
INFORMATICA, 2000, Vol. 11, No. 4, 441–454 441
 2000 Institute of Mathematics and Informatics, Vilnius

Some Grammatical Structures of Programming
Languages as Simple Bracketed Languages

Boris MELNIKOV, Elena KASHLAKOVA
Simbirsk State Univ., Russia
e-mail: bormel@mail.ru, helen@arbt.ru

Received: March 2000

Abstract. We consider in this paper so called simple bracketed languages having special limita-
tions. They are sometimes used for the definitions of some grammatical structures of programming
languages. Generally speaking, these languages are context-free, but not deterministic context-
free, i.e., they cannot be defined by deterministic push-down automata. For the simple bracketed
languages having special limitations, the equivalence problem is decidable.

We obtain the sufficient conditions for the representation some language by special sequences
of simple bracketed languages. We also consider the examples of grammatical structures as the
simple bracketed languages. Therefore, we can decide equivalence problem for some grammatical
structures of programming languages, and such structures define neither regular, nor deterministic
context-free languages.

Key words: context-free languages, bracket languages, equivalence problem.

1. Introduction

There is well-known, that we cannot solve equivalence problem for the whole class of the
context-free languages (see Aho and Ullman, 1972 etc.). Moreover, authors do not know
subclasses of this class, used in the programming languages as grammatical structures,
for which this problem is decidable (except regular languages).

Really, there are the papers (Romanovskiy, 1986; Meitus, 1989; Meitus, 1993; Seniz-
ergues, 1997) where the equivalence problem for deterministic push-down automata is
decided. However:

• the authors of that papers either consider the subsets of the deterministic
push-down automata, or use proofs being too difficult;
• the decidability of the equivalence problem for the whole class of the deterministic

push-down automata contradicts the fact obtained in (Stanevichene, 1993);1

• some of languages considered below cannot be defined by deterministic
push-down automata;
• all the proofs of the papers cited before cannot be used for the real programming

(for compilers, parser generators etc.); e.g., some of them contain operations using
some algebraic objects.

1 Therefore at least one of the papers cited before contains an error.

442 B. Melnikov and E. Kashlakova

Authors of this paper consider the two last reasons as the main ones, because they hope
to use the decidability of the equivalence problem (for one of subclasses of the context-
free languages class) in the real compilers. Thus, we shall use so called simple bracketed
languages having special limitations.

For such languages, the equivalence problem is decidable (see Melnikov, 1995;
Dubasova and Melnikov, 1995). In this paper, we shall use the grammatical construc-
tions considered in (Melnikov, 1995; Dubasova and Melnikov, 1995) for defining some
programming languages.

In this paper (Section 2), we shall define the notation of (Melnikov, 1995; Dubasova
and Melnikov, 1995) and consider theorems obtained there. Also in (Dubasova and Mel-
nikov, 1995), some examples of grammatical structures of computer languages were con-
sidered. Such structures (defined there as simple bracketed languages) satisfy the limi-
tations of the Theorem 1 (see also Section 2). By the theorems obtained in (Melnikov,
1995; Dubasova and Melnikov, 1995), the equivalence problems for the structures having
such limitations are decidable. Thus, for some grammatical structures of programming
languages, the equivalence problem is decidable, and these structures are not regular.

In special cases, we can also consider sequences of such structures and decide equiv-
alence problem for these sequences. In this paper, we consider some sufficient condi-
tions for grammatical structures of computer languages. Therefore, the structures satisfy-
ing such conditions are the sequences of simple bracketed languages with the decidable
equivalence problem (see Section 3). We shall also consider compound example (Sec-
tion 4), where the language is represented by the sequence of simple bracketed languages.

And in the last Section 5, we shall consider some questions connected with the simple
bracketed languages, which do not have required limitations (e.g., the prefix property),
and formulate some problems for the future solution.

2. Preliminaries

We shall use in this paper notation and definitions of (Aho, 1972; Salomaa, 1979; Shamir,
1965). Remark that unlike (Aho, 1972; Salomaa, 1979; Shamir, 1965), the considered
alphabet Σ may be infinite. The motivation for the assuming of this fact can be found
in (Melnikov, 1995; Dubasova and Melnikov, 1995). In addition, we shall consider the
following definitions.

DEFINITION 1. pref (u) is the set of all prefixes of the word u.

