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Abstract. Multicriteria sequencing problems with criteria ordered according to their importance
are considered. Additional precedence and group technology constraints are imposed. We intro-
duce a notion of a priority-generating vector function and suggest general techniques that form a
base for the construction of polynomial time algorithms for numerous sequencing problems includ-
ing all known polynomially solvable problems. A comprehensive survey of results for sequencing
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1. Introduction

The paper considers some problems where optimal permutation with respect to several
ordered criteria is to be found.

There are number of papers devoted to multi-criteria approach in sequencing and
scheduling (see [5]). In such a situation we usually try to find a Pareto-optimum set of
solutions and later a decision maker should choose from this set the best solution from
his point of view. This choice may be done in different ways (see [25, 27]).

Sometimes a decision maker can order importance of criteria from his point of view
in advance. In this case he can number the criteria in such a way that the first criterion is
the most important, the second one is the most important among the others criteria and so
on. For this situation a feasible solution will be optimal if it gives an optimum to the first
criterion and among all optimal solutions with respect to the first criterion it gives also
an optimal value to the second criterion and so on. It is easy to notice that the optimal
solution for this case is one of the Pareto-optimum solutions.
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The above approach is called an ordered criteria approach (see [21]) or lexicographic
approach.

In this paper we consider sequencing problems with ordered criteria. In such problems
the set of feasible solutions is a set of permutations of elements (e.g., jobs, tasks) of some
finite set N = {1, 2, . . . , n}. Moreover we consider a situation that usually appears in
production systems with group technology [8]. In this case a partition of set N is given:
N = N1∪N2∪. . .∪Nq. Each subset of this partition is partially ordered and a precedence
relation is given over set N0 = {N1, N2, . . . , Nq}. A permutation π is feasible if all
elements belonging to the same subset are situated in π contiguously and a disposition
of elements in π doesn’t contradict to the mentioned above partial orders (precedence
relations). The aim is to find a feasible permutation that is optimal with respect to the
ordered criteria approach.

It should be mentioned that sequencing problems are considered in different branches
of operations research. Particularly, a number of scheduling problems (single-machine,
permutation flow-shop problems) are naturally formulated in terms of optimizing func-
tions over a set of permutations. In such problems a schedule is uniquely represented by
a permutation.

Let us consider a practical situation where such an approach to a problem formulation
seems very natural.

A system consisting of q blocks, where each block contains several components, is
inspected by sequentially applying tests to each component. The process of testing lasts
until the first “defective” block is found or all components successfully pass their tests.
There are restrictions on a possible sequence of component testing. First of all, the com-
ponents of each block should be tested contiguously. Besides that there is given a prece-
dence relation on the set of blocks and a precedence relation on the set of components of
each block. These relations define possible sequences of testing. The existence of men-
tioned relations is caused by a mutual dependence of components inside their block as
well as blocks inside the system.

For each component i of the system we have a cost wi of its testing, a probability ρi

of successful passing its test and a time ti needed for testing. The tests are assumed to
be statistically independent. So, for any feasible sequence π = (i1, i2, . . . , in) of compo-
nents, valueQ(ir) = ρi1ρi2 . . . ρir−1 is the probability of the event that the component ir
will be tested (here Q(i1) = 1). If components are tested according to sequence π then
an expected cost of testing the component ir is wirQ(ir) and a total expected cost of the
system testing is F1(π) =

∑n
k=1 wik

Q(ik). Besides that we have an average completion
time of component testing:F2(π) = 1

n

∑n
k=1

∑k
l=1 til

, where
∑k

l=1 til
is the completion

time of component ik testing.
If we know, for example, that minimizing total expected cost is the most important for

us and besides that we would like to minimize the average completion time of component
testing then we have a typical problem with two ordered criteria, group technology and
precedence constraints.

It should be noted that a single-criterion case of the above problem without group
technology and precedence constraints, where F (π) = F1(π), was discussed in [15] and
[14]. In [14] an O(nlogn) algorithm was proposed.
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In the paper we give a review of results on ordered criteria approach in scheduling
and describe new results in this field concerning to the development of polynomial time
algorithms for sequencing problems with ordered criteria. Our main approach is to adapt
techniques developed for single-criterion problems. Besides that we extend these tech-
niques for solving problems with group technology constraints.

The rest of the paper is organized as follows. In Section 2 we give the main problem
formulation and a survey of previous results. Section 3 is devoted to the consideration
of so-called priority-generating vector functions. We introduce a notion of a priority-
generating vector function as a generalization of the corresponding notion for scalar
functions and give examples of such functions. Here we give also a sufficient condition
for a vector function to be priority-generating. In Section 4 polynomial time algorithms
for minimizing priority-generating functions on sets of permutations that are feasible
with respect to group technology and precedence constraints are given. In Section 5 we
consider a special case of the main problem, without group technology or precedence
constraints. In Section 6 a rather restricted situation is described where most important
criteria are maximal costs and less important ones are so-called non-adjacent priority-
generating functions. Some concluding remarks are given in Section 7.

2. Problem Formulation

In this section we formulate a multi-criteria sequencing problem where criteria are or-
dered in decreasing of their importance and a set of feasible sequences (permutations)
is determined by group technology constraints and precedence relations. We give also a
survey of earlier obtained results for sequencing problems with ordered criteria.

Let us introduce the relation � defined on the set of vectors from R
m. For vectors

x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) from R
m we shall write

x = y if and only if xi = yi, i = 1, 2, . . . ,m,
x < y if and only if there exists an index k, 1 � k � m, such that xk < yk and

xl = yl for all l < k,
x � y if and only if x < y or x = y.
This relation is usually called a lexicographic order. Further we compare vectors only

with respect to the lexicographic order.
Let Pn be the set of all permutations of elements of a finite set N = {1, 2, . . . , n}.

Set N is partitioned on q subsets (groups): N = N1 ∪ N2 ∪ . . . ∪ Nq , Nl ∩ Nk = ∅
for l �= k. There is a precedence relation

k→ defined for each subset Nk and represented

by an acyclic directed graph Gk = (Nk, Uk). There is also a precedence relation
0→

defined over set N0 = {N1, N2, . . . , Nq} and represented by an acyclic directed graph
G0 = (N0, U0).

Permutation π = (i1, i2, . . . , in), iν ∈ N , ν = 1, 2, . . . , n, is called feasible if the
following conditions hold:

(a) for any k ∈ {1, 2, . . . , q} conditions iν, iµ ∈ Nk and ν < µ imply ij ∈ Nk for
every ν < j < µ (i.e., elements from the same group should be situated
contiguously in every feasible permutation);
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(b) for any k ∈ {1, 2, . . . , q} conditions iν , iµ ∈ Nk and iν
k→ iµ imply ν < µ (i.e.,

a mutual disposition of elements of any group k should not contradict to the

relation
k→);

(c) for any k, l ∈ {1, 2, . . . , q}, k �= l, conditions iν ∈ Nk, iµ ∈ Nl and Nk
0→ Nl

imply ν < µ (i.e., a mutual disposition of elements from different groups should

not contradict to the relation
0→).

Denote a set of all feasible permutations by Pn(G0, G1, . . . , Gq).
Let functions F1(π), F2(π), . . . , Fm(π) be defined on such a set P ′ that

Pn(G0, G1, . . . , Gq) ⊆ P ′. Consider the following sequencing problem.

Problem 1. For a vector function Φ(π) = (F1(π), F2(π), . . . , Fm(π)) defined over a set
P ′ it is necessary to find such a permutation π∗ that

π∗ ∈ Pn(G0, G1, . . . , Gq)

and

Φ(π∗) = min {Φ(π):π ∈ Pn(G0, G1, . . . , Gq)} .

The permutation π∗ is called optimal.
Since we search the minimum of the function Φ(π) in the lexicographic sense then

Problem 1 is usually called a lexicographic sequencing problem.
Problem 1 is in fact a multi-criteria problem with criteria ordered in decreasing of

their importance. The function F1(π) is the most important and the permutation π∗ min-
imizes F1(π) on the initial set Pn(G0, G1, . . . , Gq). The function F2(π) is the most im-
portant among the functions F2(π), . . . , Fm(π), i.e., π∗ minimizes it on the subset of
Pn(G0, G1, . . . , Gq), which consists of all optimal with respect to F1(π) permutations,
and so on.

Some special cases of the formulated general problem were considered in scheduling
theory earlier. Now we give a survey of them.

We use common for scheduling theory notions. We call elements of N by jobs. Each
job has a processing time ti, a weight wi or a non-decreasing penalty function ϕi or
ψi and a due date di. For a given schedule that is represented by a permutation π =
(i1, i2, . . . , in) we can compute for each job i ∈ N the following parameters:

– the completion time Ci(π): if i = ik then Ci(π) = Cik
=

∑k
l=1 til

,
– the lateness Li(π) = Ci(π) − di,
– the tardiness Ti(π) = max{0, Ci(π) − di},
– the unit penalty Ui(π) = 0 if Ci(π) � di and Ui(π) = 1 if Ci(π) > di.
We use usual three-field notations α | β | γ for scheduling problems (see, e.g., [12]).

Single-machine problems are considered in the paper. Therefore the first field α specify-
ing the machine environment equals “1”.

