is formulated as a piecewise-linear programming problem which is not separable with
respect to separate variable group. The method for solving this problem is based on the extension of
the idea of the simplex method to the class of non-separable piecewise-linear problems. It secures
finding of a local solution to the problem after a finite number of iterations. The method uses the
peculiarities of the problem constraints that make it possible to decompose the matrix of constraints
to smaller ones and thus to diminish the volume of calculations.
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1. Introduction

The multicommodity flow problem with a nonseparable piecewise – linear arc cost func-
tion ir considered. The problem can be reckoned as a piecewise-linear programming prob-
lem. Their property that, analogously to a linear programming problem, the solution of
these problems belongs to a finite set of points, is very important. Geometrically these
points can be expressed as vertices of a polyhedron that are defined in the same way as
in linear programming. However, in contrast to linear programming problems, these ver-
tices may also be inner points of the objective function definition domain. That is why
it is natural to strive for the methods that solve the problem considered to be finite, i.e.,
to ensure finding of the solution (in the convex case) or the local solution (in the general
case) affer a finite number of iterations.

Individual cases of the problem considered have been well explored and finite al-
gorithms are known for solving them. If the piecewise-linear cost function in convex
and separable, than the problem can be reduced to a linear problem with additional con-
straints (Assad, 1978; Kennington and Helgasson, 1980; Bertsekas and Tseng, 1988) or
to a problem with diserete variables (Kennington and Helgasson, 1980; Bertsekas and
Tseng, 1988). To solve the problem with network arc capacity constraints, i.e., the clas-
sical multicommodity flow problem, decomposition methods are used (Bertsekas and
Tseng, 1988; Golshtein and Sokolov, 1995; 1997).

Generalizations of decomposition and potential methods to a nonlinear case as well as
linear approximations and other famous methods, applied in solving nonlinear transport



200 G. Davulis

problems (Magnanti and Wong, 1984; Minoux 1988, Melamed 1991), in the considered
problem ensure, at best, only the convergence to the local solution and are not finite.
Only the method branch-and-bound (Gendron and Crainic, 1994; Zaslavskij and Lebedev,
1995) may serve as an exception. However, this method in usually used to solve problems
with complex objective and constraint functions.

In this paper, a finite method for solving the piecewise-linear multicommodity flow
problem is presented. It guarantees finding of the local solution affer a finite number of
iferations. The method disregards the arc cost function convexity and continuity, taking
into account the specific features of constraints of the problem.

2. Statement of the Problem

A transport network presented in the form of a finite connected oriented graph which
consists of T nodes and L arcs is given. The flow of ȳj

i different kinds of products trans-
ported in a transport network has to be distributed so that the summary expenditure on
transportation be least. An xj

i -dimensional load vector aj = (a1j , . . . , a
n
j ) to each net-

work node is assigned. Some volume ak
j of the kth product has to be transported from

the j-th node if ak
j > 0, and to it if ak

j < 0. The load of a network arc is expressed by
an n-dimensional vector xl = (x1

l , . . . , x
n
l ). The arc load by some product is expressed

by a positive number, if the product is transported in the direction of arc orientation, or
by a negative number, if it is transported in the opposite direction. The transportation
expenditure via an arc depends on the summary quantity of the arc load and this depen-
dence is expressed by a non-decreasing piecewise-linear function of one-variable, i.e.,
fi(xi) = f̄i(wi), where wi =

∑
j

|xj
i |. The considered problem can be described as a

piecewise-linear optimization problem:

min
x∈X

F (x) =
L∑
l

fl(xl), (1)

Sx = A, (2)

where x = (x1, . . . , xL) is anM -dimensional (M = n× L) vector of network load; X

is a definition of the piecewise-linear cost function F (x), which is found by defining the
maximal carrying capacity for each arc; S is a quasidiagonal matrix of size n× n in the
main diagonal of which there are node-arc (0, 1,−1) – incidence matrices of size T × L
for each product and zeros everywhere else; A is an n × T -dimensional load vector of
network nodes. We evaluate the arc capacity condition by forming an arc cost function
so that its values are increasing sufficiently fast, if the arc load size exceeds the capacity
limit and, thus, the summary cost function definition domain is extended onto the whole
M -dimensional Euclidean space.
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3. The Main Notions

We call as piecewise-linear such a function the definition domain of which can be decom-
posed into convex polyhedrons, in which it is described by different linear functions in
the general case. The smoothness of a piecewise-linear function is violated only at inter-
section points of polyhedrons. In the case of discontinuity of the function, its value at the
discontinuity point is equated to the lowest value of linear functions, corresponding to the
polyhedrons, this point belongs to. We call a point critical if linearity of the cost function
is violated at it. The sets of critical points are described by linear equations which we call
critical equations. We call a critical equation that contains only one variable the main one
and this variable – the main variable. We call a point feasible if it satisfies problem con-
dition (2). We call a feasible point a vertex if it is a critical point and satisfies no less than
N =M −R = (L− T + 1) × n linearly independent critical equations (R is a rank of
system equations (2)). If the vertex satisfies more than N critical equations, then we call
it degenerate. A set of points, satisfyingN − 1 linearly independent critical equations of
those that are satisfied by the vertex x, is called a critical line connected with the vertex.
An arc load vector which satisfies at least one critical equation of the arc cost function is
called a critical one.

4. Optimality Condition and a Method for Solving the Problem

The vertex x is the local solution to the problem, if the value of the minimized function in
it is no higher than its values in the closest vertices which are in critical lines connected
with x. The necessity of this condition is obvious, while its sufficiency follows directly
from the known theorems of linear programming. For unimodal functions this condition
also stands for the global minimum, i.e., the vertex satisfying this condition is the solution
to the problem.

The method of problem solving to find a local solution is based on the generation
of such a sequence of vertices in which any two adjacent vertices belong to the same
critical line, and the values of the objective function are diminishing as long as the vertex
satisfying the optimality condition is reached. For this, vertices in critical lines, connected
with the next in turn vertex of the sequence, or their segments, are consecutively revised
until in some of these lines a new vertex is found with a lower value of the objective
function. This procedure is repeated for the new vertex and is terminated only when in no
critical line or its segment, there is any other vertex with a lower value of the function.