For example, the prefixes of the word abcd are e, a, ab, abc and abcd.

DEFINITION 2. We shall say, that the set A has the prefix property, if

(∀u, v ∈ A, u 6= v) (u /∈ pref (v)).

Denote this property as Pr (A).

Some Grammatical Structures of Programming Languages 443

Similarly, suff (u) is the set of all suffixes of the word u. Sf (A) denotes, that the set
A has the suffix property.

DEFINITION 3. If the setA has both prefix and suffix properties, we shall write PrSf (A).

We shall consider below the sets of pairs of words over the alphabet Σ and denote
these sets by µ, sometimes with subscripts.

We shall also consider the cases, when the sets Σ and / or µ are infinite (i.e., they
contain infinitely many words or pairs of them). Remark that all the definitions connected
with the grammars may be also used in such cases, dealing with infinite sets; see for
details (Melnikov, 1995).

We shall also use the following notation:

α(µ) = {u|(∃v) ((u, v) ∈ µ)}, α(µ, v) = {u|(u, v) ∈ µ}.

Similarly,

β(µ) = {v|(∃u) ((u, v) ∈ µ)}, β(µ, u) = {v|(u, v) ∈ µ}.

If both conditions Pr (α(µ)) and Sf (β(µ)) hold, we shall write PrSf (µ).

DEFINITION 4. For the given language L, define the simple bracketed language
Ψ∗(µ,L) by the following way: Ψ0(µ,L) = L and for each j > 0,

Ψj+1(µ,L) = {uΨj(µ,L)v|(u, v) ∈ µ},
Ψ∗(µ,L) =

⋃
j>0

Ψj(µ,L), Ψ+(µ,L) =
⋃
j>0

Ψj(µ,L).

Considering some language L ⊆ Σ∗ and two sets of pairs µ1 and µ2, we shall write

Ψ∗i = Ψ∗(µi, L), Ψ+
i = Ψ+(µi, L), Ψj

i = Ψj(µi, L).

Consider now the equation

Ψ∗1 = Ψ∗2 (1)

with the following limitations:

PrSf (L), PrSf (µi), (2)

L ∩Ψ+
i = ∅, (3)

Ψ1
1 = Ψ1

2, Ψ2
1 = Ψ2

2

(remark that we have Ψ+
1 = Ψ+

2 by (1) and (3)). In (Dubasova and Melnikov, 1995), the
following theorem was obtained.

444 B. Melnikov and E. Kashlakova

Theorem 1. Let the following conditions hold:

PrSf(L),PrSf(µi),

L ∩Ψ+
i = ∅,

Ψ1
1 = Ψ1

2, Ψ2
1 = Ψ2

2.

Then the equation

Ψ∗(µ1, L) = Ψ∗(µ2, L)

is true if and only if at least one of following conditions holds:

• µ1 = µ2;
• for:

– some languagesC, C̃ ⊆ Σ∗, such that C̃L = LC;
– and some numbers k1, l1, k2, l2 > 0, such that k1 + l1 = k2 + l2,

the following equations hold:

µ1 = C̃k1 × Cl1 , µ2 = C̃k2 × Cl2 .

Some examples of using of this theorem were also considered in (Dubasova and Mel-
nikov, 1995).

3. Some Grammatical Structures as the Sequences of Simple Bracketed Languages

In this section, we obtain some sufficient conditions for the representation some gram-
matical structure as simple bracketed language.

PROPOSITION 1. Let the set of productions P be defined by the following way:

S → L |ASB,
A→ A1a,

B → bB1, (4)

L→ uL1v,

where the following limitations hold:

• the language of the nonterminal L1
2 does not begin by u and does not end by v,

i.e., u /∈ pref (L(L1)) and v /∈ suff (L(L1)); 3

2 I.e., the language defined by the grammar G = {N,Σ, P, L1}.
3 We use the notation pref (L(L)), not pref (L), because, corresponding to Aho (1972), the set L(L)

designates the language of the nonterminal L.

Some Grammatical Structures of Programming Languages 445

• the language of the nonterminalA1 does not end with a, i.e., a /∈ suff (L(A1));
• the language of the nonterminalB1 does not begin by b, i.e., b /∈ pref (L(B1)).

In these conditions, A,B,L,A1, B1, L1 ∈ N and the languages of these nonterminals
are not empty.