The second field describes grouping constraints and precedence relations, which are
defined either over set N or over its subsets. If this field is empty it means that there are
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no precedence relations or grouping constraints. If β = G then there are no grouping
constraints but there is a precedence relation over set N that is determined by an acyclic
directed graphG. HereG = C denotes that graphG is a chain. NotationG0, G1, . . . , Gq

in the second field means that we have a general problem (with q groups and precedence
relations) over set Pn(G0, G1, . . . , Gq).

The third field is used for the description of objective functions (in the decreasing
order of their importance). As it was mentioned, we consider problems where all objective
functions should be minimized and therefore the notation (F1, F2, . . . , Fm) in the field γ
means that a vector function

(F1(π), F2(π), . . . , Fm(π))

is to be minimized. We usually omit arguments of functions in this field. Here we consider
the following types of objective functions, which are most commonly investigated in
scheduling:

Lmax = max{Li: i ∈ N},
Tmax = max{Ti: i ∈ N},
maxϕi(Ci) = max{ϕi(Ci): i ∈ N},∑
Ci =

∑
i∈N Ci,∑

wiCi =
∑

i∈N wiCi,∑
Ti =

∑
i∈N Ti,∑

wiTi =
∑

i∈N wiTi,∑
Ui =

∑
i∈N Ui.

One of the first results for a problem with ordered criteria was an O(n2) algorithm by
Smith [26] for the problem

1 || (Ci � di,
∑
Ci).

Below we give a list of polynomially solvable problems.
1 || (Tmax,

∑
Ci) −O(n2) – [9],

1 || (maxϕi(Ci),
∑
Ci) −O(n2) – [6],

1 || (maxϕi(Ci),maxψi(Ci)) −O(n2) – [33],
1 | G: i → j ⇒ ti � tj | (maxϕi(Ci),

∑
ψ(Ci)) − O(n2) – [33], where ψ is a

common for all jobs non-decreasing penalty function,
1 || (

∑
wiCi, Tmax) −O(nlogn) – [4],

1 || (
∑
wiCi,

∑
Ui) −O(nlogn) – [4].

NP -hardiness of problem
1 || (Ci � di,

∑
wiCi) is established by Brucker, Lenstra and Rinnooy Kan in [2]

and its NP -hardiness in the strong sense – by the same authors in [13]. The obvious
extension of this result is NP -hardiness in the strong sense of problems

1 || (γ1,
∑
wiCi) where γ1 ∈ {Tmax,

∑
Ui,

∑
Ti}.

Chen and Bulfin [4] established NP -hardiness of the following problems:
1 || (

∑
wiCi, γ2) where γ2 ∈ {

∑
wiUi,

∑
Ti},

1 || (Tmax, γ2) where γ2 ∈ {
∑
wiUi,

∑
Ti},

1 || (
∑
Ui, γ2) where γ2 ∈ {

∑
wiTi,

∑
Ci}.

They established also NP -hardiness in the strong sense of problems
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1 || (γ1,
∑
wiTi) where γ1 ∈ {

∑
wiCi, Tmax}.

It should be noted that two-criteria problems are evidentlyNP -hard (NP -hard in the
strong sense) if the corresponding single-criterion problem with the first criterion isNP -
hard (NP -hard in the strong sense). Problem 1 || (

∑
wiTi, γ2) gives an example of such

a situation. It is interesting that the replacement of the “first criterion” by the “second
criterion” in the above proposition is not valid. Yuan and Zhao [32] showed, for example,
that problem 1 || (

∑
wiCi,

∑
wiTi) is pseudo-polynomially solvable though problem

1 ||
∑
wiTi is strongly NP -hard. They established also pseudo-polynomial solvability

of problem 1 || (
∑
wiCi,

∑
wiUi).

There are some results on construction of branch and bound schemes and algorithms
for finding a local optimum. Bansal [1] and Shantikumar [24] proposed branch and bound
algorithms for problems 1 || (Ci � di,

∑
wiCi) and 1 || (

∑
Ui, Tmax), respectively. For

problem 1 || (Ci − di � C,
∑
wiCi), where C � 0 is a given number, an algorithm

by Burns [3] gives a local optimum. Here permutation π is said to be a local optimum
if it cannot be “improved” by a transposition of any two elements (not necessary neigh-
boring). For problem 1 || (Tmax,

∑
wiCi), which is a special case of the previous one,

Miyazaki [16] proposed an algorithm for finding a local optimum as well. He obtained
also sufficient conditions under which his algorithm gives a global optimum.

In our paper we develop polynomial time algorithms for several sequencing problems
with ordered criteria where the set of feasible permutations is Pn(G0, G1, . . . , Gq). We
adjust techniques developed for single-criterion problems to solve problems with ordered
criteria.

3. Priority-Generating Vector Functions

In this section we introduce the notion of a priority-generating vector function, describe
sufficient conditions under which a vector function is priority-generating and give ex-
amples of such functions. The next section delivers algorithms for solving our main
Problem (Problem 1) when the vector objective function is priority-generating on set
Pn(G0, G1, . . . , Gq).

Let P̂ be a set of all permutations πr = (i1, i2, . . . , ir), r = 0, 1, . . . , n, of the
elements of a set N = {1, 2, . . . , n}. Here r is the length of a permutation πr, {π0} =
∅ and {π} denotes the set of all elements, which the permutation π consists of. For a
permutation set P ⊆ P̂ we denote by S[P ] the set of all subpermutations or strings from
P , i.e., π′ ∈ S[P ] if and only if there exist σ, χ ∈ P̂ such that (σ, π′, χ) ∈ P .

Suppose that for a vector function Φ(π) defined over a set P ′ ⊆ P̂ there exists a
function ω(π) (scalar or vector), defined over set S[P ], P ⊆ P ′, and possessing the
following property: for any α, β ∈ S[P ] and any permutations π′ = (σ, α, β, χ) and
π′′ = (σ, β, α, χ) such that π′, π′′ ∈ P , the inequality ω(α) > ω(β) implies Φ(π′) �
Φ(π′′) and equality ω(α) = ω(β) implies Φ(π′) = Φ(π′′).

In this case we say that Φ(π) is a priority-generating on P vector function and ω(π)
is its priority function.
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Function ω(π) is called a strong priority function if in the above definition ω(α) >
ω(β) implies Φ(π′) < Φ(π′′). In this case we say that Φ(π) is a strong priority-generating
on P vector function.

The notion of a priority-generating vector function is a natural generalization of
the notion of a priority-generating function, introduced by Shafransky [22] see also [7,
28, 29]. These notions coincide when m = 1. Note also that the notion of a priority-
generating function is close to the notions of a function possessing an adjacent sequence
interchange property [18, 17] and a function admitting a string interchange relation [11].
Priority-generating functions play an important role in scheduling theory. Many spectac-
ular results are obtained while optimizing priority-generating functions over a certain set
P ⊆ Pn of permutations (see, e.g., [28, 29].

Let us consider examples of single-criterion problems that can be reduced to mini-
mizing priority-generating functions.

EXAMPLE 1. The jobs of a set N are processed on a single machine starting at time t =
0. Preemption is not allowed, and at most one job is processed at a time. The processing
time of a job i depends on the starting time t0i of its processing and equals ti = ait

0
i +

bi, ai > 0, bi > 0, i = 1, 2, . . . , n. It is required to find a job processing sequence (i.e., a
permutation π of P ⊆ Pn) that minimizes the makespan F (π) =

∑n
i=1 ti.

We show that the function F (π) is strong priority-generating over set Pn with the
priority function

ω(π) = Ψ(π)/F (π), (1)

where π = (i1, i2, . . . , ir) and Ψ(π0) = 0, Ψ(π) =
∑r

k=1 aik
(1 + τik

), τi1 = 0,
τik

=
∑k−1

l=1 ail
(1 + τil

), k > 1.
Let E(π, T ) denote the makespan for the jobs of the set {π} processed according to

the sequence π, provided that the processing of the first job starts at time T , i.e., t0i1 = T .
Then E(π, T ) = F (π) + TΨ(π). Indeed, let us use an induction over the length of
the permutation π. For | {π} |= 1 the correctness of the equality is evident. Suppose,
the equality holds for |{π}|= k, k � 1, and prove that it holds for |{π}|= k + 1. Let
π = (π′, ik+1), where |{π′}|= k. We haveE(π, T ) = E(π′, T )+(T+E(π′, T ))aik+1 +
bik+1 = E(π′, T )(1 + aik+1) + Taik+1 + bik+1 = F (π′) + TΨ(π′) + F (π′)aik+1 +
TΨ(π′)aik+1 + Taik+1 + bik+1 = F (π) + T [Ψ(π′)(1 + aik+1) + aik+1 ]. On the other

hand, Ψ(π) = Ψ(π′) + aik+1(1 + τik+1) = Ψ(π′) + aik+1 [1 +
∑k

l=1 ail
(1 + τil

)] =
aik+1 [1+Ψ(π′)]+Ψ(π′) = Ψ(π′)[1+aik+1 ]+aik+1 . Thus,E(π, T ) = F (π)+TΨ(π).