This idea is realized by performing such stages in the solution of the problem: 1)
formation of critical equations of the piecewise-linear function, if they are not directly
expressed; 2) determination of the number of critical lines connected with any vertex;
3) finding of the initial vertice; 4) realization of the transition procedure from one vertex
to another. A concrete expression of critical equations naturally depends on a concrete
piecewise-linear function and it can differ for different functions. The same applies to the
number of critical lines, connected with separate vertices. Meanwhile the procedures of
stages 3 and 4 are more standardized in the sense that they are less dependent on concrete
properties of piecewise-linear functions.
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5. Formation of Critical Equations

The linearity of the cost function of any arc and thereby of the whole network in the
considered case is violated in the sets of points defined by such conditions:

xj
i = 0, j = 1, . . . , n, i = 1, . . . , L, (3)∑
j

|xj
i | − cki = 0, k = 1, . . . ,Ki, i = 1, . . . , L, (4)

where cki are values of the variable wi that are break (or discontinuity) points of the arc
cost function f̄i(wi). Critical equations in this case are of the shape:

yip = xj
i = 0, p = j = 1, . . . , n, i = 1, ..., L, (5)

yip =
∑

j

bjipx
j
i − cip = 0, p =M + 1, . . . , 2nKi, i = 1, . . . , L, (6)

where bjip = +1;−1, and the number of all possible critical equations for each concrete
cip = cki value in the system of equations (6) is equal to 2n .

The load vector of any arc, whose at least one coordinate is equal to zero, is a critical
point. The arc load vector, satisfying non-main equation (6), will be a critical point only
in case it also satisfies one of conditions (4) with a respective free term cki = cip, i.e., if
its coordinates and that of coefficients of this non-main critical equation will be related
by the relations:

bjip = sign (xj
i ), xj

i �= 0. (7)

The coefficients of the equation for each zero coordinate can be equal to any of the two
numbers: +1 or –1. Therefore the load vector, satisfying condition (4), all the coordinates
of which are non-zero, satisfies only one non-main equation with the same free term as
in condition (4), because the coefficients of this equation are determined single-valued
from condition (7). If this vector has s < n zero coordinates, then it also satisfies 2s

non-main critical equations with a respective free term, since the number of all possible
choice variants of coefficients for zero vector coordinates is equal to 2s. And vice versa,
the arc load vector, satisfying more than one critical equation from system (6) with one
and the same free term, also satisfies condition (4) with the same free term only if all the
vector coordinates, for which the coefficients of these equations are different, are equal
to zero.

Thus, the arc load vector, all coordinates of which are equal to zero or it satisfies some
condition (4) and n − 1 its coordinates are equal to zero, will correspond to the vertex
of a piecewise-linear arc cost function. In the latter case, it is a degenerate vertex with
which 2(n − 1) + 1 = 2n − 1 critical lines are connected. Really, any subsystem of
critical equations which includes n − 2 main critical equations determines two critical
lines, because the coefficients for zero coordinates in non-main equations can be equal
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Fig. 1. Sets of critical points and vertices (O, A, B, C, D, A1, B1, C1, D1) of the two-variable arc cost func-
tion with two break points.

to +1 or −1. This degeneracy is unremovable because it is associated with the nature of
arc cost functions and cannnot be avoided by changing conditions of the problem. We
call an arc a degenerate one if its load vector satisfies some condition (4) and at least one
coordinate of the load vector is equal to zero.

Fig. 1 illustrates the sets of arc cost function critical points when two products are
transported via the arc and the cost function has two breaks. In the flow distribution
problem, critical equations of several arcs also define vertices. Let us have an elementary
network of three vertices and three arcs connecting them, in which two kinds of products
are transported (Fig. 2). Cost functions of all the arcs have a break each. The sets of
vertices and critical points are illustrated for this case in Fig. 3.

Fig. 2. The network for the first product (a) and for the second product (b).

6. Determination of the Number of Critical Lines Connected with a Vertex

According to the definition of a vertex introduced in Section 3, we regard a flow, satisfy-
ing problem conditions (2) and no less than N = (L − T + 1)n critical equations of arc



204 G. Davulis

Fig. 3. The set of critical points and vertices of the elementary network described in Fig. 2.

cost functions, as a vertex. We consider such a flow distribution problem, each feasible
flow of which fulfils the condition:

Np +Ns � N, (8)

where Np is the number of main critical equations, and Ns is the number of conditions
(4), which are satisfied by the given flow x.

For each vertex inequality (8) turns into an equality. This condition implies that there
is no removable degeneracy when coincidence of vertices of the cost functions of several
network arcs is possible. Clearly, it does not remove degeneracy related with the specific
arc cost function properties described above. If there is no degenerate arc, then only one
non-main equation will uniquely express each condition (4). In this case, each vertex will
satisfy exactly N critical equations, and the number of critical lines connected with it is
also equal to N . As shown in the previous section, each condition (4) for degenerate arcs
will be expressed by more than one non-main critical equation that will be satisfied by
the given flow, i.e., the given vertex will be degenerate.

Let us vertex x be degenerated and number of critical equations satisfied by it is P (x).
We write this critical equations according to increasing of arc numbers. Then the matrix
of coefficients of the system of critical equations

yp(x) = 0, for all p ∈ P (x), (9)

which are satisfied by the degenerate vertex x, is of block-diagonal structure. The co-
efficients of critical equations of each degenerate arc in it compose a separate diagonal
block. Therefore the rank of this system of equations is expressed as follows:∑

i∈Id

ri + q = N, (10)
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where Id is the set of degenerate arc numbers, ri is the rank of a system of critical
equations of the i-th degenerate arc, q is the number of critical equations of nondegenerate
arcs.