Then the language L defined by the grammar G = {N,Σ, P, S}, is a simple brack-
eted language having the limitations (2). (We do not define here the productions for the
languages of nonterminals L1, A1 and B1 at all, because they are not important here.)

Proof. The language of the grammar G is Ψ∗(µ,L), where µ = A×B.
The language of the nonterminal L has both prefix and suffix properties, because all

the words of L(L) begin by u and end by v. Similarly, for the nonterminalsA and B, the
following conditions hold:

Pr (L(A)), Sf (L(B)).

All these facts prove the proposition.

EXAMPLE 1. This example of the grammatical structure constructed by Proposition 1 is
the @if-function of the Quattro-Pro language:4

[@if-function] ::= @if ([condition] .
[true-expression] .
[false-expression])

[true-expression] ::= [expression]
[false-expression] ::= [expression]
[expression] ::= "[string]"

| [function]
| [numerical expression]

PROPOSITION 2. Let the given grammar G = {N,Σ, P, S} be defined by the following
set of productions:

S → L |ASB,
A→ uX,

B → Y v,

L→ uCv,

where u, v ∈ Σ∗, A,X,B, Y, L,C ∈ N , and the limitations of Theorem 1 do not hold,
i.e., Pr (L(A)) or Sf (L(B)). Let also be |u| > 2 or |v| > 2.

Then there exists the equivalent grammar G′, which set of productions satisfies the
conditions of Theorem 1.

4 This example is cited by Dubasova and Melnikov (1995).

446 B. Melnikov and E. Kashlakova

Proof. Consider the grammarG′ = {N ′,Σ, P ′, S′} obtained from the given grammarG
by the following way.

If |u| > 2 and |v| > 2, then

(∃u1, u2 ∈ Σ∗, u1 6= e, u2 6= e) (u = u1u2),

(∃v1, v2 ∈ Σ∗, u1 6= e, u2 6= e) (v = v1v2).

Then let N ′ be equal to N ∪ S′, and the set of productions P ′ be the following one:

S′ → u1Sv2,

S → L |ASB,
L→ u2Cv1, (5)

A→ u2Xu1,

B → v2Y v1.

(6)

The equation L(G) = L(G′) is evident. In the grammar G′, nonterminals A and B
satisfy the conditions Pr (L(A)) and Sf (L(B)), since all the productions for A begin by
u2 and all the productions for B end by v1.

All these facts prove the proposition.

EXAMPLE 2. Consider grammatical structure of programming language Pascal, which
defines compound statement5

[compound statement] ::= begin [sequence of statements] end
[sequence of statements] ::= [statement] ’(;[statement])’

where

L = {gin [sequence of statements] e}.

Suppose that the language L is obtained without the productions for the nonterminal
[sequence of statements].

A = {gin ’([statement];)’ be},
B = {nd ’(;[statement])’ e}.

Then the language defined by the construction [compound statement] is

beΨ∗(µ,L)nd.

5 Special brackets ’(and)’ will denote iterations.

Some Grammatical Structures of Programming Languages 447

There is evident, that all the needed conditions (i.e., PrSf (L), Pr (A) and Sf (B)) do hold.
The given context-free grammar with the set of productions P is called sequential,6

if we can define some linear order (denoted by the symbol ≺) over the set N , having the
following property. If A ≺ B, then for each productionB → α belonging to P , the word
α ∈ (N ∪ Σ)∗ does not contain the letter A.

Theorem 2. The language L can be defined by the sequence of simple bracketed lan-
guages having limitations (2), if there exists the sequential grammar G, such that
L(G) = L, which satisfies the following conditions.

• Denote the nonterminals of this grammar, which contain themselves in the right
parts of their own productions, by S0, S1, . . . , Sk;7

• denote other nonterminals by Sk+1, . . . , Sm.

Then for each i 6 k, the languages of the nonterminals Si are defined by the grammar
with the productions of the type (4) or (5), and there exists j, such that j 6 i and the
given language L is equal to L(Sj).

Proof. Let for each i ∈ 0 . . . k, the language of the nonterminal Si be defined by the
grammar Gi = {Ni,Σi, Pi, Si}. If for each i, the set of productions Pi has the type (4)
or (5), and there exists the only j, such that L = L(Sj), then the following equation
holds:

L(Si) = Ψ∗(µi,L(Sj)).

