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Abstract. This paper considers the technique to construct the general decision rule for the contra-
dictory expert classification of objects which are described with many qualitative attributes. This
approach is based on the theory of multiset metric spaces, and allows to classify a collection of
multi-attribute objects and define the classification rule which approximates the set of individual
sorting rules.
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1. Introduction

One of the wide-spread problem in the decision making area is the decomposition of
objects’ collection into several classes, that is based on the set of individual sorting rules.
These individual rules, which are assigned each object into the specific class, may be
similar or discordant. So often it is desirable to construct a general rule for the object
classification that would take into account object characteristics and maximally coincide
with the individual rules.

The difficulties of object classification increase when the objects are described with
many qualitative attributes and can exist in several copies with various values of at-
tributes. The problems of these kinds are, for example, the competitive selection of
projects estimated by several experts with many qualitative criteria, the recognition of
graphic symbols, the problem-oriented sorting of textual documents. In all these cases
the object (project, symbol, document) can be presented as the set of repeating attributes.

This paper describes an approach to generate the classes of such objects and define
the boundaries between classes. The technique for the multi-attribute objects’ classifi-
cation and the construction of general decision rule is based on searching for the best
decomposition of multisets in the metric spaces.

2. Competitive Selection of Projects

One of the practical case, where we had faced the problem how to find the general
decision rule for the contradictory expert classification of multi-attribute objects, is re-



110 A. Petrovsky

lated to the preparation of the State scientific-technological Program on hightemperature-
superconductivity in the former USSR (Larichev et al., 1989). In order to select R&D
projects for the Program the special competition was performed. The Scientific Board,
which was responsible for the Program elaboration on the whole, organized 5 Competi-
tive Commissions on the subprograms, which were to choose the projects correspondent
to the Program goals. The Competitive Commissions worked together with the groups of
experts who evaluated applications submitted for the Program.

Consider the expert procedure of project evaluation in more detail. Suppose that
A1, . . . , Ak are the projects presented at the competition. Each project is evaluated by
n experts with m qualitative criteria Q1, Q2, . . . , Qm. In our case the questionnaire in-
cludes the following criteria for the project estimation: Q1 – “The project contribution to
the Program goals”; Q2 – “A long-range value of the project”; Q3 – “A novelty of the
approach to solve the task”; Q4 – “A qualification level of the team”; Q5 – “Resources
available for the project realization”; Q6 – “A character of the project results”.

Each criterion has a nominative or ordered scale of verbal estimates. For instance, the
scale of the criterion Q5. “Qualification level of the team” looks like this:

q1
4 – the team is one of the best by the experience and qualification level;
q2
4 – the team has the experience and qualification level sufficient for the project

realization;
q3
4 – the team has the experience and qualification level insufficient for the project

realization;
q4
4 – an experience and qualification level of the team are unknown.

An expert evaluates the project with all criteria and makes one of the following re-
commendations:

r1 – to approve the project;
r2 – to reject the project;
r3 – to consider the project later after improving.
Note that one and the same project can be evaluated by different experts with identical

or diverse criteria estimates. The expert recommendations on the project approval (sorting
rules) also may coincide or not.

More than 250 applications were estimated by experts. Taking into account expert
recommendations Competitive Commissions selected the projects for each subprogram.
The decisions of Competitive Commissions were based on their own preferences, which
were different and usually not expressed on the language of criteria estimates. Finally,
the Scientific Board considered the Commissions’ decisions, approved about 170 projects
and included them in the Program.

In this case, we have an hierarchy of decision rules that is the individual sorting rules
of many experts, the selection rules of several Competitive Commissions, and the final
decision rule of the Scientific Board. So, members of the Competitive Commissions and
Scientific Board were in need of simple general decision rules for the project selection
both for the subprograms, and for the Program on the whole, which could approximate the
variety of individual expert rules. Thus the decision makers would obtain an opportunity
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to use these approximating rules as the final decision rules or work out another decision
rules.

