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Abstract. In this work the analytical expressions of half-time T1/2 and its derivatives in respect
to distance ∂T1/2/∂R in a one-dimensional RC medium (a current electrode has a shape of the
segment) and in a two-dimensional RC medium (a current electrode has a shape of the circle)
were received. First, by using a well-known in electrostatics a superposition principle, the current’s
electrodes were divided into elementary point sources by positioning them on the perimeter or the
surface of the electrode. Second, with the help of the computer-simulation, the dependencies of
T1/2 and ∂T1/2/∂R on the current electrode dimensions, the degree of electrotonic anisotropy,
and the distance between the current electrode and the potential measurement place were calcu-
lated. Our calculations demonstrate that the slope of the function T1/2 = f(R) depends both on
the distance between the potential measurement place and the current electrode, as well as the mea-
surement direction in respect to the fibers’ direction. Furthermore, the slope value can be less or
greater to 0.5.

If we apply a linear dependency T1/2 = 0.5R + const for the analysis of the electrotonic
potential measurement data in close vicinity to the current electrode in the direction of X-axis, we
can receive 40% smaller values of τm. The analogical estimations of τm on the Y -axis would lead
to the errors of up to +40%.
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1. Introduction

Theoretically working on various problems on the excitation wave propagation in a my-
ocardial tissue in normal and pathological conditions (Keener and Panfilov, 1995), mod-
eling ECG (electrocardiogram) (Geselowitz and Miller, 1983), and electrocardiostimu-
lation (Roth et al., 1998), by various experimental ways received values of the param-
eters of passive electrical properties (resistivities of intracellular medium, electrogenic
membrane, intercellular contacts, space constants of electrotonic decay, time-constants of
electrogenic membrane) are used. However, the mathematical simulation is comprehen-
sible only when as precise as possible values of the parameters are used. Unfortunately,
it is impossible to measure these parameters straightly in such a complex structure as the
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anisotropic myocardium. One of the possible ways to determine these parameters is to
measure the electrotonic potential distribution in myocardium near the current electrode;
then, perform theoretical analysis of these data by means of the mathematical models of
RC media. These media are described by partial differential equations of the second or-
der, and analytical solutions may be obtained in existence of the spherical (3-dimensional
case) or cylindrical symmetry (2-dimensional case), i.e., in existence of the point current
source or ellipsoidal current source when the ratio of its axis is equal to the degree of
anisotropy of the medium, and the longer axis coincides with the direction of the best po-
tential spreading (Bukauskas et al., 1975; Veteikis 1991; 1997). When the point current
source (a microelectrode) is applied, the amplitude of electrotonic potential slopes very
fast, especially, when the distance of the potential recording increases. In such situation,
it is difficult to get precise measurements. Due to the complexity of the anisotropic struc-
ture of the myocardial tissue, it is impossible to satisfy the requirements of the ellipsoidal
current electrodes because one needs to know a priori the degree of anisotropy and the
direction of the best electrotonic potential spreading. Consequently, the experimentators
apply the circle-shaped suction electrodes, and the electrotonic potential measurement
data received through these electrodes are analyzed with the aid of the isotropic RC me-
dia models as well as the theoretical conclusions received from these models (Bonke,
1973; Sakson et al., 1974; Pressler, 1990).

Solving these simplified cases for the point-shaped current sources one of the reg-
ularities of the RC media was obtained: the time t1/2 during which the electrotonic
potential reaches a half of its stationary amplitude, linearly or asymptotic linearly de-
pend on the distance r between the point-current source and the electrotonic poten-
tial measurement site: T1/2 = 0.5R + const (T1/2 – a normalized half-time), where
T1/2 = t1/2/τm, R = r/λ, and τm – time-constant of membrane, λ – space constant
of electrotonic decay. For the one-dimensional cable this dependence was obtained em-
pirically: T1/2

∼= 0.5R + 0.25 (Hodgkin and Rushton, 1946), theoretically proved for
infinite two-dimensional RC medium where T1/2 = 0.5R (Veteikis, 1991) and asymp-
totically is valid for three-dimensional RC-medium (Jack et al., 1975): when R → ∞,
T1/2 = 0.5R− 0.25. As the myocardial tissue is a complex anisotropic structure, and the
intracellular current is delivered by circle-shaped electrodes (i.e., the spherical or cylin-
drical symmetry does not exist), we cannot state a priori that in real myocardium the
dependence T1/2 = f(R) will be linear.