By the conditions of the theorem, we can consider nonterminals in the order

S0, S1, · · · , Sk,

such that for each i ∈ 1, · · · , k + 1, the following condition holds:

L(Si−1) = Ψ∗(µi,L(Si)).

Then the sequence of languages is defined by

L(S0),L(S1), · · · ,L(Sk), · · · ,L(Sm).

The theorem is proved.

Let some language L be defined by the grammar G. We have proved, that for the
representation L by the simple bracketed language or by the sequence of such languages,
there is sufficient to find some grammar G′, being equivalent to G, such that the set of
productions of the grammar G satisfies the conditions of Propositions 1 or 2 or Theo-
rem 2.

6 For details, see (Shamir, 1965).
7 I.e., for some Si, there exists a production of the type Si → αSiβ.

448 B. Melnikov and E. Kashlakova

4. A Compound Example

We consider here the sequential context-free grammar, which is equivalent to the pro-
gramming language PL/0 (see Wirth, 1979). We also consider the representation this
language by the finite sequence

L0, L1, . . . , Ln ,

where for each i ∈ { 1, 2, . . . , n }, the following condition holds:

Li−1 = Ψ∗(µi, Li) .

(There is also possible the simplest representation for some languagesLi of this sequence.
See detailed below.)

We shall use the following notation for the nonterminals of (Wirth, 1979; Weingarten,
1973) and other ones, used for the making sequential grammar:

P program (initial nonterminal)
B block
DCC section of constants
DC definition of the constant
DNN section of variables
S and S’ statement
SS sequence of statements
C condition
E arithmetical expression
I identifier
N number
TEMP temporary nonterminal

We do not consider below the productions for the identifier and the number at all, because they
are simple (and, certainly, sequential). Therefore the symbols I and N are used in the right parts of
the productions only. Thus, all the words consisting of capital letters and figures only, are below
nonterminals. We do not use below the empty word e (we write nothing instead, as in the papers
and books with the descriptions of the real programming languages) and also the symbol |.

Remark that in the folowing text, considering grammars, we shall not usually write punctuation
marks (commas etc.), because the same symbols could also belong to the set of terminals of this
grammar. Thus, the initial grammar is as follows:

P ::= B .
B ::= const DCC ; var DNN ; DPP S
DPP ::= procedure I ; const DCC ; var DNN ; DPP S ; DPP

::=
DCC ::= DC

::= DC , DCC
DC ::= I = N
DNN ::= I

::= I , DNN

Some Grammatical Structures of Programming Languages 449

S ::= I := E
::= call I
::= if C then S
::= while C do S
::= begin SS end

SS ::= S’
::= S’ ; SS
::= TEMP S’
::= TEMP S’ ; SS
::= begin SS end
::= begin SS end ; SS
::= TEMP begin SS end
::= TEMP begin SS end ; SS

TEMP ::= if C then TEMP
::= while C do TEMP
::=

S’ ::= I := E
::= call I
::= if C then S’
::= while C do S’

C ::= odd E
::= E = E
::= E < E
::= E <= E

E ::= + E
::= - E
::= E + E
::= E - E
::= E * E
::= E / E
::= (E)
::= I
::= N

(compare this grammar with one of (Wirth, 1979)). The order for nonterminals is the folowing one:

P ≺ B ≺ DPP ≺ · · · ≺ C ≺ E ≺ I ≺ N (7)

(remark that we have already written their productions in the same order). Using this order and
definitions of (Shamir, 1965), we obtain that this grammar is the sequential one.8

Now consider this language PL/0 as the finite sequence of languages

L0, L1, . . . , Ln ,

8 Remark also that the following sequential context-free grammar was obtained by the authors by the
special algorithm of transformation of the given one, being not sequential. However, we consider in this paper
neither this algorithm, nor the sufficient conditions for its using; very likely, we will do this thing in the further
publications. But this fact is not the barrier for the further reading, because we can simply prove the equivalence
of the grammar of Wirth (1979) and the one of this section without such algorithm.

450 B. Melnikov and E. Kashlakova

where for each i ∈ { 1, 2, . . . , n }:

• either the following condition holds:

Li−1 = Ψ∗(µi, Li) ;

• or the productions for the nonterminal corresponding to the language Li−1 do not have this
nonterminal (and, certainly, nonterminals which are less than Li−1 in the order (7)) in the
right parts.

