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Abstract. The result of simulation of an idealized thin wet film connecting fixed points in the
Euclidean plane is a length-minimizing curve. Gradually increasing the exterior pressure we are
able to achieve the film configuration near to the Steiner minimal tree. This film evolution may
be an interesting tool for solving the Euclidean Steiner problem, but several dead-point situations
may occur for a certain location of fixed points. A continuous evolution of the film is impossible
by increasing the pressure in these situations. The investigation of dead-point situations gives the
ways of overcoming the difficulties of dead-point situations and continuing the film evolution by
temporarily decreasing pressure.
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1. Introduction

It is known that idealized soap films when subjected to some constraints possess various
length or energy minimising properties. Courant and Robbins (1941) popularised the
Steiner minimal tree problem and for the first time paid an attention to the fact that length-
minimizing curve of a thin film may achieve a configuration close to the Steiner minimal
tree.

1.1. Euclidean Steiner Problem

The Euclidean Steiner problem asks for the shortest network that spans a given set of n
fixed points in the Euclidean plane. The addition of an arbitrary number of points (Steiner
points) is allowed. A minimal network consisting of vertices and edges connecting the
points must have the following properties (Gilbert and Pollak, 1966):

• all edges are straight lines;
• the network is a tree;
• the angle between any two edges meeting at a vertex is at least 120 degrees;
• all Steiner points are of degree 3, and the edges meeting at a Steiner point make

angles of precisely 120 degrees with each other;
• the number of Steiner points is at most n− 2.
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The properties are not sufficient in order that the length of the Steiner tree be minimal.
The number of possible topologies grows exponentially as n increases.

1.2. Simulation of Wet Film Evolution

The so-called dry films used by Courant and Robbins (1941) in their physical model may
result in only one of the variuos stable topologies of the Steiner tree.

A different idea is to use the mathematical model for an idealized wet film, connecting
the fixed points with some liquid inside the film. The wet film subject to a constraint tries
to shrink to the minimum length. The constraint can be either that the liquid has a fixed
interior area, or that the liquid is under the fixed pressure.

We can find an attempt to simulate the evolution of an idealized soap film in order to
solve the Steiner problem in (Jakutavičienė, 1965). The goal of this paper is to continue
designing a wet film evolution simulation model introduced by the author (Šaltenis, 1999)
and investigating in detail dead-point situations which are the main obstacle in the model.

Fig. 1 in (Šaltenis, 1999) illustrates five simulation stages of a wet film evolution for
seven fixed points and increasing pressures (decreasing radii R).

In the beginning (Fig. 1a), the convex hull includes only six fixed points. Fig. 1b shows
when a point not connected was touched by the curve. The pair of opposite arcs touched
each other in Fig. 1c. Another contact of the opposite arcs is illustrated in Fig. 1d. The
final phase is shown in Fig. 1e, and we can see the Steiner tree configuration when the
radius of arcs is small enough.

The illustration substantiates the idea that by reducing the radius R of the length-
minimizing curve, we can achieve a configuration close to the Steiner minimal tree.

The theorems in (Hass and Morgan, 1996) state that a length-minimizing curve en-
closing the region of a fixed area has to be composed of:

• circular arcs of equal positive outward curvature and
• line segments multiplicity two.

Fig. 1. Five stages of wet film evolution.
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The radiusR of arcs depends on the external pressure p:

p = 1/R.

2. A System of Equations

Let us present a short introduction to the author’s system of equations (Šaltenis, 1999)
which is used to simulate the wet film evolution.

Points that must be connected will be referred to as fixed points Pi (i = 1, . . . , n).
Fixed points are constraints to the length-minimizing curve shrunk down around the
points.

We denote the corners of the length-minimizing curve interior as Cj (j = 1, . . . ,m).
The corners are wet if their coordinates are the same as the coordinates of the respective
fixed points (Fig. 2a); otherwise, they are dry (Fig. 2b).

Each corner Cj has its base. A base may be:

• a fixed point directly connected by the line segment to the corner Cj (the fixed
point PjB in Fig. 2b) or
• another corner directly connected by the line segment to the corner Cj (the corner
CjB in Fig. 2c).