Since we have F (σ,α,β,χ)=F (σ)+E(α, F (σ))+E(β,F (σ,α))+E(χ, F (σ, α, β)),
the relation F (σ, α, β, χ) � F (σ, β, α, χ) holds if and only if

E (α, F (σ)) + E (β, F (σ, α)) + E (χ, F (σ, α, β))

� E (β, F (σ)) + E (α, F (σ, β)) + E (χ, F (σ, β, α)) .

The latter inequality is equivalent to [1 + Ψ(χ)][Ψ(α)F (β) − Ψ(β)F (α)] � 0. Since
Ψ(χ) � 0, it follows that (1) is the desired priority function. Moreover, it is clear that this
priority function is strong.
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EXAMPLE 2. The jobs of a set N are processed on a single machine starting at time
t = 0. For each job i, the processing time ti > 0 and the function ϕi(t) of the cost to be
“paid” for having that job completed at time t are given. Preemption is not allowed, and
at most one job is processed at a time. It is required to find a feasible (in a certain sense)
job processing sequence π ∈ P ⊆ Pn, for which either the maximal processing cost

F (π) = max {ϕi(Ci(π)): i ∈ N} , (2)

or the total processing cost

F (π) =
n∑

i=1

ϕi (Ci(π)) (3)

is minimal.
Let us find conditions when the function (2) is priority-generating on Pn. Denote

Ei(π, T ) = ϕi(Ci(π) + T ) and t(π) =
∑

i∈{π} ti. For π′ = (σ, α, β, χ) and π′′ =
(σ, β, α, χ) consider the inequality F (π′) � F (π′′) which holds if

max
i∈{α},j∈{β}

{Ei (α, t(σ)) , Ej (β, t(σ) + t(α))}

� max
i∈{α}, j∈{β}

{Ej (β, t(σ)) , Ei (α, t(σ) + t(β))} .

This inequality holds if

max
j∈{β}

{Ej (β, t(σ) + t(α))} � max
i∈{α}

{Ei (α, t(σ) + t(β))}

or, equivalently,

max
j∈{β}

{Ej (β, T − t(β))} � max
i∈{α}

{Ei (α, T − t(α))} , (4)

where T = t(σ) + t(α) + t(β).

a) Let ϕi(t), i = 1, 2, . . . , n, satisfy the condition that ϕi(0) � ϕj(0) implies
ϕi(t) � ϕj(t) for any t. Then the inequality (4) is equivalent to

max
j∈{β}

{Ej (β,−t(β))} � max
i∈{α}

{Ei (α,−t(α))} ,

and we can choose

ω(π) = max
i∈{π}

{
ϕi

(
Ci(π) −

∑
i∈{π}

ti

)}
. (5)
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b) Let ϕi(t) = ϕ(t− di), i = 1, 2, . . . , n, where ϕ(x) is a non-decreasing function.
In this case functions ϕi(t) satisfy the conditions from item a) and we can use the
inequality

max
j∈{β}

{Ej (β,−t(β))} � max
i∈{α}

{Ei (α,−t(α))} .

It is equivalent to

max
j∈{β}

{ϕ (Cj(β) − t(β) − dj)} � max
i∈{α}

{ϕ (Ci(α) − t(α) − di)} .

The latter inequality holds if

max
j∈{β}

{Cj(β) − t(β) − dj} � max
i∈{α}

{Ci(α) − t(α) − di}

or Lmax(β) − t(β) � Lmax(α) − t(α). Therefore,

ω(π) = Lmax(π) −
∑

i∈{π}
ti. (6)

c) Let ϕi(t) = at+ wi, i = 1, 2, . . . , n, where a is a real number. It is easy to check
that the same argumentation gives the following formula for the priority function

ω(π) = max
i∈{π}

{aCi(π) + wi} − a
∑

i∈{π}
ti. (7)

d) Let ϕi(t) = wi exp(γt), γ �= 0, i = 1, 2, . . . , n. Then the function (2) is
priority-generating as well and its priority function is

ω(π) = max
i∈{π}

{wi exp (γCi(π))} / exp
(
γ

∑
i∈{π}

ti

)
. (8)

All the priority functions (5)–(8) are not strong.
The function (3) is priority-generating in the following cases (we give here formulas

for priority functions without proofs; they may be found in [28, 29].

a) Let ϕi(t) = wit+ bi, where bi, i = 1, 2, . . . , n, are real numbers. In this case a
strong priority function for the function (3) is given by the formula

ω(π) =
( ∑

i∈{π}
wi

)
/
( ∑

i∈{π}
ti

)
. (9)
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b) Let ϕi(t) = wi exp(γt) + bi, γ �= 0, i = 1, 2, . . . , n. Then the function (3) is
strong priority-generating and its priority function is

ω(π) =
(
F (π) −

∑
i∈{π}

bi

)
/
(
exp

(
γ

∑
i∈{π}

ti
)
− 1

)
. (10)

EXAMPLE 3. Let for every element i ∈ N numbers wi � 0 and 0 < ρi < 1 be given.
For π = (i1, i2, . . . , ir) ∈ P̂ consider the following function (see an example with the
system testing from the introduction, the first criterion)

F (π) =
r∑

k=1

wik

( k−1∏
l=1

ρil

)
for r > 1 and F (π) = wi1 for r = 1. (11)

Function (11) is strong priority-generating on P̂ and its priority function is given by
the formula

ω(π) = F (π)/
( ∏

i∈{π}
ρi − 1

)
. (12)

Indeed, let π′ = (σ, α, β, χ), π′′ = (σ, β, α, χ) and ρ(π) =
∏

i∈{π} ρi, ρ(π) = 1
if {π} = ∅. Then F (π′) � F (π′′) is equivalent to ρ(σ)F (α) + ρ(σ)ρ(α)F (β) �
ρ(σ)F (β) + ρ(σ)ρ(β)F (α) or (1 − ρ(β))F (α) � (1 − ρ(α))F (β). The latter relation
gives the formula (12).

Some other examples of priority-generating functions may be found in [28, 29].
Now we consider sufficient conditions under which a vector function, composed of

priority-generating scalar functions, is priority-generating.

Theorem 1. A vector function Φ(π) = (F1(π), . . . , Fm(π)) is priority-generating on
P if each of the functions F1(π), . . . , Fm−1(π) is strong priority-generating on P and
Fm(π) is priority-generating on P . If Fm(π) is strong as well then Φ(π) is strong
priority-generating on P .

Proof. Let ωk(π), k ∈ {1, 2, . . . ,m}, be a priority function for Fk(π) (strong for
k � m − 1). Define a function ω(π) over set S[P ] in the following way: ω(π) =
(ω1(π), ω2(π), . . . , ωm(π)) for π ∈ S[P ].

Show that the function ω(π) is a priority function for Φ(π). Suppose that α, β ∈ S[P ]
and π′, π′′ ∈ P , where π′ = (σ, α, β, χ), π′′ = (σ, β, α, χ). Let ω(α) > ω(β). Then
there exists k, 1 � k � m, such that ωk(α) > ωk(β) and ωl(α) = ωl(β) for all l < k.
If k < m then Fl(π′) = Fl(π′′) for l = 1, 2, . . . , k − 1 and Fk(π′) < Fk(π′′) since
Fj(π) are strong priority generating functions for j < m. So we have Φ(π′) < Φ(π′′).
If k = m, then ω(α) > ω(β) implies Φ(π′) � Φ(π′′). In any case ω(α) > ω(β)
implies Φ(π′) � Φ(π′′). It is evident also that ω(α) = ω(β) implies Φ(π′) = Φ(π′′).
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Therefore ω(π) is a priority function for Φ(π) and Φ(π) is a priority-generating on P
vector function. It is easy to see that Φ(π) is strong priority-generating on P if Fm(π)
has a strong priority function on S[P ].

Theorem 1 enables us to obtain priority-generating vector functions when having
scalar priority-generating functions. For example, a vector function composed of func-
tions (11) and (3) when φi(t) = wit + bi is the objective function for the system testing
problem from the introduction. This function is strong priority-generating on set Pn since
both mentioned scalar functions are strong priority-generating on this set.

Let us consider two other classes of vector functions close to priority-generating func-
tions.

Suppose that for a function Φ(π) there exists a function ω(1)(i) defined over setN and
possessing the following property: for any i, j ∈ N and any permutationsπ′ = (σ, i, j, χ)
and π′′ = (σ, j, i, χ) such that π′, π′′ ∈ P , the inequality ω(1)(i) > ω(1)(j) implies
Φ(π′) � Φ(π′′) and ω(1)(i) = ω(1)(j) implies Φ(π′) = Φ(π′′). In this case ω(1)(i) is
called 1-priority function and Φ(π) is called 1-priority-generating on P vector function.

Let us introduce also a notion of a non-adjacent priority-generating function. A func-
tion Φ(π) is non-adjacent priority-generating if there exists a function ω(NA)(i) defined
over set N and possessing the following property. For any i, j ∈ N and any permu-
tations π′ = (σ, i, δ, j, χ) and π′′ = (σ, j, δ, i, χ) such that, π′, π′′ ∈ P , the inequal-
ity ω(NA)(i) > ω(NA)(j) implies Φ(π′) � Φ(π′′) and ω(NA)(i) = ω(NA)(j) implies
Φ(π′) = Φ(π′′).