In this study, the solutions of the electrotonic potential distribution in the one- and
two-dimensional RC media and the expressions of the half-time T1/2 and half-time
derivatives on distance ∂T1/2/∂X are obtained when the current electrode is segment-
shaped (in one-dimensional medium) or circle-shaped (in two-dimensional medium).
First, using a well-known in electrostatics the superposition principle, the current’s elec-
trodes were divided into elementary point sources by positioning them on either the
perimeter or the surface of the electrode. After this, with the aid of the computer-
simulation, the dependencies of T1/2 and ∂T1/2/∂X on the current electrode dimensions,
the degree of the electrotonic anisotropy, and the distance between the current electrode
and the potential measurement place were obtained. In addition, possible errors of passive
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electrical parameters’ values obtained from the electrotonic potential distribution analysis
were estimated.

2. One-Dimensional RC-Cable, Segment-Shaped Current Electrode

According to Jack et al. (1975), the distribution of the electrotonic potential V (X,T ) in
the one-dimensional RC medium, when a rectangular current source is point-shaped, is
described by this equation (1):
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whereX is a normalized distance between the current source and potential recording site,
T is a normalized time.

An electrotonic potential V (X,T ) in site X at the time moment T will be equal to
the sum of all the point sources generated potentials; moreover, a normalized potential
expression in site X will be the following:
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M − 1
(see Fig. 1). Because the normalized potential half-time

T1/2 is always equal to 0.5, the (2) equation can be transcribed as follows:

V (X,T1/2)

=

M∑
i=1

{
exp(−Xi) erfc

(
Xi

2
√
T1/2

−T1/2

)
−exp(Xi) erfc

(
Xi

2
√
T1/2

+T1/2

)}
2
M∑
i=1

exp(−Xi)

=0.5. (3)

Fig. 1. A segment-shaped current electrode with positioned point sources.L0 – the current source length, V (X)
– a point where electrotonic potential is calculated.
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The dependence of the half-time on distance T1/2(X) is an implicit function. To find
the derivative of this function in respect to distance, one should introduce a new function
F (X,T1/2):

F (X,T1/2) = V (X,T1/2)− 0.5. (4)

Since the one-dimensional RC-medium under consideration is continuous, the func-
tion F (X,T1/2) outside of the current electrode zone has continuous partial derivatives
in respect to X and T1/2, which are not equal to zero. We can state that

F
[
X,T1/2(X)

]
= V

[
X,T1/2(X)

]
− 0.5 = 0, (5)

and then in accordance to Vygodskij (1965)
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Due to the fact that electrotonic potential distribution expression (3) contains function
erfc(Xi, T1/2), we will find the partial derivatives of this function in respect to X and
T1/2. By using a well-known expression (7)
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Taking into account 8–11 expressions we will find the potential (3) partial derivatives in
respect to X and T1/2:
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Put formulas 12 and 13 into (6) and receive a half-time derivative in respect to distance
for a one-dimensional medium when a current source is segment-shaped (14):
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3. Two-Dimensional Anisotropic Medium, a Point-Shaped Current Eelectrode

According to (Veteikis, 1991; 1997), a potential Vm caused by point-shaped rectangular
current source at X = 0 (I(T ) = 0, when T < 0 and I(T ) = I0, when T > 0) in two-
dimensional anisotropic RC medium (or in infinite flat cell of thickness h) is described
by equation
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. (15)

The solution of the equation (15) is either
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where λx =
√
Rmh/2ρix, λy =

√
Rmh/2ρiy (λx, λy – space constants of elec-

trotonic decay), ρ̃2 = (ρixρiy)1/2 (ρix, ρiy – intracellular medium resistivities along
axis X and Y ), T = t/τm (τm – time-constant of electrogenic membrane), R2 =√
x2/λ2

x + y2/λ2
y),K0(R2) – the Macdonald function, I0 – the amplitude of rectangular

current jump, h – thickness of the cell.

4. Application of the Superposition Principle for a Circle-Shaped Current
Electrode

In experimental conditions, the internal electrical structure of a stimulating suction elec-
trode is complex: one part of the current from a suction electrode flows into intracellular
medium, the other part into intercellular clefts. In order to increase the flow into intracel-
lular medium, electrodes with internal perfusion of KCl isotonic solution (Adomonis et
al., 1983) are applied. Then extracellularly measured potential takes 10–15% of intracel-
lular electrotonic potential stationary value, and we can assume that the current electrode
is practically intracellular.