Any subsystem of the system of equations (9) of rankN −1 will define a critical line.
One can see from (10) that such a subsystem does not include only one critical equation
of a non-degenerate arc or there is a subsystem of the system of critical equations of the
rank lower by a unit, i.e., ri − 1 = si, of only one degenerate arc. In the first case, a
critical line is established uniquely. The second case is more complicated. Subsystems of
rank si of a degenerate arc consist of the subsystems which include only the main critical
equations of this arc or they do not contain one main critical equation. In the latter case,
by substituting zero values of main variables into non-main critical equations we get:

yp(i) =
∑
j �∈Ji

bjp(i)x
j
i + bj0p(i)x

j0
i − cp(i) = 0, for all j0 ∈ Ji, (11)

where Ji is a set of zero coordinate numbers of the i-th arc load vector; the coefficients
bjp(i) and non-zero values of the arc load vector coordinates xj

i here are related by equa-
tions (7).

Since the coefficients bj0p(i) can assume two different values each +1 or −1 for each
j0 ∈ Ji, the number of different equations (11) will be equal to 2si .We can find all
these equations from two systems of equations, each of which includes all main critical
equations of the subsystem and one non-main critical equation in each, whose coefficients
are obtained as follows:

bjp(i) =

{
sign (xj

i ), if xj
i �= 0,

+1 if xj
i = 0,

j = 1, . . . , n, (12)

for one equation, and

bjp(i) =

{
sign (xj

i ), if xj
i �= 0,

−1 if xj
i = 0,

j = 1, . . . , n, (13)

for another equation. These systems of equations with the rest equations of system (9)
after excluding the block of equations of this degenerate arc will define 2si + 1 diferent
critical lines connected with the given vertex x. The total number E of critical lines
connected with the vertex x is expressed as follows: E = 2

∑
i∈Id

si +m+ q, wherem is

the number of degenerate arcs.
From (10) we obtain

∑
i∈Id

si +m+ q = N. Hence
∑

i∈Id

si = N −m− q. Then E =

2(N −m− q) +m+ q = 2N −m− q.
The minimal number of critical lines connected with the given vertex x is obtained

when there are no degenerate arcs, i.e., when m = 0 and q = qmax = N . Then Emin =
2N − 0 − N = N . The maximal number of critical lines is got, when there are no
non-degenerate arcs, i.e., when q = 0 and m = mmin . However, the minimal number
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of degenerate arcs will be, when the degree of degeneracy defined by the number of arc
load vector zero coordinates of each of them will be maximal, i.e., equal to n − 1. It
follows from condition (8) for the vertex thatm(n− 1) +m = N . Hencemmin = N/n.
Consequently,

Emax = 2N −N/n = 2(L− T + 1)n− (L− T + 1) = (L− T + 1)(2n− 1).

7. Passage from One Vertex to Another

Any vertex may be described by a system of equation:

x = Ĥz + D̂, (14)

where the coordinates of the N -dimensional vector of independent variables z are vari-
ables yp described by critical equations (9), i.e., yp = yp(x). The system of equations
(14) includes condition (2) of the problem. Since the independent variables in the con-
sidered case may be expressed by main critical equations (5) that correspond to the basic
solution of the system of equations (2), the initial vertex is found by solving the system
of equations (2) and equating the value of independent variables to zero.

One can go over from the current vertex x = D̂ to another performing two procedures:
uninvariate optimization by varying the value of any independent variable zk the other
values being unchanged, and replacement of variable zk by a new variable in the system
of equations (14) if the optimal value of independent variable zk defines a new vertex
with a lower value of the cost function. The minimized cost function is the sum of a
univariate piecewise-linear cost functions of separate arcs, whose loads are changing with
a change of independent variable zk. This function is minimizing in a set of its critical,
i.e., break or discontinuity, points since the minimum of the piecewise-linear function
will be at the point of its break (or discontinuity). Set of critical points is restricted in
the interval in which the coefficients of all critical equations, satisfied by current vertex,
satisfies conditions (7). The modified golden section search method (Dievulis, 1999) can
be used to find the minimum of the cost function. If the set of critical points is not too
large, then the minimum point can be found by revising all the critical points. The non-
zero optimal value of independent variable zk implies that the new vertex satisfies a new
critical equation ys = 0 instead of that which expresses the variable zk, i.e., yp = 0.
Therefore, the independent variable zk = yp in the system of equations (14) has to be
replaced by another variable ys expressed by a new critical equation. A sequence of
vertices is generated by cyclically repeating that procedures for each coordinate of the
independent variable vector z until optimality condition will be satisfied.

If this procedure generate a sequence of vertices defined by main critical equations,
then the matrix Ĥ of system of equations (14) remains quasidiagonal and replacing any
main variable by another basic variable xj

i one ought to recalculate only one diagonal
block of matrix Ĥ. However, if all or a part of independent variables yp are expressed by
non-main critical equations, then the quasidiagonal structure of matrix Ĥ disintegrates.
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That is why it would be very irrational to directly apply the procedure of replacement
of variables for system of equations (14), because one ought to recalculate not so small
sparsely filled up matrix in each iteration of the algorithm.

The described procedure of passage to another vertex is modified so that the vector
of independent variables of system (14) is formed only of the variables xj

i contained by
the main or non-main critical equations. Since the rank of node-arc incidence matrix is
T − 1, the number of main and non-main independent variables for each product has to
satisfy the conditions:

nj
1 + nj

2 = L− T + 1, j = 1, ..., n, (15)

where nj
1, n

j
2 are the numbers of main independent variables and independent variables

contained by the non-main critical equations, respectively, for the jth flow ingredient.
Since non-main critical equations that express independent variables yp are linearly

independent, we can relate each independent variable yp in system (14) by a different
variable xj

i contained by this non-main critical equation yp = 0. We fix this relation
denoting the variable yp by the same indices as the non-main variable xj

i , related with
it , i.e., yj

i . We replace independent variables yp in the system of equations (14) by non-
main variables xj

i related with them, recalculating the elements of the augmented matrix
of this system of equations and removing from it the rows with the variables yp. Thus,
the system of equations (14) became quasidiagonal one. Replacement of any independent
variable in the system of equations (14) by a basic variable xj

i will not destroy a quasi-
diagonal structure of matrix Ĥ of this system. Therefore one can decompose this system
of equations into a system of n independent equations that describe the distribution of
separate products in a network.