Remark that some of the sets of pairs µi have the limitations considered in Sections 2 and 3.
Thus, we do not consider below nonterminals which have themselves in right parts of their

productions. Some of these nonterminals were already mentioned in the grammar, and other ones
are temporary. The last ones are TEMP1, TEMP2, . . . , TEMP10, we shall write for them their
productions only.

For each other nonterminal (let it be A) the following equation will hold:

L(A) = Ψ∗(µA, LA)

(where subscripts are the same as the considered nonterminal, therefore they may contain 2 or more
letters). We shall also believe, by default, that

µA = αA × βA ,

where αA, βA and LA will be defined for each nonterminal A. In evident cases, we shall not write
the facts, whether or not the considered languages have the prefix and / or suffix properties.

Thus, consider the languages of nonterminals DPP, DCC, DNN, S, SS, TEMP, S’ and E.

αDPP = L(TEMP1) βDPP = LDPP = {e}

where there exists the only production for nonterminal TEMP1:

TEMP1 ::= procedure I ; const DCC ; var DNN ; DPP S ;

αDCC = L(DC), βDCC = {e} LDCC = L(DC)

Language αDCC has prefix property, because each its word ends by ,. We can also believe that the
language LDCC has both prefix and suffix properties, because each its word can be considered as a
lexeme returned by the scanner.

αDNN = L(I), βDNN = {e} LDNN = L(I)

This language is similar to the previous one.

αS = L(TEMP2) βS = {e} LS = L(TEMP3)

where the languages of nonterminals TEMP2 and TEMP3 are defined by the following productions:

TEMP2 ::= if C then
::= while C do

TEMP3 ::= I := E

Some Grammatical Structures of Programming Languages 451

::= call I
::= begin SS end

Remark that the language L(S) contains sublanguage (before nonterminal TEMP3) which has not
prefix property,9 however the language αS has it (because no word of the language L(C) contains
then and do as subwords). The similar fact holds also for other languages, considered for L(C).

The following language is more difficult.

µSS = L(TEMP4)× {e} ∪ L(TEMP5)× L(TEMP6) ,

where languages of new nonterminals are defined by the following productions:

TEMP4 ::= TEMP7 S’ TEMP8
TEMP5 ::= TEMP7 begin
TEMP6 ::= end
TEMP6 ::= end ; SS
TEMP7 ::=
TEMP7 ::= TEMP
TEMP8 ::=
TEMP8 ::= ;

Thus, we have defined the set of pairs µSS using L(SS), but as we have said before (see also
(Melnikov, 1995)), we can use infinite sets of pairs. Unfortunately, the language αSS has not prefix
property (see about this fact the next section).

αTEMP = L(TEMP2) βTEMP = L(TEMP) = {e}

αS’ = L(TEMP2) βS’ = {e} LS’ = L(TEMP9)

where the language of nonterminal TEMP2 was already defined, and TEMP9 has following produc-
tions:

TEMP9 ::= I := E
::= call I

Also, the nonterminal E cannot be defined by simple bracketed language having limitations
considered above. This fact holds because the language βE must include e. This language must
also include other words, therefore the condition Sf (βE) cannot be true. However, see also the next
section.

Thus,

µE = L(TEMP10)× {e} ∪ {(} × {)} ,

where the language of nonterminal TEMP10 is defined by the following productions:

9 The simplest example for this thing is the following one. It contains constructions if a=b then and
if a=b then if c=d then.

452 B. Melnikov and E. Kashlakova

TEMP10 ::= +
::= -
::= E +
::= E -
::= E *
::= E /

and

LE = L(I) ∪ L(N) .

Remark that we defined the language L(E) using itself. Exactly, L(E) is defined by µE, µE by
L(TEMP10), and L(TEMP10) by L(E) again.

5. Conclusion

Thus, we have obtained the sufficient conditions for the representation some grammatical structure
as by the sequence of simple bracketed languages. These conditions are important, because they
form a subclass of the context-free languages class with the decidable equivalence problem.