Dividing this current electrode into elementary point-shaped sources we apply these
qualitative presumptions: a) with respect to the metric coordinate system (x, y) point-
shaped sources on circular electrode should arrange themselves evenly; b) it is probable
that the point-shaped sources in the center of the circle will be shielded by other peripheral
sources; therefore, it is sufficient to dispose these sources on the perimeter of the circle;
c) as the current will be preferentially flowing along the x axis (in the best spreading
direction), the density of the point-shaped sources should be greater next to the x axis.
As we do not know which presumption will predominate, we selected these modes for
simulation:

Mode 1: a) in the metric system of coordinates (x, y) we evenly position the point-
shaped sources on the circle of radius r0 (Fig. 2a); b) in the normalized system of coor-
dinates (X,Y ) the circle transforms into an ellipse, the half-axes of which are equal to
r0/λx and r0/λy; and the point-shaped sources are more dense in the direction of y axis
(Fig. 2b).

Mode 2: a) we pass from the (x, y) system of coordinates to (X,Y ) coordinates sys-
tem, and the circle becomes an ellipse with half-axes equal to r0/λx and r0/λy; b) we
evenly position the point-shaped sources on the perimeter of the ellipse (Fig. 2c); the
point-shaped sources are more dense in the direction of x axis (in metric x, y coordinate
system).

Mode 3: the current electrode (circular disk) is divided into point-shaped sources sym-
metrically to x and y-axis by square lattice mean (Fig. 2d).

Mode 4: the current disk (elliptic disk) is divided into point-shaped sources symmet-
rically to X and Y -axis by square lattice mead (Fig. 2e).

In the two-dimensional medium according to the superposition principle potential Vm
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Fig. 2. Modes of division of intracellular current electrodes into point-shaped sources. a: even division of
circle electrode perimeter into point-shaped sources (in metric coordinate system x, y); b: a view of division
(a) in a normalized coordinate system (X, Y ); c: even division of circle perimeter into point-shaped sources
in normalized coordinate system; d: division of circular disk electrode into point-shaped sources in metric
coordinate system; e: division of circular disk electrode into point-shaped sources in normalized coordinate
system.

in site X1, Y1 (see Fig. 2c) is:

Vm(X1, Y1, T ) =

M∑
i=1

Bi
2

{
K0(R1i) +

ln 2T
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0

exp(−R1ichw) dw

}
, (18)

where M – a number of point-shaped sources; Bi – coefficient proportional to intra-
cellular current generated by point-shaped current source (Bi = ρ̃2I0i/2πh, where I0i
– the current of i-th point-shaped source), and R1i =

√
(X1 −X0i)2 + (Y1 − Y0i)2

(R1i – distance between a point-shaped source (X0i, Y0i) and the potential recording site
(X1, Y1).
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As the values of the parameters λx, λy and τm in electrically passive medium do
not depend on electrode current amplitude, for calculation simplicity we considered that
Bi = 1, i.e., all point-shaped sources are equal.

5. Two-Dimensional Medium, Circle-Shaped (or Circular Disc Shaped) Current
Electrode

Let’s approximate the current electrode by M point-shaped sources located on the
perimeter or the circular disc surface (see Fig. 2). Suppose, the electrotonic potential
is registered along the X-axis. In this case, the distance R2i from potential recording
site (X, 0) to i-th point-shaped source X0i, Y0i (see Fig. 2e) will be described by this
expression:

R2i =
√

(X −X0i)2 + Y 2
0i. (19)

A normalized electrotonic potential V (X,T ) in site X at the time moment T will be
equal:
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When T →∞, V (X,∞)→ 1, therefore
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When we put the partial derivative expressions into expression (6), after the substi-
tution u = R2i exp(w)/2 we obtain in the two-dimensional medium, an expression of a
half-time derivative in respect to distance X is the following:
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6. Mathematical Simulation Results

Based on the expressions (14, 20, 23), the computer programs were created. The calcu-
lations showed that in the two-dimensional medium T1/2 depends on these parameters:
1) current electrode size (radius) r0; 2) electrotonic anisotropy Ae (Ae = λx/λy); 3)
distance R between electrotonic potential recording site and current electrode center;
4) mode of current electrode division into point-shaped sources. As the preliminary cal-
culations showed that there is no difference between the 3rd and 4th division modes,
we calculated only the influence of the 1, 2, and 3 mode. For comparison, by using a
one-dimensional medium expressions (1–3), we calculated T1/2 values for one and two
point-shaped current sources. In addition, similar calculations were done when the current
electrode was segment-shaped. The simulation results are presented as curves families.