Notions of a strong 1-priority-generating function and a strong non-adjacent priority-
generating function are introduced as in the case of priority-generating function.

Note 1. A vector function Φ(π) = (F1(π), . . . , Fm(π)) is 1-priority-generating on P
if each of the functions F1(π), . . . , Fm−1(π) is strong 1-priority-generating on P and
Fm(π) is 1-priority-generating on P . If Fm(π) is strong 1-priority-generating as well
then Φ(π) is strong 1-priority-generating on P .

Validity of this proposition can be proved by the same argumentation as in the case
of Theorem 1. An analogous proposition takes place for non-adjacent priority-generating
functions.

Note 2. Consider an example of a vector function composed of two scalar priority-
generating functions where the first function is not strong: Φ(π)=(Tmax(π),

∑
wiCi(π)).

Show that the function Φ(π) is not, in general, priority-generating. Set N = {1, 2, 3},
t1 = t2 = 1, t3 = 3, d1 = 5, d2 = 4, d3 = 5, w1 = 2, w2 = 1, w3 = 0. Suppose
α = (1), β = (2), σ = ∅, χ = (3), then Φ(1, 2, 3) = (0, 4) < Φ(2, 1, 3) = (0, 5).
On the other hand, if for the same α and β we consider σ = (3) and χ = ∅, then
Φ(3, 1, 2) = (1, 4) > Φ(3, 2, 1) = (0, 5). Therefore, the function Φ(π) can be neither
priority-generating nor even 1-priority-generating.
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Note 2 demonstrates that the conditions of Theorem 1 while being only sufficient
are also rather close to necessary conditions for a vector function composed of scalar
priority-generating functions to be priority-generating.

Any priority-generating function and any non-adjacent priority-generating function is
simultaneously a 1-priority-generating function. The converse proposition is not true in
general.

Consider examples of scalar non-adjacent priority-generating functions.

EXAMPLE 4. Let in Example 1 the processing time of job i equal ti = ϕ(t0i )+ bi, where
ϕ(t) is a non-decreasing function. Show that in this case the function F (π) =

∑n
k=1 tik

,
which is the makespan for the time of the jobs processed according to the sequence π =
(i1, i2, . . . , in), is not priority-generating on Pn.

In fact, let ϕ(t) = t for 0 � t � 8, ϕ(t) = 2t for 8 < t � 15, ϕ(t) = 3t for
t > 15, N = {1, 2, 3, 4, 5}, b1 = 1, b2 = 1, b3 = 4, b4 = 2 and b5 = 4. Assume
that α = (2, 3), β = (4). If a priority function existed, then the relation of the form
F (σ, α, β, χ) � F (σ, β, α, χ) being satisfied for some σ and χ would hold for any other
permutations σσ and χ′. However we have F (1, 2, 3, 4, 5) = 132 > F (1, 4, 2, 3, 5) =
128 but F (5, 2, 3, 4, 1) = 505 < F (5, 4, 2, 3, 1) = 513.

Show that the function F (π) is non-adjacent priority-generating on Pn. Consider
permutations π′ = (σ, i, δ, j, χ) and π′′ = (σ, j, δ, i, χ), and find conditions when
the inequality F (π′) � F (π′′) holds. To satisfy this inequality it is sufficient that
F (σ, i, δ, j) � F (σ, j, δ, i). As in Example 1, let E(π, T ) denote the makespan for jobs
of the set {π} processed according to the sequence π, provided that the processing of the
first job starts at time T , i.e., t0i1 = T . The last inequality is equivalent to

F (σ) + ϕ (F (σ)) + bi + E [δ, F (σ) + ϕ (F (σ)) + bi]

+ϕ [F (σ) + ϕ (F (σ)) + bi + E [δ, F (σ) + ϕ (F (σ)) + bi]] + bj

� F (σ) + ϕ (F (σ)) + bj + E [δ, F (σ) + ϕ (F (σ)) + bj]

+ϕ [F (σ) + ϕ (F (σ)) + bj + E [δ, F (σ) + ϕ (F (σ)) + bj ]] + bi,

or

E [δ, F (σ) + ϕ(F (σ)) + bi]

+ϕ [F (σ) + ϕ(F (σ)) + bi + E [δ, F (σ) + ϕ(F (σ)) + bi]]

� E [δ, F (σ) + ϕ(F (σ)) + bj ]

+ϕ [F (σ) + ϕ(F (σ)) + bj + E [δ, F (σ) + ϕ(F (σ)) + bj]] .

Since the function ϕ(t) is non-decreasing and the function E(π, T ) is non-decreasing in
the second argument, this inequality holds if bi � bj . Therefore, the function F (π) is
non-adjacent priority-generating on Pn and its priority function is

ω(NA)(i) = −bi. (13)
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EXAMPLE 5. Let for π = (i1, i2, . . . , in) ∈ P ⊆ Pn the function F (π) be defined as
follows

F (π) =
n∑

k=1

wik
ϕ(k), (14)

where wi � 0, i = 1, 2, . . . , n.
The function F (π) is non-adjacent priority-generating on Pn if ϕ(t) is a monotone

function.

a) If ϕ(k) is a non-decreasing function then its priority function is

ωNA(i) = wi. (15)

Indeed, it is easy to see that F (σ, i, δ, j, χ) � F (σ, j, δ, i, χ) is equivalent to
wiϕ(| {σ} | +1) + wjϕ(| {σ} | + | {δ} | +2) � wjϕ(| {σ} | +1) + wiϕ(| {σ} |
+
| {δ} | +2). Since ϕ(k) is a non-decreasing function the last inequality holds if
wi � wj .

b) If ϕ(k) is a non-increasing function then its priority function is

ωNA(i) = −wi. (16)

If ϕ(t) is either an increasing or a decreasing function then the priority functions (15)
and (16) are strong.

EXAMPLE 6. Consider Example 2 with the objective function (3): F (π)=
n∑

k=1

ϕi(Ci(π)).

Let ϕi(t) = ϕ(t)+ bi, where ϕ(t) is a monotone function and bi, i = 1, 2, . . . , n, are real
numbers. Let E(π, T ) denote the value of the function F (π) for the jobs of the set {π}
processed according to the sequence π, provided that the processing of the first job starts
at time T , and t(π) =

∑
i∈{π} ti. Relation F (σ, i, δ, j, χ) � F (σ, j, δ, i, χ) is equivalent

to

F (σ) + ϕ(t(σ) + ti) + bi + E [δ, t(σ) + ti] + ϕ [t(σ) + ti + t(δ) + tj ] + bj

� F (σ) + ϕ(t(σ) + tj) + bj + E [δ, t(σ) + tj ] + ϕ [t(σ) + tj + t(δ) + ti] + bi,

or

ϕ(t(σ) + ti) + E [δ, t(σ) + ti] � ϕ (t(σ) + tj) + E [δ, t(σ) + tj ] . (17)

a) Let the function ϕ(t) be non-decreasing. Since function E(π, t) is non-decreasing
in the second argument, the inequality (17) holds if ti � tj . Therefore, in this case
the function (3) is non-adjacent priority-generating on Pn and its priority function
is
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ωNA(i) = −ti. (18)

b) Let the function ϕ(t) be non-increasing. Then the function E(π, t) is
non-increasing in the second argument and the inequality (17) holds if ti � tj . In
this case the function (3) is non-adjacent priority-generating on Pn as well. Its
priority function is

ωNA(i) = ti. (19)

If ϕ(t) is either an increasing or a decreasing function then the priority functions (18)
and (19) are strong. It may be shown that the function (3) in both cases under considera-
tion is not priority-generating on Pn.

4. Polynomial Time Algorithms for Minimizing Priority-Generating Functions

In this section we consider Problem 1 under the assumption that the objective vector
function is priority-generating on the set of feasible permutations. Besides that we make
some assumptions about graphsG0, G1, G2, . . . , Gq . Particularly, we consider situations
when all these graphs are tree-like or series-parallel. A case with arbitrary precedence
constraints is also discussed.

Now we introduce some notions and notations.
Let G = (N,U) be a directed graph, where N = {1, 2, . . . , n} is the set of vertices

and U is the set of arcs. Further we consider directed graphs without multiple arcs and
circuits.

We write i
G→ j (or i → j) if there is a path in the graph G from the vertex i to the

vertex j. We write i◦G→ j if i
G→ j and there is no vertex l in G such that i

G→ l and l
G→ j.