There are various ways how to find decision rules for the classification of multi-
attribute objects (Larichev and Moshkovich, 1997; Larichev et al., 1989; Pawlak and
Slowinski, 1994). But in our case it was necessary to provide a compromise between
plural individual sorting rules and the final solution. In the considered situation, the final
decision rule was found with a help of the specific DSS, which was constructed for this
Program. The DSS consisted of the bases of project data, expert estimates, and special
multiple criteria decision making methods. The satisfactory decision rule was worked out
in the process of multi-stage interactive dialogue between the Scientific Board members
and DSS. Various complex heuristic strategies were used to search for a concordance
with the decisions of the Competitive Commissions and Scientific Board.

The following general decision rule was suggested for the project selection (Larichev
et al., 1989): “The project is to be very important or important for the achievement of the
major program goals (the estimates q1

1 or q2
1 on the criterion Q1), the team would have

the experience, qualification level, and resources sufficient for the project realization (the
estimates q1

4 or q2
4 on the criterion Q4, and q1

5 or q2
5 on the criterion Q5)”. Almost all

of the approved projects met these requirements. But the problem how a set of diverse
individual sorting rules can be approximated with the simple general rule for the project
classification stood over in that time.

3. Problem of Object Classification

The classification deals with combining the initial collection of objects into several
groups or sorting them out of the predefined categories. Information about the object
properties can be presented with the set of attributes whose values are numerical and/or
verbal. From the formal logic point of view, a procedure of object classification can be
written as a sequence of the following decision rules:

IF 〈conditions〉, THEN 〈decision〉. (1)

There are direct and indirect classifications. The direct classification is an enumeration
of the objects within the class. So in this case, the term 〈conditions〉 includes the names of
objects or the list of attribute values that describe the objects. The indirect classification
is based on the properties common for the class. And the term 〈conditions〉 expresses the
relations between different attributes and/or their values. The term 〈decision〉 marks that
the object belongs to the specific class.

In the case of the project selection, the description of competitive project Ai

(i = 1, . . . , k) consists of attributes that can be combined into several groups G =
{Q1, . . . , Qm, R}. Each group of criteria estimates Qs = {qe

ss} (s = 1, . . . ,m;
es = 1, . . . , hs) is the attribute family, which expresses the project property. The ex-
pert recommendations to approve, reject or correct the project (individual sorting rules)
form the group of attributes R = {rt}, which characterizes the project assignment into
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the class Xt (t = 1, . . . , f ). Since each project is evaluated by several experts, some
of the attributes may occur more than ones. So, the project can be described with the
following set of repeating attributes:

Ai = {(ni(gj) • gj)} = {(ni(qe
ss) • qe

ss) , (ni(rt) • rt)} . (2)

Here gj is an attribute from the set G = {gj} (j = 1, . . . , h, h = h1 + · · · + hm +
f ); ni(gj) is a number of attribute gj , which is equal to a number of experts who has
estimated the project Ai with the attribute gj; the sign • denotes that there are ni(gj)
copies of attribute gj in the description of project Ai. The arguments in the formula (2)
are associated with the decision rule (1) as follows: the various combinations of criteria
estimates qe

ss correspond to the term 〈conditions〉; belonging the object Ai to the class
Xt reflects the term 〈decision〉. The object Ai is said to be a member of class Xt if
ni(rt) >

∑
p�=t ni(rp) = 0.

When the objects are sorted by many experts, there is a family of decision rules which
may be similar, diverse, and contradictory. Individual sorting rules are coincident or simi-
lar when the objects with the identical or resemble values of attributes are included in the
same class. Contradictory rules assign the weakly discernible objects into diverse classes.
The inconsistencies of individual rules may be caused, for instance, by errors in the ex-
pert classification of objects, the incoherence between expert’ estimates of objects and
decision classes, the intransitivity of expert judgements, and by other reasons. Note that
knowledge bases of expert systems are built in the same manner.

If the number of objects and attributes is rather small, then decision rules are re-
viewed and utilized relatively easily. The more the family of decision rules, the more dif-
ficult analysis of these rules. In this case, the problem arises: how to generate the simple
approximating rule(s) for the indirect classification of objects, which would maximally
coincide with the set of contradictory sorting rules. The final decision rule would include
a minimal number of attributes and assign the objects into the given classes with the ad-
mitted accuracy. A construction of the generalized decision rule allows us also to discover
divergences in the initial direct classification and correct some of the expert sorting rules
if necessary.