Thus the system of equations (14) can be replaced by such systems of equations:

x̄j = Hj x̃j + dj , j = 1, . . . , n (16)˜̄x = H̄z + D̄, (17)

where x̄j is a T − 1-dimensional vector of basic variables of the system of equations
that describe the j-th product distribution in a network; x̃j is an L − T + 1-dimensional
vector of independent variables of this system of equations;Hj is the incidence matrix of
arcs for the j-th product, the elements of which are −1; 0; 1; ¯̃x is the vector of non-main
variables, consisting of the coordinates of vectors x̃j which are not the main ones; z is the
vector of independent variables whose coordinates are main variables xj

i or variables yp.
The system of equations (17) is obtained from the system of critical equations (9) which
satisfy the current vertex x by solving it with respect to non-main variables related with
yp. It is convenient to write the coefficients of these systems of equations into tables. We
call the tables of systems (16) as tables of individual products, and that of (17) a table of
non-main variables. In the general case, with a change in zk, non-main and thereby basic
variables of systems of equations (16) change, too, if respective coefficients of matrices
H̄ and Hj are not equal to zero. Values of non-main variables change so that non-main
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critical equations, contained these variables, be satisfied, i.e., yj
i (z) = 0. Therefore the

values of variable zk will change in the critical line connected with the given vertex.
Thus, quite a large system (14) is replaced by smaller systems of equations (17) for

each product and the system of equations (16) of non-main variables relating them. To
recalculate matrices of these systems when replacing independent variable we need less
calculation amount and computer memory. However in this case the replacement of in-
dependent variable zk became more complicated. In addition, several non-main variables
can be replaced in the table of non-main variables and interchanged with basic variables
in the tables of individual products so that the number of main nj

1 and non-main nj
2 vari-

ables for each product has to satisfy the conditions (15).
We denote the set of indices of non-main variables values of which change with a

change in zk by Z(k). The indices of main variable are included into this set if it is
independent variable zk. Let us denote the indices of main variable or non-main one
related to independent variable yp by (i0, j0). We form the sequence of the indices taken
from the set Z(k)

(i0, j0), (i1, j1), (i2, j2), . . . , (im, jm). (18)

and second sequence obtained from sequence (18) by shifting indices denoting arc num-
bers in terms of sequence (18) by one position to the left and writing new index im+1 into
the last term of sequence

(i1, j0), (i2, j1), (i3, j2), . . . , (im+1, jm). (19)

so that the interchange of pairs of variables xj0
i0

and xj0
i1

etc. would be possible in respec-
tive tables of products j0, j1, . . . , jm. It implies that coefficient of table, being in the row
of basic variable denoted by indices of the sequence (19) and in the column of indepen-
dent non-main variable denoted by respective indices of the sequence (18), is not equal
to zero and both variables satisfy the same critical equation. The index im+1 denotes the
number of arc which load satisfies a new critical equation ys = 0 after performing the
optimization procedure. After interchange of the variables in the tables of product the
non-main variables denoted by indices (18) also change in table of non-main variables
since independent variables yp which were related by it are now related to other non-main
variables denoted by respective indices (19). In order to determine which variables have
to be interchanged in the tables of product we form a special graph (Fig. 4) in which the
indices of non-main variables, included into the set Z(k), are distributed at different levels
in this graph as described in below. It is not necessary to form this graph if the numbers of
terms in the sequence (18) is not too large. In separate case when sequence (18) consists
of only one term, then direct interchange of independent non-main and basic variables is
possible in the respect table of product.
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Fig. 4. The graph of contour levels with a selected chain of contours.

8. Usage of Graph Properties

The usage of the properties of graphs which relate the basic variables of the system of
equations describing the distribution of a separate product in a network and tree arcs of
this network as well as the independent variables and arcs not belonging to the tree, called
free arcs, (Christofides, 1976; Dievulis, 1999) enables us to to replace labour-consuming
algebraic operations recalculating tables of individual product by easily realizable oper-
ations that alter the graph structure and spare computer memory, too. A different free arc
corresponds to each column of incidence matrix of the system of equations (16) consid-
ered, and non-zero elements of this column to the arcs of the tree which are included
into the contour, formed by joining this free arc to the tree. The signs of these elements
show the directions of the tree arc in the contour in respect of the direction of the free
arc. Making use of this dependence, we can replace systems of equations (16) by lists of
network arcs in which the tree arcs of this network and free arcs are separated for each
product as well as by the arc load array consisting of arc load vectors. Each arc in the list
is represented by its code consisting of three numbers (u, v, l), where u, v are the number
of initial and final nodes connected by this arc, and l is the arc number which relates the
arc and its load in the array. Each list contains all the information on the network written
in the incidence matrices.

It is the most compact way of writing systems of equations (16). However, writing
systems of equations in this way requires a special procedure that would be able to dis-
tinguish arc codes of any contour from the list of network arcs. Such a procedure can
be easily realized if the tree arcs are oriented from the initial node of the tree, called the
root of the tree, towards the pendent nodes, i.e., end nodes of the tree that are not initial
ones even for a single tree arc (Dievulis, 1999). The arc list of a contour formed by a free
arc joined to the tree can be made as follows. We find two paths from both tree nodes,
connected by the free arc, to the root following the opposite direction to arc orientation
by comparing the number of the initial node of each arc (starting from the last one) with
the numbers of final nodes of arcs in the list of arc codes of the tree. There is a single
path from each node. The arcs that remain excluding those iterating in both paths make
up contour arcs.



210 G. Davulis

In the process of solution of the considered problem any list of network arcs may
be altered including into the list of tree arcs the code of free arcs instead of any code
of tree arcs that belong to the contour formed by the free arc, and vice versa. Such an
alteration is equivalent to the interchanging of the basic and the independent variable in
the respective system of equations (16). After this operation the orientation of separate
arcs of contour not may correspond to the necessary one. Therefore, the orientation of
these arcs is changed so that it be from the root to pendent nodes by interchanging the
numbers of the initial and final nodes in the codes of these arcs. The signs of coordinates
of these arc load vectors arc changed to the opposite ones in the array, too (Dievulis,
1999).