In Fig. 3 T1/2 dependence on the circle-shaped current electrode division mode and
Ae is presented, when r0 = 0.2 mm, λx = 1.0 mm. Calculations were carried out by
the changing Ae values in the interval 1–10, i.e., in the boundaries characteristic to the
myocardial tissue. As we can see from the presented curves calculated on the electrode
surface along the X-axis (in site r0/λx, 0), T1/2 values are the largest in case of the first
division mode. In site (0, r0/λy) T1/2 values are the largest when the third division mode
is applied. A straight line T 2 presents a value 0.312 which is equal to the time during
which electrotonic potential reaches a half of stationary amplitude in case of the one-
dimensional cable with two point-shaped current sources. These sources are at a distance
2r0/λx (in this concrete case 2r0/λx = 0.4) from each other, and a potential recording
site coincides with one of the current sources. In case of the two-dimensional medium
the same potential would be created by two straight-lines, that is electrodes situated at
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Fig. 3. Dependence of T1/2 on electrotonic anisotropy (Ae) and current electrode division mode, when
r0 = 0.2 mm, λx = 1.0 mm. Numbers (1,2,3) next to the curves indicate a current electrode division mode:
continuous lines are calculated in site X0 = r0/λx , and dotted ones in site Y0 = r0/λy , i.e., on electrode
surface. For details see the text.

the same distance (0.4) from each other. A straight line T 3 is an electrotonic potential
normalized half-time (T1/2 = 0.3254) when the one-dimensional cable with segment
shaped current electrode, the length of which is equal to 2r0/λx = 0.4, is used.

Fig. 4 shows the T1/2 dependence on the current electrode division mode and on
r0, when Ae = 5, λx = 1.0 mm. The analysis of the results showed that for small
electrodes on the electrode surface calculated T1/2 values (in point X0, 0), where X0 =

r0/λx, are always greater in case of the first division mode, while on the Y axis (point
0, Y0), where Y0 = r0/λy , T1/2 values are always greater in case of the third division
mode. For small current electrodes (X0 6 0.5 or Y0 6 0.5) T1/2 values increase in all
cases. For larger electrodes (i.e., when r0 → ∞) in cases of the 1st and 2nd division
T1/2 values asymptotically approach 0.2275, a one dimensional cable with point-shaped
sources case, when rectangular current is delivered and electrotonic potential is recorded

Fig. 4. Dependence of T1/2 on electrode size and division into point-shaped sources mode. Continuous curves
beginning at site (0,0) show the T1/2 dependence on X0, and dotted ones – T1/2 dependence on Y0. T1 – a
straight line to which, whenX0 increases, T1/2 dependencies asymptotically approach in cases of the first and
second division and the curve T2. T2 – one-dimensional cable case with two point-shaped sources situated at
a distance 2X0 from each other. Numbers 1, 2, 3 show the mode of current electrode division.
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Fig. 5. Dependence of T1/2 on distance between current electrode center and electrotonic potential record-
ing site when r0 = 0.1 mm, λx = 1.0 mm. Continuous curves – T1/2 dependence on X, and dotted lines
– T1/2 dependence on Y . a: numbers next to the curves (2,5,10) are values of the electrotonic anisotropy
(Ae); the current electrode is divided into point-shaped sources by the 1st mode. Number 1 refers to the case
of the two-dimensional RC medium (with point-shaped current source) which is described by the equation
T1/2 = X/2. b: numbers next to the curves refer to the current electrode division mode; always Ae = 10.

at the same point (a straight line T 1). The curve T 2 also asymptotically approaches that
same value. However, in the 1st division mode in the direction Y this approaching is very
slow (it is not shown in Fig. 4). In the 3rd division mode, T1/2 values asymptotically
approach the curve T 3 in both directions along the X and Y axis; moreover, altogether
they approach 0.693, which corresponds to the normalized half-time in a spherical cell or
point-membrane cases.