The classification of multi-attribute qualitative objects has some additional peculiar-
ities. First, the amount, complexity and peculiarities of information necessary to specify
qualitative objects are essentially larger and more varied then that for the quantitative
objects. Second, a multiplicity and redundancy of factors, that express a substance of the
problem considered, are possible. Third, the multi-attribute space and indexes of simi-
larity/difference between objects are to be chosen corresponding to the qualitative nature
of object properties. And finally, in order to classify qualitative objects, a lot of verbal
and numerical data are to be taken into consideration simultaneously and processed with-
out unfounded transformations (like “averaging”, “mixing”, “weighting” attributes, and
so on). So the special procedures to collect and process these types of data are needed
(Larichev and Moshkovich, 1997; Petrovsky, 1994; Petrovsky, 1995).
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4. Multiset Model of Multi-Attribute Objects

The multiset or set with repeating elements (also called the bag) is a very convenient
mathematical model in order to present and analyze a collection of objects that are de-
scribed with many qualitative attributes and can exist in several copies with various val-
ues of attributes. Give the brief review of the multiset theory (Knuth, 1969; Yager, 1986;
Petrovsky, 1994; Petrovsky, 1995).

Let G = {g1, g2, . . . , gj, . . .} be a crisp set, where all elements gj are different. A is
called a multiset over the domain G if A can be presented by the set of pairs as follows

A = {(nA(g) • g)} ,

where nA(g) is called a counting function of multiset A. This function defines the number
of occurrences of the element g in the multiset A, and nA: G → N+. Unlike the set,
each element may occur in the multiset more than once. The element g is said to be a
member of the multiset A (g ∈ A), and there are k copies of g in A, if nA(g) = k > 0. If
nA(g) = 0, then g 	∈ A. When nA(g) is equal to χA(g) = {0, 1}, the multisetA becomes
an ordinary set. The set G = {gj} is said to be a generic domain for the collection of
multisets X , if all multisets from X are composed from the elements of G. The multiset
is called: the empty multiset ∅, if n∅(g) = 0 for ∀g ∈ G; the maximal multiset Z , if
nZ(g) = maxnA(g) for all multisets A ⊆ Z . The cardinality of multiset A is a total
number of all elements |A| =

∑
g∈G

nA(g); and the dimensionality of multiset A is a

number of different elements [A] =
∑

g∈G

χA(g).

The following operations under multisets can be defined:

a union of multisets A∪B={g|nA∪B(g)=max (nA(g), nB(g))};
an intersection of multisets A∩B={g|nA∩B(g)=min (nA(g), nB(g))};
an addition of multisets A + B = {g|nA+B(g) = nA(g) + nB(g)};
a difference of multisets A−B={g|nA−B(g)=nA(g)−nA∩B(g)};
a symmetrical difference of multisets A∆B = {g|nA∆B(g) = |nA(g) − nB(g)|};
a multiplication on scalar k k·A = {g|nk·A(g) = knA(g), k > 0};
a multiplication of multisets A·B = {g|nA·B(g) = nA(g)·nB(g)};
the complement of multiset A A =

{
g|nA(g) = nZ(g) − nA(g)

}
.

A family of multisets closed under operations of the union, intersection and comple-
ment is said to be an algebra L(Z) of multisets where the maximal element Z is the unit
of the algebra. A real-valued function m(A) defined on the algebra L(Z) is called a mea-
sure of multiset A if m(A) � 0, m(∅) = 0, m(A)+m(B) = m(A∪B)+m(A∩B) =
m(A + B). The measure of multiset A can be determined in the various ways, for in-
stance, as a linear combination of counting functions: m(A) =

∑
j wjnA(gj), wj > 0.

The metric spaces of multisets were introduced in (Petrovsky, 1994; Petrovsky, 1995).
Different metric spaces (X, d) can be determined for the same collection of objects by
introducing the various types of distances d(A,B). The following metrics can exist in
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multiset spaces:

d0(A,B) = m(A∆B);

d1(A,B) = m(A∆B)/m(Z);

d2(A,B) = m(A∆B)/m(A ∪B).