If i
G→ j then the vertex i is called a predecessor of the vertex j and j is a successor of

i in G. If i ◦→ j then i is an immediate predecessor of j and j is a direct successor of i.
The vertices i and j are called incomparable (denoted by i ∼ j) if neither i→ j nor j

→ i holds.
The vertex of the graphG is called initial if it has no predecessors inG. The vertex of

the graphG is called terminal if it has no successors in G.
An arc (i, j) ∈ U is called a transitive one if there is a path in G from the vertex i to

the vertex j that does not contain the arc (i, j).
Denote by AG(i) and BG(i) the sets of all successors and predecessors of the vertex

i and by E(i) the set of all incomparable with i vertices. Similarly, we denote by A0
G(i)

and B0
G(i) the sets of all direct successors and immediate predecessors of the the vertex

i, respectively. Let G′ = (N ′, U ′) be a subgraph of the graph G. Then for i ∈ N ′ denote
AG′(i) = {j ∈ N ′: (i, j) ∈ U ′}, BG′(i) = {j ∈ N ′: (j, i) ∈ U ′} and EG′(i) = {j ∈
N ′: (i, j) �∈ U ′, (j, i) �∈ U ′}. Sets A0

G′(i) and B0
G′(i) are determined in the analogous

way.
Introduce the following operations over directed circuit-free graphG = (N,U) with-

out transitive arcs.
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The operation of identifying vertices i and j of a graph G = (N,U) such that i ∈
B0

G(j) involves replacing these two vertices by a single vertex followed by removing the
arc (i, j). In this case, all the arcs that enter or leave either i or j are replaced by those that
either enter or leave the new vertex, respectively. All transitive arcs are removed from the
obtained graph.

Suppose that in graphG = (N,U) vertices i and j are such that i ∈ E(j). The opera-
tion of including an arc (i, j) consists in addition of the arc (i, j) into U with consequent
removing all transitive arcs from the obtained graph.

In the following, these operations are successively and repeatedly applied to graph
G = (N,U). While identifying two vertices i, j ∈ N connected by the arc (i, j) ∈ U ,
the permutation (i, j) ∈ P is associated with the new vertex.

A permutation π = (i1, i2, . . . , ik) ∈ P , corresponding to a vertex obtained as a
result of successive identifying vertices is called a composite element and is denoted by
[i1, i2, . . . , ik]. Further we do not distinguish the vertices and the corresponding elements.

A connected graph is called an outtree if there is a single initial vertex in it (called a
root), and each other vertex has exactly one immediate predecessor. A connected graph is
called an intree if there is a single terminal vertex in it and each other vertex has exactly
one immediate successor.

The graph is called tree-like if each of its connected components is either an outtree
or intree (i.e., treelike graph may contain outtrees and intrees simultaneously).

Suppose that q = n in Problem 1 (or, that is the same, q = 1) and m = 1. It
means that we have a problem with a single criterion and without partitioning N into
groups. Algorithms for minimizing scalar priority-generating functions on the set Pn(G0)
when G0 is a tree-like, series-parallel [31] or arbitrary directed graph were proposed by
Shafransky [22], Gordon and Shafransky [7], Shafransky [23], see also [28] and [29].
Similar algorithms were developed by Monma and Sidney [18], Monma [17]. The time
complexity for tree-like and series-parallel cases is O(nlogn).

These algorithms may be adapted for lexicographic minimizing priority-generating
vector functions on set Pn(G0, G1, G2, . . . , Gq). Descriptions some of such algorithms
are given below, but first we consider some properties of priority-generating functions.
Since there is no principle difference between scalar and priority-generating vector func-
tions, all results for scalar priority-generating functions are valid for vector functions.

Given graphs Gi = (Ni, Ui), i = 0, 1, . . . , q, construct a graph G = (N,U) in the
following way. For i, j ∈ Nν , ν ∈ {1, 2, . . . , q}, set (i, j) ∈ U if (i, j) ∈ Uν . For i ∈ Nν ,
j ∈ Nµ, ν �= µ, set (i, j) ∈ U if (Nν , Nµ) ∈ U0.

Denote by Pn(G, q) the subset of all feasible with respect toG permutations, in which
all elements from the same set Nν are situated contiguously, ν = 1, 2, . . . , q. It is easy
to see that Pn(G, q) = Pn(G0, G1, G2, . . . , Gq). If q = n (or, equivalently, q = 1), then
G = G0 and Pn(G,n) = Pn(G).

Given s, t ∈ N and graph G = (N,U), denote B̄G(s, t) = BG(s)\(BG(t) ∪ t) and
ĀG(s, t) = AG(t)\(AG(s) ∪ s)

Consider first a case q = n, i.e., no grouping constraints are imposed.
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Fig. 1. Sets Ā(s, t) and B̄(s, t) ((a) B0(s) = t; (b) A0(t) = s; (c) s ∼ t).

Theorem 2 [23]. Let a function Φ(π) be priority-generating on Pn(G), B0
G(s) = t and

ω(s) � ω(i) for all i ∈ ĀG(s, t)∪ t. Then for any permutation π = (. . . , t, σ, s, . . .) ∈
Pn(G) there exists a permutation π0 = (. . . , t, s, . . .) ∈ Pn(G) such that {π} = {π0}
and Φ(π0) � Φ(π).

Theorem 3 [23]. Let a function Φ(π) be priority-generating on Pn(G), s ∈ EG(t) and
ω(j) � ω(i) for all j ∈ B̄G(s, t) ∪ s and i ∈ ĀG(s, t)∪ t. Then for any permutation
π = (. . . , t, σ, s, . . .) ∈ Pn(G) there exists a permutation π0 = (. . . , s, t, . . .) ∈ Pn(G)
such that {π} = {π0} and Φ(π0) � Φ(π).

As it was mentioned above, Theorems 2 and 3 are valid both for scalar and vector
priority-generating functions. Now we formulate analogies of Theorems 2 and 3 for the
case when 1 < q < n.

Theorem 4. Let a function Φ(π) be priority-generating on Pn(G, q), B0
Gν

(s) = t for
some ν ∈ {1, 2, . . . , q} and ω(s) � ω(i) for all i ∈ ĀGν (s, t)∪ t. Then for any permuta-
tion π = (. . . , t, σ, s, . . .) ∈ Pn(G, q) there exists a permutation π0 = (. . . , t, s, . . .) ∈
Pn(G, q) such that {π} = {π0} and Φ(π0) � Φ(π).

Theorem 5. Let a function Φ(π) be priority-generating on Pn(G, q), s, t ∈ Nν and s ∈
EGν (t) for some ν ∈ {1, 2, . . . , q}. If ω(j) � ω(i) for all j ∈ B̄Gν (s, t) ∪ s and i ∈
ĀGν (s, t) ∪ t, then for any permutation π = (. . . , t, σ, s, . . .) ∈ Pn(G, q) there exists a
permutation π0 = (. . . , s, t, . . .) ∈ Pn(G, q) such that {π} = {π0} and Φ(π0) � Φ(π).

Proof. To prove Theorems 4 and 5 it is sufficient to show that B̄Gν (s, t) = B̄G(s, t) and
ĀGν (s, t) = ĀG(s, t). Indeed, it follows from proofs of Theorems 2 and 3 that π0 is of
the form

π0 = (. . . , σ′, t, s, σ′′, . . .) or π0 = (. . . , σ′, s, t, σ′′, . . .),
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respectively, where {σ′}∪{σ′′} = {σ}. In this case π0 ∈ Pn(G) implies π0 ∈ Pn(G, q).
Therefore, if B̄Gν (s, t) = B̄G(s, t) and ĀGν (s, t) = ĀG(s, t), then the validity of Theo-
rems 4 and 5 follows immediately from Theorems 2 and 3.

Consider set B̄Gν (s, t) = BGν (s)\(BGν (t) ∪ t). The procedure of the graph G con-
struction involves that l ∈ BGν (s) or l ∈ BGν (t) implies l ∈ BG(s) or l ∈ BG(t),
respectively. Therefore l ∈ B̄Gν (s, t) implies l ∈ B̄G(s, t). Let l ∈ B̄G(s, t). If l ∈ Nν

then, evidently, l ∈ B̄Gν (s, t). Otherwise, let l ∈ Nµ, µ �= ν. Then from the procedure
of the graph G construction we have that l ∈ BG(s) and l ∈ BG(t) if (Nµ, Nν) ∈ U0,
or l ∈ AG(s) and l ∈ AG(t) if (Nν , Nµ) ∈ U0, or l ∈ EG(s) and l ∈ EG(t) if
(Nµ, Nν) �∈ U0 and (Nν , Nµ) �∈ U0. In any case l �∈ B̄G(s, t). Hence, l ∈ Nν and
l ∈ B̄Gν (s, t). In the similar way we can prove the equality ĀGν (s, t) = ĀG(s, t).

Theorems 4 and 5 have a simple graph-theoretical interpretation. Satisfying the condi-
tions of these theorems guarantees that using the operation of identifying vertices t and s
(Theorem 4) or the operation of including arc (s, t) to graphGν (Theorem 5) enables one
to obtain a new graphG′

ν with the following properties: Pn(G0, G1, . . . , G
′
ν , . . . , Gq) ⊆

Pn(G0, G1, . . . , Gν , . . . , Gq) and for any permutation π ∈ Pn(G0, G1, . . . , Gν , . . . , Gq)
there exists a permutation π0 ∈ Pn(G0, G1, . . . , G

′
ν , . . . , Gq) such that F (π0) � F (π).

The operation of identifying vertices t and s satisfying the conditions of Theorem 2
is called a transformation I (the notation I−[t, s]). The operation of including arc (s, t)
under the conditions of Theorem 3 is called a transformation II (the notation II−(s, t)).
If, in graph Gν , there exists a pair of vertices s and t satisfying either the conditions of
Theorem 4 or those of Theorem 5, then we say that transformation I or transformation II,
respectively, may be applied to graphGν or that transformation (I − [t, s] or II−(s, t)) is
feasible for graph Gν .