Fig. 3 and Fig. 4 present T1/2 values that were calculated on the current electrode
surface. T1/2 value dependence on distance X (or Y ) between a current electrode center
and electrotonic potential recording site, and on electrotonic anisotropy Ae is shown in
Fig. 5.

Along the X axis, the derivative of the function T1/2 = f(X) is less than 0.5, while
along Y – always greater than 0.5 (Fig. 6). Moving away from the electrode surface,
the derivative of the function T1/2, in respect to distance, asymptotically approaches 0.5
(Fig. 6). Maximal declination of the derivatives from 0.5 occurs when the current elec-
trode is divided into elementary point-shaped sources by the 1st mode, while minimal
declination – in case of the 3rd division mode.
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Fig. 6. The dependence of the slope of the function T1/2 = f(R) (T1/2 derivatives in respect X or Y ), when
r0 = 0.2 mm, λx = 1.0 mm. Dotted curves refer to the cases, whenAe = 2, continuous ones - when Ae = 5.
Numbers 1, 2, 3 are current electrode division modes.

7. Some Aspects of Ohmic and Ohmic-Capacitive Media Models Application for
Experimental Data Estimation

In the experimental recordings of the electrotonic potential distribution in the myocar-
dial tissue, as intracellular current source we applied a circle-shaped suction electrode
with internal perfusion of isotonic KCl (Adomonis et al., 1983). This current delivering
method if compared to the microelectrode or camera partition method has advantages and
drawbacks.

When microelectrode as the current electrode is applied, the amplitude of the elec-
trotonic potential abruptly decreases. In these experimental conditions it is impossible to
precisely measure the electrotonic potential amplitude and a half-time. The same is true
when λx, λy , and τm values are being estimated with the aid of the RC medium model.

A camera partition method for the measurement of the true electrotonic decay con-
stants and/or half-time dependence on distance is applicable only for the cylindrical struc-
tures such as papillary muscle, trabeculae, and Purkinje fibers. Some authors tried to ap-
ply this method to thin cylindrically-shaped pieces of the tissue excised from myocardium
(Nishimura et al., 1988; Kokubun et al., 1982; Seyama, 1976). Beyond doubt, in the
cylindrical pieces excised from the tissue without prevalent cells’ direction, as sinoatrial
and atrioventricular nodes are, the longitudinal axis could vary from the best electrotonic
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potential spreading direction. When the electrotonic anisotropy of the tissue is great, the
values of the measured true space constant of electrotonic decay and/or half-time strongly
depend on the direction of excision.

By using a suction electrode as a current electrode, we avoid the above-mentioned
drawbacks, but other problems arise. Due to the fact that the electrode current flows not
only intracellulary but in intercellular clefts, furthermore, the ratio of these currents is
unknown, we cannot adequately mathematically describe a current electrode electrical
structure. Therefore, in the calculations we used the superposition principle according
which the current electrode is divided into evenly distributed point-shaped sources, and
a potential generated at some site of the medium is equal to the sum of the potentials
generated by these point-shaped sources. However, due to the anisotropy of the my-
ocardial tissue intracellular and extracellular space (Clerc, 1976), we cannot state that
point-shaped sources are distributed evenly. Therefore, we chose three modes for current
electrode division into point-shaped current sources and discovered that this factor has a
noticeable influence. Let us assume that the RC medium is anisotropic (λx > λy) and the
current electrode is divided by different modes into sufficiently great and equal number
of point sources. For the 1st mode in close vicinity to the site (r0/λx, 0), the density of
point-shaped sources is smaller (Fig. 2b) than for the 2nd mode (Fig. 2c). In close vicinity
to the site (0, r0/λy), the density of point-shaped sources is smaller for the 2nd division
mode. When a current electrode is divided into point sources by the 3rd mode, the density
of the sources is identical in all sites (Fig. 2d). For a single point-shaped source according
to (Bukauskas et al., 1991; Veteikis, 1991), the greater the distances, the smaller the am-
plitude of the electrotonic potential as well as the rate of rise in the electrotonic potential
front (T1/2 values are greater). In addition, when the current flow is delivered into greater
medium surface/volume, the conditions become closer to the point membrane case when
a half-time is maximal (Veteikis, 1991). When the current electrode dimensions are fixed,
the greatest influence on the electrotonic potential amplitude and T1/2 value falls on the
closest point-shaped sources. It follows from qualitative reasoning that T1/2 value is in-
fluenced by the density of the point-shaped sources, its distance from T1/2 calculation
site, and by surface/volume into which the intracellular current is delivered.