The wet corner and its base have the same coordinates.
Each corner Cj has two centers of its arcs: Oj1 and Oj2 (Fig. 2a and 2b).
The coordinates of centers and corners satisfy the following system of nonlinear equa-

tions of three types.
1. For each wet corner Cj we have the following two equations (see Fig. 2a):

d(PjB , Oj1) = R; (1)

d(PjB , Oj2) = R, (2)

where d(A,B) is an Euclidean distance between points A and B.

Fig. 2. Characteristic points of the length-minimizing curve.
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2. For each dry corner Cj whose base is a fixed point PjB we have the following
two equations (see Fig. 2b):

d(Oj1, Oj2) = 2R; (3)

d(PjB , Oj1) = d(PjB , Oj2). (4)

3. For each dry corner Cj whose base is another corner CjB we have the following
two equations (see Fig. 2c):

d(Oj1, Oj2) = 2R; (5)

d(CjB , Oj1) = d(CjB , Oj2). (6)

The coordinates of dry corners CjB : x(CjB) and y(CjB) in Eq. (6) can be simply
calculated because they are in the middle of two corresponding centers OjB1, OjB2.

The unknowns of the system are the coordinates of centers.

2.1. Steps of Simulation

The simulation of evolution begins with extremely low values of pressure. Only a part
of the fixed points belonging to a convex hull is included. All corners are wet, therefore
the system consists of equations only of type (1) and (2). The unknowns may be simply
found in an explicit way at this stage of simulation.

The values of the unknowns obtained are used as initial approximations for the next
step of simulation with a decreased radius R. The steepest descent method (Burden and
Faires, 1993) is used for solving the system in the general case. The increments of radius
∆R from step to step are small, therefore the number of iterations is extremely small.

At each step of decreasingR we check the occurrence of next events:

• a wet corner became dry;
• a pair of opposite arcs touched each other;
• a fixed point not connected so far was touched by the length-minimizing curve.

The respective corrections must be carried out in the equation system depending on the
event.

The simulation process stops when the radiusR acquires low values.

3. Dead-Point Situations in the Simulation Process

The results of simulation at each step of reducing radius R are used as initial approxi-
mations for the next step of simulation. However, for a certain location of fixed points at
specific stages of simulation, some dead-point situations may occur. In such a situation,
the solution of equations of (1)–(6) type can not be found for the radiusR less than some
limit value Rc.
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3.1. Experimental Investigation of the Dead-Point Situation frequency

The dead-point situations are rare for problems with a small number n of fixed points,
but it occurs more frequently for larger n. The experimental investigation was carried
out to evaluate the frequency for various numbers n. The coordinates of fixed points
were obtained by independent uniform sampling in a rectangular region, and the dead-
point situations were checked up during the simulation process. The experiments with
random fixed points were repeated 500–1000 times for each n to evaluate the frequency
f presented in Table 1.

Table 1

Frequency f of dead-point situations for the number n of fixed points

n 3 4 5 6 7 8 9

f (in %) 0 6 18 24 64 72 82

We can see that the simulation of wet film evolution for larger n is impossible without
a detailed investigation of the dead-point phenomenon.

4. Evolution of the Wet Film in Dead-Point Situations

The dead-point situations makes impossible a continuous evolution of a wet film to the
zero interior area by gradually reducing the radius R. After reducing the radius to some
critical value Rc, we cannot find solutions of the equation system in an epsilon neigh-
bourhood.

But really always there exists a continuous further evolution of the film at this situ-
ation. After achieving the critical radius, we must temporally pass to the stage of tem-
porarily increasing the radius R. It does not mean the return to the same past trajectory
of the film coordinates. Let us analyse some simple cases more in detail.

4.1. Fragment of Two Wet Corners

The simplest case is the fragment of two wet corners (see Fig. 3).
We can see that decreasing of the radius is impossible beyond the critical value

R = Rc in the situation where the arc angle is equal to 1800. However, the continuous

Fig. 3. The fragment of two wet corners at a dead-point situation.
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Fig. 4. Fragment of four dry corners.

evolution of the curve is possible, by temporarily increasing the radius with arc angles
greater than 1800.