As we said before, for most of grammatical structures considered in this paper (and also pairs
of such structures, that are supposed to define the same language), we can use theorems of the
Sections 2 and 3. We cannot use these theorems for nonterminals SS and E only. The reason is the
following one: corresponding languages α(µ) and / or β(µ) do not have prefix (suffix) properties.
However, autors hope, that the representation some programming languages by the sequences of
the simple bracketed languages can be used in various tasks connected with the theory of parsing.
The reasons are as follows.

• We have already solved the equivalence problem for some grammatical structures.
• Grammatical structures being similar to the considered in Section 4, are used in all real

programming languages.
• We may use not necessary and sufficient conditions of equivalence of two grammatical

constructions only, but also sufficient ones. Using them, we can sometimes know, that the
two grammatical structures supposed to be equivalent, are not such ones.

We can also set the following problem for the future solution: to formulate some algorithms for
searching grammatical structures (like to previous ones, with the decidable equivalence problem) in
the given context-free grammar. The possible solution of this problem can be used for the translators
and other automation systems.

References

Aho A., J. Ullman (1972). The Theory of Parsing, Translation and Compiling. Vol 1. Prentice-Hall, Englewood
Cliffs, N.Y.

Dubasova O., B. Melnikov (1995). On the generalization of the context-free languages class. Program-
mirovanie, Russian Academy of Sciences Ed., 6, 46–58 (in Russian).

Meitus Y. (1989). Equivalence problem for the strong real-time deterministic push-down automata. Kybernetika,
Ukranian Academy of Sciences Ed., 5, 14–25 (in Russian).

Meitus Y. (1993). Decidability of the equivalence problem for deterministic push-down automata. Cybernetics
and System Analysis, 28, 672–690.

Some Grammatical Structures of Programming Languages 453

Melnikov B. (1995). Some equivalence problems for free monoids and for subclasses of the CF-grammar class.
Number Theoretic and Algebraic Methods in Computer Science, World Sci. Publ., 125–137.

Romanovskiy V. (1986). Equivalence problem for the real-time deterministic push-down automata. Kyber-
netika, Ukranian Academy of Sciences Ed., 2, 12–23 (in Russian).

Salomaa A. (1979). Jewels of the Formal Languages Theory.
Senizergues G. (1997). The equivalence problem for deterministic pushdown automata is decidable. Lecture

Notes in Computer Science, 1256, 671–681.
Shamir E. (1965). On sequential languages. Z. Phonetik, Sprach. Kommunikationsforsch. 18, 61–69.
Stanevichene L. (1993). An insoluble algorithmic problem for the deterministic push-down automata. Dokladi

Akademii Nauk, Russian Academy of Sciences Ed., 342(6), 744–746 (in Russian).
Weingarten F. (1973). Translation of Computer Languages, Holden-Day, Inc.
Wirth N. (1979). Algorithmes + Data Structures = Programs.

B.F. Melnikov. Since 1999: Professor of Simbirsk (Ulyanovsk) State University (Russia). 1995–
1999: Associated Professor of Simbirsk State University. 1991–1995: Assistant Professor of Sim-
birsk Branch of Moscow State University. 1988–1991: Post-graduate student of Moscow State Uni-
versity. 1984–1988: Programmer in the Research Institute (ex-Leningrad, ex-USSR). Main research
interests: heuristical algorithms (genetic, branch-and-bounds etc.); artificial intelligence; finite au-
tomata, regular languages, theory of semigroups; mathematical aspects of the object-oriented pro-
gramming.

E. Kashlakova. Since 1999: Programmer in the Research Institute (Moscow). 1996–1999: Post-
graduate student of Simbirsk State University. Main research interests: formal languages theory;
theory of semigroups.

454 B. Melnikov and E. Kashlakova

Programavimo kalb ↪u gramatinės struktūros kaip paprastos kalbos su
skliaustais

Boris Melnikov, Elena Kashlakova

Straipsnyje nagrinėjamos vadinamosios parastos kalbos su skliaustais. Šios kalbos gali būti varto-
jamos kai kurioms programavimo kalb ↪u gramatinėms struktūroms specifikuoti. Bendruoju atveju
šios kalbos yra nepriklausomos nuo konteksto, bet nebūtinai determinuotos. Kitaip tariant, j ↪u negal-
ima apibrėžti determinuotu automatu su dėklu. Parodyta, kad tam tikrai šitoki ↪u kalb ↪u klasei kalb ↪u
ekvivalentumo problema yra išsprendžiama.