Since the main or non-main variable xj
i expresses the load of a free arc, a pair of

indices (i, j) of this variable uniquely defines a contour, i.e., the contour which is formed
by the i-th free arc in the network of the j-th product. We call two contours connected if
they belong to different networks of products and a free arc of one contour, whose load
vector satisfies condition (4), belongs to the other contour. A group of contours is called
connected, if any contour in it is connected with no less than one contour of this group.
A chain of connected contours is called a sequence of contours, in which any contour
beginning with the second one is connected with the preceding contour of the sequence.
Thus, the non-zero elements of the k-th column in the table of non-main variables and
set Z(k), too, define a group of connected contours. According to definition presented
above a sequence of indices (18) define a chain of connected contours. We call the contour
defined by indices (i0, j0) the initial one in the group of connected contour Z(k).

We call the arc i a critical one in the network of the jth product, if its load by the
j-th product is described by a main or a non-main variable xj

i that is related with the
variable yj

i . In the latter case, the summary load of this arc satisfies a non-main critical
equation. Since independent variables of each system of equations (8) are main or non-
main variables, each free arc is a critical one. So, if condition (8) is fulfilled, then the sets
of critical and of free arcs in each vertex have to be identical.

9. Determination of the Initial Vertex Using the Means of Graphs

Determination of the initial vertex means a transformation of the given loads of network
nodes into loads of arcs of the chosen tree (one and the same for all the products) so that
constraints of problem (2) be satisfied. To make a list of arcs of the initial tree, we can
use a formal procedure described in (Dievulis, 1999). In a given network in which a tree
has already been isolated an additional (fictitious) node is introduced which is connected
by fictitious arcs with the root of the tree and all the network nodes with non-zero loads.
Fictitious arcs are oriented from the fictitious node to the network nodes. Their loads are
equated to the loads of network nodes with the opposite sign, and that of all the other
arcs to zero. In each contour of the extendend network formed by some fictitious arc
along with tree arcs and a fictitious arc that connects the fictitious node with the root we
choose a flow variation that turns the load of the fictitious arc forming this contour into
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zero. It means that all the arc loads in this contour are increased by the value of the load
of fictitious arc with the opposite sign. After performing this procedure for each contour
formed by the fictitious arc, we obtain the loads of tree arcs that satisfy constraints (2) of
the problem while the loads of all free arcs are equal to zero, i.e., this flow corresponds
to the basic solution of the system of equations (2) which is a vertex.

10. Improvement of Product Distribution in the Network

Improvement of the flow distribution means the passage from one vertex to another with a
lower value of the cost function in each iteration of the algorithm. In each its iteration, the
product distribution is optimized in one or several contours and, following the fixed rules,
the lists of network arcs are altered for one or several products. After determination of the
initial vertex we have the lists of network arcs for each product and the initial array of arc
loads in which the loads of free arcs are zero. Since for the initial vertex the coordinates
of independent vector z are main variables xj

i , the table of non-main variables is empty.
It means that in the first iteration of algorithm we minimized the summary cost function
of arcs belonging only to one contour formed by the free arc i in the network of the j-th
product. The minimization interval is the minimal change interval of variable xj

i in which
a zero load is obtained for any arc of the contour with the j-th product. However, after one
or several iterations of algorithm a table of non-main variables can be formed. If sequence
of indices (18) consists of only one term, then we have a case of non-connected contours.
In this case the flow distribution of one product is optimizing in the one contour.

The iteration of algorithm for an independent variable zk is performed in the general
case, i.e., in the case of connected contours, as follows:

1) we make up lists of all arcs belonging to the group of connected contours defined
by the set Z(k) by using the contour arc isolating procedure;

2) the arc loads of these connected contours are expressed by the formula:

xj
l (∆zk) = x̂j

l +
∑

s∈S(k,j)

ejlsh̄
j
sk∆ zk, j ∈ J(k, l), l ∈ L(k), (20)

where x̂j
l is the initial load of lth arc by the jth product which is found from the arc load;

∆zk = zk; S(k, j) is the set of numbers of free arcs that form the group of connected
contours in the network of the jth product; ejls is the coefficient the value of which is
equal to 0, if the lth arc does not belong to the contour formed by the sth free arc in the
network of the jth product, or to +1;−1, if the directions of the lth and free arcs are the
same in the contour or opposite, respectively; h̄j

sk is the non-zero coefficient in the table
of non-main variables present in the kth column and in the row of non-main variable xj

s;
J(k, l) is the set of numbers of products whose flows in the lth arc are changed by the
variable zk; L(k) is the set of numbers of arcs of all connected contours. In the case of
non-connected contours sets S(k, j) and J(k, l) consist of one element;

3) by using the univariate minimization procedure the summary cost function of all
the arcs of connected contours is minimized in the maximal interval of variation in the
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values of zk in which the non-zero loads of the free arcs, forming connected contours do
not change their signs with a change of variable zk. If the independent variable zk is a
main variable xj

i and a free arc corresponding to it is degenerate, then only those values
of xj

i are admissible whose signs satisfy the condition (7). In this case, the loads of free
arcs forming connected contours will satisfy conditions (4). If the optimal increment ∆zk
of variable zk is not equal to zero, then arc loads of connected contours are recalculated
by formula (20) and the iteration is continued by performing the procedure of replacing
variables. In the opposite case, the iteration of the algorithm is terminated. In the case of
connected contours, the optimization procedure is written as follows:

min
zk∈∆j0

i0

F j0
i0

(zk) =
∑

l∈L(k)

fl
(
xl(zk)

)
, (21)

where ∆j0
i0

is the set of critical values of independent variable zk; L(k) is the set of
numers of arcs of all connected contours or of the initial contour in the case of non-
connected contours;

4) to perform the procedure of replacing variables, we determine the chain of con-
nected contours by using special graph (Fig. 4). The connected contours are distributed
on different levels in this graph. The zero level contour is the initial contour in the group
of connected contours. The first level contours are defined as follows. We find the num-
bers of all the arcs whose loads satisfy condition (4) in the zero level contour (except
the number of arc forming the contour of zero level). Then, the numbers of products are
found where these arcs are in the lists of free arcs. The contours formed by these arcs in
the networks of respective products are of the first level and graph nodes corresponding to
them are connected by edge with the zero level node. This procedure is repeated for each
first level contour including the contours not belonging to a lower level to the second level
etc. Formation of the graph is completed when we find the contour (im, jm) that contains
the tree arc im+1 which becomes a critical one after performing optimization procedure.
Fig. 4 shows an example of such a graph.