Functions d1(A,B) and d2(A,B) satisfy the normalization condition 0 � d(A,B) � 1.
Note, that due to the continuity of the multiset measure, the distance d2(A,B) is un-
defined for A = B = ∅. So d2(∅,∅) = 0 by the definition. Nonmetric measures of
multiset similarities are connected with the distances:

s1(A,B) = 1 −m(A∆B)/m(Z);

s2(A,B) = m(A ∩B)/m(A ∪B);

s3(A,B) = m(A ∩B)/m(Z).

Let X = {A1, . . . , Ak} be a collection of k objects, that are described with many
qualitative attributes G = {g1, . . . , gh}, and presented in the form (2). In other words,
the expression (2) is the multiset Ai ∈ X drawn from the set G = {gj}. Thus the
problem of multi-attribute object classification can be considered now as the problem
of similarity/difference between multisets, that present objects in the metric space of
multisets.

In order to simplify the problem, assume that the collection of objects X =
{A1, . . . , Ak} is to be sorted into only two classes Xa and Xb. In this case the objects’
collection X can be presented as the following decompositions of multisets:

X =
∑

t=a,b

Xt =
∑

t=a,b

( m∑
s=1

Qst + Rt

)
,

Qst =
hs∑

es=1

Qes
st , Qes

st =
∑

i∈Ies
st

Ai, Rt =
∑
i∈Irt

Ai, (3)

where Ie
sts = Ie

ss ∩ It; It is the subset of indexes i for Ai ∈ X with ni(rt) >∑
p�=t ni(rp) = 0; Ie

ss is the subset of indexes i for Ai ∈ X with ni(qe
ss) 	= 0,

ni(qe
vv) = 0, v 	= s, ni(rt) = 0; Irt = Ir ∩ It; Ir is the subset of indexes i for Ai ∈ X

with ni(rt) 	= 0, ni(qe
ss) = 0.

The relations between the collection of objects X = {Ai} and the set of their at-
tributes G = {gj} can be expressed with the matrix C = ‖ni(gj)‖. The matrix C is
used often in data analysis, pattern recognition and called the “object-attribute” table,
information table or decision table (Pawlak and Slowinski, 1994; Petrovsky, 1994; Petro-
vsky, 1995). In our case, information on properties of the multi-attribute objects Ai and
information that the object Ai belongs to a certain decision class can be presented as the
decision table C, that has a dimension k × h, and consists of 2(m + 1) boxes which
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correspond to multisets Qsa, Qsb and Ra, Rb (k is a number of objects, h is a number
of object attributes, m + 1 is a number of attributes groups). The reduced decision table
C′ = ‖n′

i(gj)‖ has a dimension 2×h, and consists of two rows n′
A(gj) and n′

b(gj) which
correspond to the classes Xa and Xb.

The demand to sort objects into two classes is not the principle restriction for us.
Whenever objects are to be classified into more than two classes, it is possible to divide
the collection X into two groups, then into subgroups, and so on. For instance, the com-
petitive projects can be classified into the projects approved and not approved, then the
not approved projects can be divided into the projects rejected and considered later, and
so on.

5. Approximation of Individual Sorting Rules

The main idea of approximating a large family of sorting rules with a compact decision
algorithm or simple decision rule can be formulate as follows. In the metric space of
multisets (X, d), the pairs of new multisets for every group of attributes Q1, . . . , Qm,
R would be generated. The multisets within each pair are to be spaced at the maximal
distance d, and be the mostly coincident with the initial expert sorting of the objects
into the classes Xa and Xb. Combinations of the attributes, that define the pairs of the
generated multisets, produce the generalized decision rule for the object classification.

Obviously, the decomposition R = {Ra, Rb} is the best partition of the object col-
lection X = {Ai} (i = 1, . . . , k) into the classes Xa and Xb. The distance between the
multisets Ra, Rb in the metric space (X, d) is maximal and equal to

d(Ra, Rb) = max d(Ra, Rb) = d∗. (4)

In the case of the ideal classification without inconsistencies of the individual sorting
rules, the maximal distance in the metric space (X, d) is equal correspondingly to d∗0 =
kn, d∗1 = 1/h, d∗2 = 1 (k is a number of the classified objects, n is a number of the
individual sorting rules per an object, which is equal to a number of experts who evaluated
the object, h is a total number of the object attributes).