4.2. Fragment of Four Dry Corners

The case is illustrated in Fig. 4, where the points A,B,C, and D are arbitrarily located.
The points may be fixed points or some part of them may be dry corners of a wet film.

It is obvious that, if the radii of all arcs are equal, the central part of a wet film formed
by the film arcs has a rectangular symmetry. Therefore, we may investigate only one
quadrant of the length-minimizing curve. Positive axes of the quadrant are shown in the
same Fig. 4.

In Fig. 5, we see only one quadrant of the film and the centers of two arcs: O1 and
O2. The angle α is uniformly changing during the evolution of the film.

The straight-line fragment of wet film multiplicity two AK is perpendicular to the
line connecting the centers O1O2 because it is tangent to the arcs.

d(O1,K) = d(O2,K) = R. (7)

Fig. 5. One quadrant of the fragment of four dry corners.
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Fig. 6. Radius R of arcs versus the arc angle α.

Then, from (7) we can obtain

d(O1, A) = d(O2, A). (8)

We shall derive the dependency of radius R on the angle α.
It is obvious (see Fig. 5) that

d2(O1, A) = x2
A + (2R sinα− yA)2, (9)

d2(O2, A) = (xA − 2R cosα)2 + y2
A, (10)

where xA and yA are the coordinates of fixed pointA.
After substituting (9) and (10) into (8), assuming, for simplicity, that xA = 1 and

xA > yA, and denoting, for simplicity, y = yA, we obtain the dependency:

R =
cosα− y sinα

cos 2α
. (11)

Dependency (11) shows that the radius R acquires the minimal value Rc in its evolu-
tion. The illustrations of the dependency for two values of y are presented in Fig. 6. The
values of the critical angle αc corresponding to Rc may be found from the equation:

dR

dα
= 0.

4.3. Computational Aspects

When the coordinates of the film come nearer to the dead-point situation, the number
of iterations in solving the equation system significantly increases. After all, the system
of equations has no solution. Then the changes of film coordinates may continue their
evolution, butR must step by step increase. Fig. 7 illustrates the trajectory of a film angle
when the interior area of the film was step by step reduced.

We can see that the trajectory continues the previous trajectory after the dead-point
situation.
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Fig. 7. The trajectory of a film angle over the dead-point.

Fig. 8. Discrepancy ∆ versus the arc angle along the trajectory.

The discrepancy values ∆ in solving the equation system are presented in Fig. 8,
when the coordinates of the film are changing along the trajectory of Fig. 7. We see two
local minima for each fixed R value. One minimum (and the system solution) is for R
decreasing, and the other is for R increasing evolution stages. When R is close to the
critical value Rc = 0.75, both minima are closely located.

5. Conclusions

The wet film evolution may be an interesting tool to solve the Euclidean Steiner problem,
however, some dead-point situations may occur in a certain location of fixed points. The
dead-point situations are frequent for larger numbers of fixed points.

Difficulties due to the dead-point situations can be overcome by continuing the evo-
lution process and not reducing but increasing the radiusR.

The computational experiments with a larger number of fixed points and investigation
of the accuracy are beyond the scope of this paper.
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Mirties taško situacij ↪u tyrimas modeliuojant drėgn ↪u plėveli ↪u
evoliucij ↪a

Vydūnas ŠALTENIS

Modeliuodami idealizuotos drėgnos plėvelės, jungiančios fiksuotus taškus plokštumoje, form ↪a,
gauname minimalaus ilgio kreiv ↪e. Palaipsniui didinant išorin ↪i slėg ↪i, plėvelės forma palaip-
sniui artėja prie Euklidinio Šteinerio uždavinio sprendinio. Euklidinis Šteinerio uždavinys ieško
trumpiausio ilgio tinklo, jungiančio fiksuot ↪u tašk ↪u aib ↪e plokštumoje. Modeliavimo eksperimentai
rodo, kad kai kurioms fiksuot ↪u tašk ↪u padėtims bei esant didesnian fiksuot ↪u tašk ↪u skaičiui, toks
evoliucijos procesas gali strigti mirties taškuose. Straipsnis skirtas toki ↪u situacij ↪u nagrinėjimui.
Parodoma galimybė tolydžiai t ↪esti plėvelės evoliucij ↪a, peržengiant mirties tašk ↪a.