Afterwards we form a chain of contours (i0, j0), (i1j1), . . . , (im, jm) following from
a higher to a lower level node connected with it (if there are several connections, then we
choose any of them), starting from the node (im, jm) and finishing with the node (i0, j0).
A chain of contours being found, the procedure of variable replacement is performed like
this:

a) the loads of arcs i1, i2, . . . , im+1 in the network of products j0, j1, . . . , jm, respec-
tively, are expressed by independent variables z1, . . . , zN using the formula:

xj
i (z) = x̂j

i +
∑

s∈S̄(j)

ejisx
j
s +

∑
s∈S(j)

ejis

( N∑
t

h̄j
stzt

)
, (22)

where S̄(j) and S(j) are sets of the numbers of free arcs forming contours in the network
of the jth product whose load is zero or is expressed by values of non-main variables, re-
spectively. The meaning of the coefficients ejis and h̄j

st is the same as in formula (20)
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taking into account the definitions of sets S̄(j) and S(j). The coefficients of these equa-
tions are included into the table of non-main variables and the rows of non-main variables
denoted by indices of sequence (18) are eliminated from the table;

b) the indices of independent variables yj1
i1
, . . . , yjm

im
in the table of non-main variables

are respectively replaced by indices of sequence (19) starting from first term;
c) for arc im+1, main or non-main critical equation ys = 0 is formed the coefficients

of which are calculated by formula (12). Variables in this equation are expressed by inde-
pendent variables z using formula (22). The coefficients of this equation are inserted into
the table of non-main variables. The independent variable zk in the table is replaced by
variable ys denoted by indices of last term in sequence (19), recalculating the elements
of the table, respectively. The row of table with variable zk is removed from it;

d) free arcs are changed in all the contours, belonging to the separated chain in such
a way: free arcs i0, i1, . . . , im and tree arcs i1, i2, . . . , im+1 are interchanged in the arcs
lists of products j0, j1, . . . , jm. Due to this procedure the right structure of the network
is preserved for each product, i.e., the number of free arcs in the network of each product
is equal to L− T + 1 what corresponds to conditions (15).

This procedure is cyclically repeated foe each independent variable z1, . . . , zN in
the table of non-main variables as long as it does not change the flow distribution after
performing it N − 1 times in turn. If there are no degenerate arcs, then calculations
are discontinued. In the opposite case, we need an additional procedure. Let arc i be
degenerate. Then a new non-main critical equation ȳj

i = ȳj
i (xi) is formed in expression

of the former equation yj
i = yj

i (xi) by changing the signs of the coefficients of main
variables. This equation is expressed by independent variables z1, . . . , zN , using formula
(19) and its coefficients are written into the table of non-main variables. Variables yj

i

and ȳj
i are interchanged and the elements in the table are recalculated. The row with the

variable yj
i is eliminated from the table.

Next we perform the above described procedure for each main variable of the ith
arc until we reach a new vertex and the algorithm is repeated from the first or the flow
remains unchanged after all the iterations of algorithm for these variables. In the later
case, the procedure described is repeated for another degenerate arc. The calculations are
terminated, if the flow does not change after performing this additional procedure for
each degenerate arc.

Example. Let us illustrate this method by a concrete example. The lists of the tree and
free arcs in the network for each product in the example are replaced by the graphs of net-
works of these products. The replacement is aimed at visual illustration and reduction of
calculations. We have to distribute the flow of two products in the network. Fig. 5 depicts
the initial structure of the network. It is the same for both products, i.e., arcs 1, 2 and 3 are
the tree ones, while 4 and 5 are free arcs. The initial load of arcs is presented in Table 1. It
was obtained by equating arc loads of the tree to the loads of their final nodes taken with
the opposite sign. The loads of free arcs are zeros, i.e., the initial flow distribution is a
vertex. The table of non-main variables (Table 2) is empty, and the independent variables
x1

4, x
1
5 and x2

4, x
2
5 of the problem are main variables. The cost functions of arcs 1, 3 and 5
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Fig. 5. Initial structure of the graph (a tree is marked out by a bold typed line).

Table 1 Table 2

The initial array of arc loads The initial table of non-main

No of Arc loads variables

arcs by the 1-st by the 2-nd
product product

1 –1 1

2 7 1 x1
4 x1

5 x2
4 x2

5

∣∣ 1

3 3 –5 0 0 0 0
∣∣ 0

4 0 0

5 0 0

are identical and expressed as follows:

fi(wi) = wi =
2∑
j

|xj
i |, i = 1, 3, 5.

The cost functions of arcs 2 and 4 are also identical, i.e.,

fi(wi) =
{

wi, wi � 3,
5(wi − 3) + 3, wi > 3,

i = 2, 4.

The initial value of the cost function is

F =
5∑
i

fi(wi) = f1(2) + f2(8) + f3(8) + f4(0) + f5(0)

= 2 + 28 + 8 + 0 + 0 = 38.

Iteration 1. The iteration is performed for independent variable z1 = x1
4.

From the Fig. 5 and Table 1 we define:

x1
1 = −1 + x1

4, x1
2 = 7 − x1

4, ∆1
4 = {−3; 0; 1; 3; 5; 7; 9}.

min
x1
4∈ ∆ 1

4

F 1
4 (x1

4) = F 1
4 (3) = f4(3) + f2(5) + f1(3) = 3 + 13 + 3 = 19.