The problem of how to approximate rules for sorting a collection of multi-attribute
objects is transformed into the problem of how to find the best binary decompositions
Qs = {Qsa, Qsb}, where the multisets Qsa, Qsb (s = 1, . . . ,m) are maximally far from
each other in the metric space (X, d). In other words, the following m optimization prob-
lems should be solved:

d(Qsa, Qsb) → max d(Qsa, Qsb) = d(Q∗
sa, Q

∗
sb). (5)

The solution of each problem (5) is the best binary decomposition of the multiset Q∗
s =

{Q∗
sa, Q

∗
sb}, where the multisets Q∗

st is a sum of submultisets Q∗1
st +Q∗2

st (t = a, b). The
attribute q∗s , which belongs to the submultiset Q∗1

st , is called the approximating attribute.
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Combinations of the approximating attributes q∗s for various numbers s of criteria groups
define the conditions for assigning the object Ai ∈ X into a certain class Xt.

The approximating attributes q∗s for different criteria groups s can be ordered accord-
ing to the values of distances d(Q∗

sa, Q
∗
sb). Then attributes q∗s , which occupy the first

places in this ranking, are to be included in the generalized decision rule. The nearer the
distances d(Q∗

sa, Q
∗
sb) to the maximal distance d∗, the more accurate the approximation

of individual sorting rules. The rate of the sorting rules approximation for the attribute q∗s
can be estimated by the expression

ρs = d (Q∗
sa, Q

∗
sb) /d

∗, (6)

where the distance d∗ is determined by the formula (4). The approximating attribute q∗s
with the approximation rate ρs � ρ0 (ρ0 indicates the demanded rate of approximation)
is to be included in the generalized decision rule (1) for the objects classification. Note
that the value of approximation rate ρs characterizes the comparative importance of the
criterion Qs with respect to the final classification of multi-attribute objects.

The procedure for a generation of the generalized decision rule can be summarized as
follows.

1. Compute the decision table C = ‖ni(gj)‖ of dimension k × h, that presents the
collection of multi-attribute objects X = {Ai} and consists of 2(m + 1) boxes
which correspond to multisets Qsa, Qsb and Ra, Rb.

2. Combine the objects Ai, which is related to the given classes Xa, Xb, by using
the formula (3). Obtain the reduced decision table C′ = ‖n′

i(gj)‖ of dimension
2 × h, that corresponds to the specified classes Xa and Xb, and consists of two
rows n′

a(gj), n′
b(gj).

3. Solve the optimization problem (5) for the every binary decomposition Qs and
find the approximating attributes q∗s in the every s-th box of the reduced matrix
C′.

4. Range the approximating attributes q∗s according to the values of distances
d(Q∗

sa, Q
∗
sb).

5. Select the attribute q∗s that provides the demanded approximation rate ρs (6). The
set of these attributes {q∗s} forms the generalized decision rule for sorting the
objects.

6. Case Study

Let us illustrate the proposed method for the approximation of contradictory sorting rules
on the base of expert decisions, which are related to the Program considered above
(Larichev et al., 1989). The followings are a part of decision table C, the reduced de-
cision table C′, the distances between the multisets d(Ra, Rb), d(Q∗

sa, Q
∗
sb) in the metric

space (X, d0), and the rates ρs of the sorting rules approximation for the attribute q∗s , that
are calculated in accordance with the given algorithm:
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Objects Attributes

q1
1 q2

1 q3
1 q1

2 q2
2 q3

2 q1
3 q2

3 q3
3 q1

4 q2
4 q3

4 q4
4 q1

5 q2
5 q3

5 q4
5 q1

6 q2
6 q3

6 ra rb

A1 1 2 0 2 1 0 3 0 0 2 1 0 0 0 2 1 0 2 1 0 3 0
. . .
Ai 1 1 1 0 2 1 1 2 0 0 2 1 0 0 1 2 0 0 0 3 2 1