COROLLARY 1. Let a sequence L(ν) of transformations I and II transforms graph Gν

into a chain G′
ν , ν ∈ {1, 2, . . . , q}. Then there exists an optimal permutation π∗ =

(σ1, σ2, . . . , σq) ∈ Pn(G, q) such that π′ν = σk for some k ∈ {1, 2, . . . , q}, where π′ν is
a feasible with respect to graph G′

ν permutation and {π′ν} = Nν .

This follows from Theorems 4, 5 and the definition of set Pn(G, q).
If there exists a sequence L(ν) transforming graph Gν into a chain G′

ν then by virtue
of Corollary 1 we can consider permutation π′ν as a composite element, which is associ-
ated with the corresponding vertex of graph G0. Let in the result of applying a sequence
of transformations I and II all graphs Gν , ν = 1, 2, . . . , q, be converted into chains. De-
note the resulting graph by G′

0. Graph G′
0 has q vertices and a composite element π′ν

corresponds to vertex ν, ν = 1, 2, . . . , q.

COROLLARY 2. The relation Pn(G′
0) ⊆ Pn(G, q) holds and there exists at least one

optimal permutation π∗ ∈ Pn(G′
0).

It follows directly from Corollary 1 and the procedure of graph G′
0 construction.
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Theorem 6. Let a sequence L of transformations I and II transform graph G′
0 into a

graph G′′
0 . Then Pn(G′′

0 ) ⊆ Pn(G, q) and there exists at least one optimal permutation
π∗ ∈ Pn(G′′

0 ).

Proof. We have from Theorems 2 and 3 that Pn(G′′
0 ) ⊆ Pn(G′

0) and for any permutation
π ∈ Pn(G′

0) there exists a permutation π0 ∈ Pn(G′′
0 ) such that Φ(π0) � Φ(π). Applying

Corollary 2 we obtain π∗ ∈ Pn(G′′
0 ) ⊆ Pn(G′

0) ⊆ Pn(G, q).

If there exists a sequence of transformations I and II converting graphG′
0 into a chain

C, then the feasible with respect to C permutation is optimal.
All described below algorithms work according to the following scheme. A sequence

of transformations I and II is applied to each graphGν , ν = 1, 2, . . . , q. If all these graphs
are converted into chains, then consider obtained permutations π′ν as composite elements
associated with vertices of graph G′

0. Find a sequence of transformations converting G′
0

into a chain as well. If we succeeded then the resulting sequence is optimal.

4.1. Tree-like Graphs

Here we consider a situation where all graphs presenting precedence constraints are tree-
like. We propose an algorithm for finding an optimal permutation in such a situation.
The algorithm is based on the mentioned transformations I and II, and its work is aimed
to converting all the graphs into special chains. The resulting chain presents an optimal
permutation.

Let all graphsGν , ν ∈ {0, 1, 2, . . . , q}, be tree-like. The following proposition is valid
due to results from [23], see also Theorem 1 from [29].

Lemma 1. Let a function Φ(π) be priority-generating on Pn(G, q) and Gν , ν ∈
{1, 2, . . . , q}, be a tree-like graph. Then there exists a sequence of transformations I and
II converting Gν into a chain.

Let us suppose first that Gν = (Nν , Uν) is an outtree, i.e., every vertex has no more
than one immediate predecessor. The algorithm of transformingGν into a chain consists
of a sequence of transitions from one outtree to another, each time reducing the number
of vertices. Transformations are to be done until a single-vertex graph is obtained. On
each step, the vertices of the current outtree are associated with some chains. On the first
step every such sequence consists of a single element. The sequence of elements, which
corresponds to the single vertex on the last step defines the permutation π∗ν . Consider the
general step of the algorithm.

Find, in Gν , a vertex i0 (called further a supporting vertex), with all direct successors
i1, i2, . . . , il being terminal vertices. Let C1 = (j11 , . . . , j

1
p1

), C2 = (j21 , . . . , j
2
p2

), . . .,
Cl = (jl

1, . . . , j
l
pl
), be the element sequences corresponding to these terminal vertices.

Unite these sequences into the sequence C′ = (j′1, j
′
2, . . . , j

′
p), p = p1 + p2 + . . .+ pl, in

the following way. Find an index k such that ω(jk
1 ) � ω(jr

1), for every r, 1 � r �= k � l,
set j′1 = jk

1 and remove jk
1 from the sequence Ck. Then among the first elements of the
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sequences we find an element with the maximal priority value and assign this element to
the second position in C′ and so on.

Join the supporting vertex i0 to the sequence C′ from the left in the following way. If
ω(i0) � ω(j′1) then unite i0 and j′1 into the composite element [i0, j′1] redenoted by i0. If
ω(i0) � ω(j′2) then unite i0 and j′2 into the composite element [i0, j′2] denoted by i0 and
so on until obtaining a sequence C0 = (i0, j′k, . . . , j

′
p) such that ω(i0) > ω(j′k).

Remove from Gν all successors of the vertex i0, and associate the sequence C0 with
i0. The obtained tree G(1)

ν has no more than n− 1 vertices.
Applying the described transformations to the graphG(1)

ν , we obtain an outtreeG(2)
ν ,

and so on until a graph G(h)
ν consisting of a single vertex is obtained. The sequence

corresponding to this vertex defines the desired permutation π∗ν .
It is easy to check that the process of constructing sequence C′ from sequences

C1, C2, . . . , Cl may be represented as an implementation of some transformations II.
Similarly, the procedure of obtaining new composite element i0 it is performing suitable
transformation I.

The algorithm for the construction of the permutation π∗ν when Gν is an intree (i.e.,
every vertex has no more than one direct successor) slightly differs from the one for
an outtree. In this case the supporting vertex is determined as follows. All its immediate
predecessors have no predecessors in the tree obtained on the previous step. The sequence
C0 is obtained by joining the vertex i0 to the sequence C′ from the right. The composite
element [j′p, i0] is formed if ω(j′p) � ω(i0).

LetGν = (Nν , Uν) be a tree-like graph, i.e., each of l its connected components is an
outtree or an intree. Applying the described algorithms for outtrees and intrees we con-
struct sequencesC1, C2, . . . , Cl which define permutations of elements of corresponding
sets. Then we unite elements of the sequencesC1, C2, . . . , Cl into one sequence in accor-
dance with their priorities (as it was done for sequences C1, C2, . . . , Cl in the algorithm
for outtrees). The obtained sequence defines the permutation π∗ν .

Transform all graphs Gν , ν = 1, 2, . . . , q, into single-vertex graphs with corre-
sponding permutations π∗ν , and consider them as vertices of G0 instead of initial sets
N1, N2, . . . , Nq. Besides, consider each π∗ν as one composite element. Transform ob-
tained graph G′

0 into a chain in the described above way. By virtue of Lemma 1 there
exists a sequence of transformations I and II convertingG′

0 into a chain irrespectively of
values of priorities of its vertices. In the result we obtain an optimal permutation π∗.

Note that it is possible to implement the described algorithm so that its running time
does not exceed O(mnlogn). Corresponding technique is described, e.g., in [29].

Note 3. As it was mentioned, there is known an algorithm for solving Problem 1 when
graph G0 is series-parallel, q = n and m = 1. Like in case of tree-like graphs, this
algorithm may be easily adopted for solving Problem 1 for arbitrary q and m when
all graphs Gν , ν ∈ {0, 1, 2, . . . , q}, are series-parallel. The running time of such an
algorithm does not exceed O(mnlogn) if all the graphs Gν are represented by their
decomposition trees.
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Fig. 2. Graphs of precedence constraints.

Table 1

Numerical parameters of jobs

i 1 2 3 4 5 6 7 8 9 10

ti 5 3 2 4 5 2 5 5 2 4

wi 3 7 1 8 5 3 2 4 3 3

di 6 8 10 12 14 15 18 19 20 20

Now we consider how does the above considered algorithm work in a particular ex-
ample. Let number of jobs be equal to 10, number of groups be equal to 3, each of graphs
G0, G1, G2, G3 be a tree (see Fig. 2) and for each job its processing time, weight and a
due-date be given (see Table 1).

Objective function Φ(π) = (F1(π), F2(π)) where F1(π) =
∑n

i=1 wiCi(π) and
F2(π) = Lmax(π). Here Lmax(π) = max{Li(π) : i = 1, 2, . . . , n}, Li(π) =
Ci(π) − di.