When Ae increases and the current electrode is divided by the 1st mode, the den-
sity of the point-shaped sources increases in the vicinity of the site (0, r0/λy); therefore,
a normalized half-time T1/2 decreases (see Fig. 3a). If Ae values are high, the current
electrode shape approaches to two straight lines that are at a distances 2r0/λx from
each other. For the 2nd division mode the point-shaped sources are evenly distributed
on straight lines and this case is equivalent to the case of the two point-shaped sources
in a one-dimensional cable when the distance between these sources is 2r0/λx. When a
current electrode is divided by the 3rd mode, then with the increasing Ae, an electrode
shape approaches to the plane restricted by two straight lines, and that is equivalent to the
case of a one-dimensional cable with a segment-shaped current source. On these grounds,
we can explain a different influence of various division modes on normalized half-time
T1/2 (see Fig. 3–6).

Intercellular electrical communication and passive electrical parameters are rather
widely explored in Purkinje fibers and papillary muscles when one-dimensional RC cable
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model is applied for the interpretation of experimental results (Pressler, 1990). In more
complex anisotropic structures (SA, AV nodes, auricle, ventricles), intercellular electrical
communication is investigated considerably less, and electrotonic potential distribution
simulation tasks are also scarce. However, some authors (Bonke, 1973) for the interpre-
tation of the electrotonic potential distribution measurements apply a linear dependence
T1/2 = 0.5R + const and, therefore, obtain wrong parameters of the passive electrical
properties. Our simulation results show that the slope of the function T1/2 = f(R) (i.e.,
∂T1/2∂R) depends not so much on the distance between electrotonic potential recording
site and the current electrode but on the measurement direction in respect to the fibers’
orientation: the ∂T1/2∂X value is less 0.5 and ∂T1/2∂Y value is greater 0.5. E.g., if we
apply a linear dependence T1/2 = 0.5R + const in close vicinity of the electrode for
the evaluation of the electrotonic potential measurement results along the X axis, we can
obtain up to 40% less τmvalues. The same evaluation of τm in the direction of Y-axis can
lead to the errors up to +40%. In conclusion, we can add that the application of various
models in concrete experimental conditions gives us a possibility to evaluate more pre-
cisely passive electrical parameters of myocardium and to analyze excitation spread and
mechanisms of arrhythmia genesis.
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Pusinio laiko ir jo išvestinės atstumo atžvilgiu skaičiavimas
vienmatėse ir dvimatėse RC terpėse

Romualdas VETEIKIS

Šiame darbe yra gautos normalizuoto pusinio laiko T1/2 ir jo išvestinės atstumo atžvilgiu
∂T1/2/∂R analitinės išraiškos vienmatėje RC terpėje (srovės elektrodas yra tiesės atkarpos for-
mos) ir dvimatėje RC terpėje (srovės elektrodas yra skritulio formos. Naudojant žinom ↪a elek-
trostatikoje superpozicijos princip ↪a srovės elektrodai buvo padalinti ↪i elementarius taškinius šal-
tinius, juos iš dėstant ant elektrodo perimetro arba ant skritulio paviršiaus. Po to kompiuterinio
modeliavimo būdu yra nustatytos T1/2 bei ∂T1/2/∂R, priklausomybės nuo srovės elektrodo dy-
džio, elektrotoninės anizotropijos laipsnio bei atstumo tarp srovės elektrodo ir elektrotoninio po-
tencialo matavimo vietos. Mūs ↪u atlikti skaičiavimai rodo, kad funkcijos T1/2 = f(R) polinkis
priklauso tiek nuo atstumo tarp elektrotoninio potencialo matavimo taško ir srovės elektrodo, tiek
nuo matavimo krypties skaidul ↪u atžvilgiu ir gali skirtis nuo 0.5 tiek ↪i didesn ↪e, tiek ↪i mažesn ↪e pus ↪e.
Dėl tiesinės priklausomybės T1/2 = 0.5R + const naudojimo labai arti srovės elektrodo išilgai
X ašies pamatuot ↪u elektrotoninio potencialo matavimo duomen ↪u apdorojimui, galime gauti iki
40% mažesnes τm vertes. Y ašies krytimi darant analogiškus τm ↪ivertinimus galimos paklaidos iki
+40%.