Under the optimal flow x1
4 = 3 of the first product in the contour which is formed by

arc 4, in the network of the first product the load of this arc satisfies a non-main critical
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equation x1
4 + x2

4 = 3. In order to fulfil conditions (15) we relate this critical equation
with variable x1

4.
Having written the coefficients of the equation y14 = x1

4 +x2
4 − 3 = 0 into the table of

non-main variables and having replaced the variable x1
4 by the variable y14 in it we obtain

the Table 3.

Table 3

The table of non-main variables after the 1-st iteration of the algorithm

� 0 � 0

x1
4 x1

5 x2
4 x2

5 1 y1
4 x1

5 x2
4 x2

5 1

y1
4 1 0 1 0 –3 → x1

4 1 0 –1 0 3

The loads of arcs 1 and 2 by the first product are recalculated using the given above
formulas. The structures of both product networks do not change after the first iteration
of the algorithm. The value of the cost function decreases and becomes equal to

F = f1(3) + f2(5) + f3(8) + f4(3) + f5(0) = 3 + 13 + 8 + 3 + 0 = 27.

Arc loads after the 1-st iteration are given in Table 4.

Table 4

Arc loads of the network after the 1-st iteration

No of Loads of arcs

arcs by the 1-st by the 2-nd
product product

1 2 1

2 4 1

3 3 –5

4 3 0

5 0 0

Iteration 2. The iteration is performed for independent variable z2 = x1
5.

From the Fig. 5 and Table 4 we define:

x1
2 = 4 − x1

5, x1
3 = 3 + x1

5, ∆1
4 = {−3; 0; 2; 4; 6}

min
x1
5∈ ∆ 1

5

F 1
5 (x1

5) = F 1
5 (2) = f5(2) + f2(3) + f3(10) = 2 + 3 + 10 = 15.

When the flow of the first product in the contour formed by arcs 5 in the network of this
product x1

5 = 2 is optimal, the load of the arc 2 satisfies the non-main critical equation
x1

2 + x2
2 = 3, which we relate with variable x1

2. Making use of Fig. 5, Tables 3 and 4, we
express the variables x1

2 and y12 by independent variables:

x1
2 = 4 − x1

5 − x1
4 = 4 − x1

5 − (y14 − x2
4 + 3 = −x1

5 − y14 + x2
4 + 1.
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Table 5

The table of non-main variables after iteration 2

≥ 0

y1
4 y1

2 x2
4 x2

5 1

x1
4 1 0 –1 0 3

x1
2 0 1 1 1 2

y12 = x1
2 + x2

2 − 3 = −x1
5 − y14 + x2

4 + 1 + (1 − x2
4 − x2

5) − 3

= −y14 − x1
5 − x2

5 − 1 = 0.

Having included the coefficients of this equations into the table of non-main variables
and having replaced the non-main variable x1

5 by the variable y12 , we get the Table 5. In
the network of the first product free arc 5 is replaced by arc 2 respectively.

F = f1(3) + f2(3) + f3(10) + f4(3) + f5(2) = 3 + 3 + 10 + 3 + 2 = 21.

In the Fig. 6 the arcs whose loads satisfy non-main critical equations, are denoted by
points in addition.

Fig. 6. Structure of the graph (a) – for the 1-st product, (b) - for the 2-nd product after iteration 2.

Table 6

Loads of network arcs after iteration 2

No of Loads of arcs

arcs by the 1-st by the 2-nd
product product

1 2 1

2 2 1

3 5 –5

4 3 0

5 2 0

Iteration 3. The iteration is performed for independent variable z3 = x2
4.

Table 5 shows that with a change in the values of main independent variable x2
4 the

loads of arcs, belonging to the contours formed by arc 2 in the network of the 2-nd product
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as well as arcs 2 and 4 in the network of the 1-st product, will also change, i.e., we have
the case of connected contours. Using Fig. 6 and Tables 5 and 6 we find:

x2
4 � 0; x2

2 = 1 − x2
4; � 0 x2

1 = 1 + x2
4;x

1
4 = 3 − x2

4 0;x1
2 = 2 + x2

4 � 0;

x1
1 = 2 + x1

4 = 2 − x2
4; x1

5 = 2 − x1
4 − x1

2 = 2 − (−x2
4) − x2

4 = 2;

x1
3 = 5 − x1

4 − x1
2 = 5 − (−x2

4) − x2
4 = 5,

i.e., the loads of arcs 3 and 5 do not change when the variable x2
4 changes.

In view of the conditionsx1
2 � 0, x2

2 � 0, x1
4 � 0, x2

4 � 0 we obtain ∆2
4 = {0; 1; 2; 3}

min
x2
4∈ ∆2

4

F 2
4 (x2

4) = F 2
4 (0) = f1(3) + f2(3) + f4(3) = 3 + 3 + 3 = 9.

Since optimal value of main independent variablex2
4 equal to 0 the third iteration does

not change the flow distribution.
Iteration 4. The iteration is performed for independent variable z4 = x2

5.
Varying the value of variable x2

5 in this iteration, the loads of arcs, belonging to the
contours formed by arc 5 in the network of the 2-nd product and arc 2 in the network of
the 1-st product (Table 5), will also change. Thus:

x2
5 = x2

5; x2
2 = 1 − x2

5(� 0); x2
3 = −5 + x2

5;

x1
5 = 2 − x1

2 = 2 − x2
5; x1

2 = 2 + x2
5(� 0); x1

3 = 5 − x1
2 = 5 − x2

5.

By virtue of the conditions x1
2 ≥ 0, x2

2 ≥ 0, we obtain ∆2
5 = {−2; 0; 1}.

min
x2
5∈∆2

5

F 2
5 (x2

5) = F 2
5 (1) = f5(2) + f2(3) + f3(8) = 2 + 3 + 8 = 13.