As it was shown in Section 3, both functionsF1(π) and F2(π) are priority-generating.
Besides, F1(π) is the strong priority-generating function. In view of Theorem 1 func-
tion Φ(π) = (F1(π), F2(π)) is priority-generating vector function. Its priority func-
tion is ω(π) = (ω1(π), ω2(π)), where ω1(π) =

∑
i∈{π} wi/

∑
i∈{π} ti and ω2(π) =

Lmax(π) −
∑

i∈{π} ti (see formulas (9) and (6)).
Calculate values of the element priorities: ω(1) = (3/5,−6), ω(2) = (7/3,−8),

ω(3) = (1/2,−10), ω(4) = (2,−12), ω(5) = (1,−14), ω(6) = (3/2,−15),
ω(7) = (2/5,−18), ω(8) = (4/5,−19), ω(9) = (3/2,−20), ω(10) = (3/4,−20).
Consider first connected component of graph G1. Here vertex 1 is the supporting ver-
tex. Since ω(2) > ω(3) and ω(2) > ω(1) we form the composite element [1, 2],
ω(1, 2) = (5/4,−8) > ω(3). So, the first component is transformed into a single-
vertex graph and sequence ([1, 2], 3) is associated with this vertex. Consider now sec-
ond component of graph G. It is intree and vertex 6 is its supporting vertex. We have
ω(4) > ω(5) and ω(6) > ω(5). Therefore, we form the composite element [5, 6]. Since
ω(5, 6) = (8/7,−15) < ω(4), the further formation of composite elements is impos-
sible and the second component is transformed into a single-vertex graph with the as-
sociated sequence (4, [5, 6]). Unite the two sequences into a sequence π∗1 . We obtain
π∗1 = (4, [1, 2], [5, 6], 3) since ω(4) > ω(1, 2) > ω(5, 6) > ω(3). It is easy to see that
π∗2 = (9, [7, 8]), π∗3 = (10), and ω(π∗2) = (3/4,−19). Now consider graph G0. Since
ω(π∗2) > ω(π∗3) we have that π∗ = (π∗1 , π

∗
2 , π

∗
3) = (4, 1, 2, 5, 6, 3, 9, 7, 8, 10).
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4.2. Arbitrary Directed Graphs

Let graphs Gν , ν ∈ {0, 1, 2, . . . , q}, be arbitrary directed graphs without circuits. In this
case the problem of finding π∗ is NP -hard (see, e.g., [29]). Nevertheless, we can apply
to the graph Gν , ν ∈ {1, 2, . . . , q}, transformations I and II that allow to obtain such a
graph G′

ν that

Pn(G0, G1, . . . , G
′
ν , . . . , Gq) ⊆ Pn(G0, G1, . . . , Gν , . . . , Gq),

and the set Pn(G0, G1, . . . , G
′
ν , . . . , Gq) contains at least one optimal permutation. In

some cases there exists a sequence of these transformations, which transfers all graphs
Gν into chains. Proceeding further as in case of tree-like we may consider corresponding
permutations as composite elements, which are assigned to vertices of graph G0. Then
we can use transformations I and II to try to transfer obtained graph G′

0 into a chain as
well. In success we obtain an optimal permutation π∗.

Below we describe the common scheme of the algorithm.
The algorithm consists of a sequence of transformations I and II, which transforms

each graph Gν into a so-called deadlock graph (i.e., a graph for which no feasible trans-
formations I and II exist). The time complexity of this algorithm is not greater than O(n4

ν)
for m = 1 [23] (see also [28], [29]). Therefore, the running time of the algorithm for a
graph Gν does not exceed O(mn4

ν) and the total running time does not exceed O(mn4).
For each graph Gν , ν = 1, 2, . . . , q, the algorithm consists of the following stages.

(a) Form a list of elements of the set Nν .
(b) Scanning the list, apply all possible transformations II to the graphGν . If no

transformation II can be applied to the current graph, return to the beginning of the
list and go to the stage (c).

(c) Choosing the next element i′ in the current list, check whether transformation
I−[j, i′], where j ◦→ i′, can be applied to the current graph. If this transformation
I−[j, i′] is feasible, then it is performed. Modify the current list (i.e., remove the
elements j and i′ from the list and include the composite element [j, i′] into it),
return to its beginning and go to (b). If transformation I−[j, i′] is non-feasible for
the current graph, take the next element in the list.

The described process is completed when neither transformation I nor transformation
II can be applied to the current graph, i.e., in performing (c) no transformation has been
done.

Let all graphs Gν be converted into chains. Considering corresponding permutations
as composite elements and substituting them into graphG0, we obtain graph G′

0. Imple-
ment possible transformations I and II for G′

0 according to the above algorithm.

5. Minimization on the Set of All Permutations

Consider a case of Problem 1 when q = n and G0 = (N, ∅), i.e., there is nei-
ther group partition nor precedence constraints. We discuss a situation where Φ(π) =
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(Φ1(π),Φ2(π)) and vector function Φ1(π) is 1-priority-generating. Besides, the prob-
lem of minimizing vector function Φ2(π) on a set Pn(G0, G1, . . . , Gq) is supposed to be
polynomially solvable if G0 is a chain and Gk = (Nk, ∅), k = 1, 2, . . . , q.

Theorem 7. Let the problem 1 || Φ(π), where Φ(π) = (Φ1(π),Φ2(π)), satisfy the
following conditions. Vector function Φ1(π) has a strong 1-priority function ω′(i) and
there exists a polynomial time algorithm for the problem 1 | G0 = C,Gk = (Nk, ∅),
k = 1, 2, . . . , q | Φ2(π). Then the problem 1 || Φ(π) is polynomially solvable if the time
complexity of calculating values of function ω′(i) is polynomial.

Proof. Let us consider the problem 1 || Φ1(π). We construct graph G = (N,U) as fol-
lows. For i, j ∈ N we set (i, j) ∈ U if ω′(i) > ω′(j). Here Φ1(π) = (F ′

1(π), . . . , F
′
τ (π))

and ω′(i) is a strong 1-priority function for Φ1(π). We claim that the set of all optimal
permutations for 1 || Φ1(π) and a set of all feasible with respect to G permutations co-
incide. In fact, if π∗ = (i1, i2, . . . , in) is an optimal permutation for 1 || Φ1(π) then
ω′(iη) � ω′(iµ) for any η < µ. From the procedure of the graphG construction we have
iη → iµ if ω′(iη) > ω′(iµ) and iη ∼ iµ if ω′(iη) = ω′(iµ). Therefore π∗ is feasible with
respect to G. The reverse proposition may be easily checked in the same manner.

Now we consider a structure of graph G. Let Nk = {i ∈ N\ ∪k−1
l=1 Nl : ω(i) =

max{ω(j) : j ∈ N\ ∪k−1
l=1 Nl}}, where N0 = ∅. It follows from the definition of graph

G that i → j for any i ∈ Nη, j ∈ Nµ if η < µ. That is G = (∪q
l=1Nl, U), where

∪q
l=1Nl = N , U = {(i, j) : i ∈ Nη, j ∈ Nµ, 1 � η < µ � q} and i′ ∼ j′ for any
i′, j′ from the same subset Nk. Therefore, Pn(G) = Pn(C0, G1, . . . , Gq), where C0 =
({N1, . . . , Nq}, Uc), Gk = (Nk, ∅), k = 1, . . . , q, Uc = {(Nη, Nµ) : 1 � η < µ � q}.

The time complexity of obtaining sets Nk, k = 1, 2, . . . , q, does not exceed
O(ρnlogn) where ρ is the time complexity of calculating values of ω′(i). The prob-
lem of finding such a permutation π′ ∈ Pn(G) = Pn(C0, G1, . . . , Gq) that Φ2(π′) =
min{Φ2(π) : π ∈ Pn(G)} is polynomially solvable. So we conclude that the problem
1 || (Φ1(π),Φ2(π)) is polynomially solvable as well.

Consider now situations where Theorem 7 can be applied. Suppose that Φ1(π) =
F ′

1(π), . . . , F
′
τ (π)) and Φ2(π) = F1(π), . . . , Fλ(π), λ = m− τ .

5.1. 1-priority-generating Vector Functions

In the case when vector function Φ2(π) is 1-priority-generating with 1-priority function
ω(i), the problem 1 | G0 = C,Gk = (Nk, ∅), k = 1, 2, . . . , q | Φ2(π) is O(ρnlogn)
solvable. Here ρ is the time complexity of calculating values of function ω(i). Indeed,
to solve the mentioned problem it is enough to order elements of each set Nk in non-
increasing of their priorities ω(i).

5.2. Maximal Cost

Let for each job i there are given λ = m − τ non-decreasing penalty functions
ϕ

(µ)
i (t), µ = 1, 2, . . . , λ, Fµ(π) = max{ϕ(µ)

i (Ci(π)) : i ∈ N} and Φ2(π) =
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(F1(π), F2(π), . . . , Fλ(π)). As usually, here Ci(π) is the completion time of the job i
in a schedule determined by the permutation π.

Consider problem

1 | ri = T, G | Φ2(π). (20)

Here ri is the release time of job i and for all jobs their release times are the same and
equal to T ,G = (N,U) is an arbitrary directed circuit-free graph. To solve Problem (20)
modify known algorithm by Lawler [10] in the following way.

Algorithm 1. Denote ϕi(t) = (ϕ(1)
i (t), ϕ(2)

i (t), . . . , ϕ(λ)
i (t)), i ∈ N . Let N− be the

set of all terminal vertices of the graph G. Considering inequality ϕi(t) � ϕj(t) in the
lexicographic sense, we find such an element in ∈ N− that

ϕin(θ) = min{ϕi(θ) : i ∈ N−},

where θ = T +
∑

i∈N ti. Set N = N\in and delete the vertex in from G, calculate new
value of θ. Find the next element in−1 ∈ N− such that ϕin−1(θ) = min{ϕi(θ) : i ∈
N−} and so on. Repeating this process, we eventually find elements in−2, . . . , i2, i1. Set
π∗ = (i1, i2, . . . , in).