Ai+1 1 1 1 0 2 1 1 2 0 0 2 1 0 0 1 2 0 0 0 3 1 2
. . .
Ak 0 2 1 0 1 2 0 3 0 0 1 1 1 0 0 2 1 0 3 0 0 3

Classes Attributes

of objects q1
1 q2

1 q3
1 q1

2 q2
2 q3

2 q1
3 q2

3 q3
3 q1

4 q2
4 q3

4 q4
4 q1

5 q2
5 q3

5 q4
5 q1

6 q2
6 q3

6 ra rb

Xa 144 360 21 81 324 120 99 336 90 219 297 9 0 72 435 18 0 126 300 99 510 15
Xb 45 156 51 27 93 132 36 111 105 51 132 63 6 60 147 30 15 45 135 72 78 174

d 333 297 303 393 327 273 591
ρs 0.563 0.503 0.517 0.665 0.553 0.462

The approved projects A1−Ai belongs to the class Xa, and the not approved projects
Ai+1 −Ak belongs to the class Xb. Observe that the projects Ai and Ai+1 have the same
collection of criteria estimates {qs} but their individual sorting rules do not coincide, that
is Ai ∈ Xa, Ai+1 ∈ Xb. The set of the approximating attributes q∗s , which is ordered by
the distances d(Q∗

sa, Q
∗
sb), consists of the following attributes:

{q∗s} =
{
q1
4 , q

2
4 ; q

1
1 , q

2
1 ; q1

5 , q
2
5 ; q

1
3 , q

2
3 ; q

1
2 , q

2
2

}
.

Note that there is no optimal solution of the problem (5) for the criterion Q6. Thus, the
all attributes qp

6 are not approximating. By choosing the demanded rate of approximation
ρ0, one can find the following general decision rules to select the competitive projects:

“The team must be one of the best or have the experience and qualification level
sufficient for the project realization” (the estimates q1

4 or q2
4 ; the approximation rate ρs �

0.65);
“The project is to be very important or important for the achievement of the major

program goals, the team must be one of the best or have the experience, qualification
level, and resources sufficient for the project realization” (the estimates q1

1 or q2
1 , and q1

4

or q2
4 , and q1

5 or q2
5 ; the approximation rate ρs � 0.55).

The last rule is the same as mentioned above. One can also find the various general
decision rules for the separate subprograms and discover the inconsistencies between the
individual sorting rules and the general decision rules.

7. Conclusion

The quality of decisions depends on the quality and completeness of the problem investi-
gation. However, there is a kind of problems where plurality and redundancy of data char-
acterizing objects, alternatives, situations, and their properties are essential. In this paper
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we have suggested the tools for classifying a collection of objects represented by many
qualitative attributes, when a lot of copies of objects or values of attributes describing
them can exist. These techniques can be applied to analyze decisions in the wide-range
situations, where the relations between objects and their attributes are presented as the
“object-attribute” matrix, information or decision table.

The proposed tools are based on the theory of multiset metric spaces. The multiset
approach allows us to discover, present and utilize the available information, which is
contained in the object descriptions and could not be processed formerly by other meth-
ods. This approach provides the technique to classify multi-attribute objects and interpret
the peculiarities of classification, especially in the cases of a large number of the objects
considered and a variety of inconsistencies between the object properties and sorting
rules.

This work is supported by the Russian Foundation for Basic Research (grant N 99-
01-00476).
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Skirting ↪u individuali ↪u rūšiavimo taisykli ↪u aproksimavimo metodas

Alexey PETROVSKY

Straipsnyje nagrinėjamas metodas bendrai sprendimo taisyklei sudaryti, kai ekspertai skirtin-
gai klasifikuoja kokybiškai aprašytus objektus. Metodas remiasi aibi ↪u metrinėse erdvėse teorija ir
leidžia klasifikuoti daugiaatributinius objektus, apibrėžiant taisykl ↪e, aproksimuojanči ↪a individuali ↪u
rūšiavimo taisykli ↪u aib ↪e.