The zero load of arc 2 by the second product corresponds to the optimal value of indepen-
dent variable x2

5 = 1. By expressing x2
2, through independent variables x2

2 = 1−x2
4−x2

5,
inserting the coefficients of the obtained equation into Table 5 of non-main variables, and
replacing the independent variable x2

5 by the variable x2
2 in it, we obtain a new table of

non-main variables (Table 7):

Table 7

The table of non-main variables after replacing the main variable x2
5 by the main variable x2

2 in the iteration 4

≥ 0 ≥ 0 ≥ 0

y1
4 y1

2 x2
4 x2

5 1 y1
4 y1

2 x2
4 x2

2 1

x1
4 1 0 –1 0 3 → x1

4 1 0 –1 0 3

x1
2 0 1 1 1 2 x1

2 0 1 0 –1 3

x2
2 0 0 –1 –1 1

The structure of the second product network also changes: free arc 5 is replaced by
arc 2 (Fig. 7). Arcs load after this iteration are given in Table 8.

F = f1(3) + f2(3) + f3(8) + f4(3) + f5(2) = 3 + 3 + 8 + 3 + 2 = 19.
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Fig. 7. Structure of the graph after iteration 4: (a) – for the 1-st product (b) – for the 2-nd product.

Table 8

Loads of network arcs after iteration 4

No of Loads of arcs

arcs by the 1-st by the 2-nd
product product

1 2 1

2 3 0

3 4 –4

4 3 0

5 1 1

After performing the iterations 5, 6 and 7 for independent variables y14 , y
1
2 , x

2
4 the flow

distribution in the network does not change.
Since the iterations of the algorithm, performedN −1 = 3 in turn, did not change the

flow distribution, in the non-degenerate case the optimality condition would be achieved.
In this case, there are two degenerate arcs −2 and 4, and the coefficients of main variables
x2

2 and x2
4 in non-main equations of these arcs are +1. The optimal flow distribution

will be when in the expressions of variables y12 and y14 the signs of coefficients of the
variables x2

2 and x2
4 are changed by the opposite ones and additional iterations of the main

algorithm for the independent variables x2
2 and x2

4 do not change the flow distribution.
1-st additional iteration. The iteration is performed for independent variable z3 = x2

4.
In the table of non-main variables (Table 7), after writing the coefficients of the equa-

tion ȳ14 = x1
4 −x2

4 − 3 = 0 into the table and replacing the variable y14 by the variable ȳ14 ,
we obtain the Table 9.

With a change of variable x2
4, the loads by the first and the second product of arcs in

Table 9

The table of non-main variables in the first additional iteration

0 ≤ ≥ 0

ȳ1
4 y1

2 x2
4 x2

2 1

x1
2 0 1 0 –1 3

x1
4 1 0 1 0 3
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the contours, formed by arc 4 in the networks of both products, will change, i.e.,

x2
4 � 0; x2

5 = 1 − x2
4; x2

3 = −4 − x2
4; x2

1 = 1 + x2
4;

x1
4 = 3 + x2

4 �; 0x1
5 = 1 − x2

4; x1
3 = 4 − x2

4; x1
1 = 2 + x2

4.

Considering the conditions x2
4 � 0 and x1

4 � 0, we get ∆2
4 = {−4;−3;−2;−1; 0}

min
x2
4∈∆2

4

F 2
4 (x2

4) = F 2
4 (0) = f4(3) + f5(2) + f3(8) + f1(3) = 3 + 2 + 8 + 3 = 16

This additional iteration does not change the flow distribution.
2-nd additional iteration. The iteration is performed for independent variable z4 =

x2
2.

We form an equation y12 = x1
2 − x2

2 − 3 = 0.
Having performed analogous actions as in the 1-st additional iteration we obtain the

Table 10.
Table 10

The table of non-main variables in the second additional iteration

0� 0�
ȳ1
4 ȳ1

2 x2
4 x2

2 1

x1
4 1 0 1 0 3

x1
2 0 1 0 1 3

Just like in the first additional iteration we have connected contours which are formed
by the second arc in the networks of both products, and the arc loads of these contours
change as follows:

x2
2 � 0; x2

5 = 1 − x2
2; x2

3 = −4 − x2
2;

x1
2 = 3 + x2

2 � 0; x1
5 = 1 − x2

2; x1
3 = 4 − x2

2;

and ∆2
2 = {−4;−3; 0}.

min
x2
2∈∆2

2

F 2
2 (x2

2) = F 2
2 (0) = f2(3) + f5(2) + f3(8) = 3 + 2 + 8 = 13.

This additional iteration does not change the flow distribution either.
Thus, the flow distribution given in Table 8 satisfies optimality conditions formulated

in Section 4 and is the solution to the problem, because the cost functions of all arcs are
convex. The lowest possible value of cost function is 19.

The algorithm for solving the problem generalizes the classic multicommodity flow
problem is presented in the paper. Described algorithm is suitable for solving various
problems of flow distribution that are formulated as piecewise − linear programming
problems. The algorithm for solving such problems could be adjusted dependent on the
nature of concrete functions by respective changing formulas of coefficients of critical
equations (7), (12) and (13).
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Dalimis tiesinio daugelio produkt ↪u transporto uždavinio sprendimo
metodas

Gediminas DAVULIS

Nagrinėjamas daugelio produkt ↪u transporto uždavinys su dalimis tiesine kainos funkcija. Šis už
davinys yra formuluojams kaip neseparabilus atskir ↪u kintam ↪uj ↪u grupi ↪u atžvilgiu: dalimis tiesinio
programavimo uždavinys. ↪Iprasti metodai, naudojami netiesiniams transporto uždaviniams spr ↪esti,
leidžia rasti uždavinio lokalin ↪i sprendin ↪i geriausiu atveju tik duotu tikslumu. Siūlomas meto-
das, pagr ↪istas simplekso metodo idėjos išplėtimu neseparabili ↪u dalimis tiesinio programavimo
uždavini ↪u klasei, leidžia rasti lokalin ↪i sprendin ↪i po baigtinio iteracij ↪u skaičiaus. Panaudojamos
transportinio tipo apribojim ↪u ypatybės, leidžiančios išskaidyti uždavinio apribojim ↪u matric ↪a ↪i eil ↪e
mažesni ↪u, tuo sumažinant skaičiavim ↪u apimtis.