The proof of the optimality of the permutation π∗ is almost the same as in case of
Lawler’s algorithm. Running time of Algorithm 1 is O(ρn2), where ρ is the time com-
plexity of calculating values of function ϕi(t).

For solving problem 1 | G0 = C, Gk = (Nk, ∅), k = 1, 2, . . . , q | Φ2(π) it is enough
to apply Algorithm 1 to each problem 1 | ri = Tk, Gk | Φ2(π), k = 1, 2, . . . , q, where
Tk =

∑k−1
ν=1 t(Nν), t(Nν) =

∑
i∈Nν

ti, T1 = 0. These problems are even simpler than
the one considered above since Gk = (Nk, ∅). Here we haveN− = N . Having obtained
optimal permutations π∗1 , π

∗
2 , . . . , π

∗
q for these problems, we construct resulting permuta-

tion π∗ = (π∗1 , π
∗
2 , . . . , π

∗
q ). Optimality of π∗ follows from the fact that processing jobs

of set Nk cannot start before the moment Tk, k = 1, 2, . . . , q. Total running time of the
algorithm will not exceed O(ρn2).

5.3. Number of Late Jobs

Let for each job i ∈ N we are given a due-date di. Define Φ2(π) = F (π) =∑
i∈N Ui(π), where Ui(π) = 0 if Ci(π) � di and Ui(π) = 1 if Ci(π) > di. Thus

we have problem 1 | G0 = C,Gk = (Nk, ∅), k = 1, 2, . . . , q |
∑
Ui.

Consider an auxiliary problem 1 | ri = T |
∑
Ui. This one is equivalent to the

problem 1 ||
∑
U ′

i , where U ′
i are determined for modified due-dates d′i = di −T, i ∈ N .

To solve the last problem we use the known O(nlogn) algorithm by Moore [20].
To solve problem 1 | G0 = C,Gk = (Nk, ∅), k = 1, 2, . . . , q |

∑
Ui, calculate values

Tk =
∑k−1

ν=1 t(Nν), t(Nν) =
∑

i∈Nν
ti, T1 = 0, and solve q auxiliary problems 1 | ri =

Tk, Gk = (Nk, ∅) |
∑
Ui, k = 1, 2, . . . , q, using Moor’s algorithm in the described
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above way. Having obtained optimal permutations π∗1 , π
∗
2 , . . . , π

∗
q for these problems, we

construct resulting permutation π∗ = (π∗1 , π
∗
2 , . . . , π

∗
q ). Optimality of π∗ follows from the

fact that processing jobs of set Nk cannot start before the moment Tk, k = 1, 2, . . . , q.
It is clear, that the time complexity of the resulting algorithm does not exceed

O(nlogn).

6. Maximal Cost and Non-Adjacent Priority-Generating Functions

In this section we consider a case of Problem 1 when q = n, i.e., there are no group
partition constraints. For simplicity, denote G0 by G = (N,U). We discuss a situation
where Φ(π) = (Φ1(π),Φ2(π)), function Φ1(π) = (F1(π), F2(π), . . . , Fm1(π)) is a
vector maximal cost, i.e., all functions Fk(π), k = 1, 2, . . . ,m1, are maximal costs (see
Subsection 5.2 ). The vector function Φ2(π) is supposed to be a non-adjacent priority-
generating on Pn(G).

If G is an arbitrary directed graph then the problem under consideration is NP -hard.
Indeed, letm1 = 1 and ϕi(t) = const for all i ∈ N . It implies that any permutation from
Pn(G) is optimal with respect to Φ1(π). So we should minimize Φ2(π) over Pn(G),
but this problem is NP -hard in the strong sense because of strongly NP -hardiness of
minimizing the sum of completion times

∑n
i=1 Ci (this function is non-adjacent priority-

generating), see, e.g., [29].
Consider a polynomial solvable case of the problem. Suppose that the following con-

ditions hold

ωNA(i) � ωNA(j) implies ti � tj for all i, j ∈ N (21)

and

i→ j implies ωNA(i) � ωNA(j) for all i, j ∈ N . (22)

For finding the permutation π∗ which minimizes Φ(π) on Pn(G) we make two steps.
On the first step we find the permutation π′ such that Φ1(π′) = min{Φ1(π) : π ∈
Pn(G)}. It may be done by Algorithm 1 in O(ρn2) operations (see Subsection 5.2 ).
Denote Fk = Fk(π′), k = 1, 2, . . . ,m1.

On the second step we use the following algorithm.

Algorithm 2. Set M = N , l = n. Let M1 be the set of all elements from M which are
associated with terminal vertices of G. Find such a set M ′

1 that

M ′
1 =

{
j ∈M1 : ϕk

j

( ∑
p∈M

tp

)
� Fk, k = 1, 2, . . . ,m1

}
. (23)

On the l-th position in the permutation π∗ we allocate such an element i ∈ M ′
1, that

ωNA(i) � ωNA(j) for every j ∈M ′
1.

Then we set l = l− 1, M = M\i and allocate the next element on l-th position.



Sequencing with Ordered Criteria, Precedence and Group Technology Constraints 85

Theorem 8. Algorithm 2 gives an optimal permutation for the function Φ(π) under the
constrains (21) and (22).

Proof. Show that the permutation π∗ = (i1, i2, . . . , in) minimizes the function Φ(π)
on Pn(G). Let π′ = (s1, s2, . . . , sn) be an optimal permutation and in = sν , ν < n.
Find the least r, ν < r � n such that ωNA(sr) � ωNA(sν). The index r exists,
since due to Algorithm 2 an inequality ωNA(sn) � ωNA(sν) holds. Then for every
r1, ν < r1 < r we have ωNA(sr1) < ωNA(sν). Due to condition (22), sr1 is not a
predecessor of sr for every r1, ν < r1 < r. So swapping sν and sr we get a feasible
permutation π′′ and Φ2(π′′) � Φ2(π′). Now we show that the permutation π′′ is op-
timal with respect to Φ1(π). Due to condition (21) the inequality tsν � tsr holds. So
ϕk

i (Ci(π′′)) � ϕk
i (Ci(π′)), k = 1, 2, . . . ,m1, for every i �= sν and ϕk

sν
(Csν (π′′)) �

ϕk
sν

(Csν (π∗)) � Fk, k = 1, 2, . . . ,m1. Thus we have Fk(π′′) � Fk, j = 1, 2, . . . ,m1,
and the permutation π′′ is optimal with respect to Φ1(π). We may repeat such transfor-
mations and find an optimal permutation which has the element in on the last position.
Similarly, in at most n− 1 steps we find an optimal permutation that coincides with π∗.

The time complexity of Algorithm 2 is O(ρn2), so time complexity of finding π∗ is
also O(ρn2). Here ρ is the time complexity of calculating values of functions ϕk

j . We do
not take into account the complexity of calculating values of functions ωNA(i).

7. Conclusion

Usually optimization problems with ordered criteria are solved in the following way. First
we are looking for the set of all optimal solutions with respect to the first, most important,
criterion. Then we are searching for the subset of this set that consists of all optimal
solutions with respect to the second criterion and so on. This manner of solving is very
difficult and complicated. In this paper, due to constructing and applying an extension of
the notion of priority-generating vector function we managed to solve several cases of the
general problem in very effective polynomial way. The similar approach we use in case
of vector objective function composed of maximal penalties and in some other situations.

It easy to check that all polynomially solvable problems listed in Section 2 are special
cases of problems considered in Sections 5–6. So in the paper we give general techniques
for solving all known and numerous new problems with ordered criteria.

The investigation of other sequencing and scheduling problems with ordered criteria
is of a certain interest for future research.

The problem with ordered criteria may be reduced to sequential solving of single-
criterion problems. Sometimes it is the only possible way for a problem solving. So the
single-criterion problem of finding all optimal solutions is of a special interest for solving
problems with ordered criteria. Some results on this topic for sequencing problems were
obtained by Monma and Sidney [19] and Tuzikov [30].
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Nuoseklus išdėstymas su sutvarkymo kriterijais, pirmenybės bei
grupini ↪u technologij ↪u ribojimais

Adam JANIAK, Yakov SHAFRANSKY, Alexander TUZIKOV

Nagrinėjamos daugiakriterinio nuoseklaus išdėstymo problemos, kai kriterijai yra sutvarkomi
pagal reikšmingum ↪a, atsižvelgiant ↪i pirmenybės bei grupini ↪u technologij ↪u ribojimus. ↪Ivedama
pranašum ↪a generuojančio vektoriaus s ↪avoka ir nagrinėjama bendroji metodologija polinominiams
nuoseklaus skaitmeninio išdėstymo algoritmams pagr ↪isti, apimanti visas žinomas polinomiškai
sprendžiamas problemas. Pateikiama išsami žinom ↪u nuoseklaus išdėstymo su sutvarkytais kriteri-
jais rezultat ↪u apžvalga.


