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Abstract. It is well known that in linear programming, the optimal values of the dual variables can
be interpreted as shadow prices (marginal values) of the right-hand side coefficients. However, this
is true only under nondegeneracy assumptions. Since real problems are often degenerate, the output
from conventional LP software regarding such marginal information can be misleading. This paper
surveys and generalizes known results in this topic and demonstrates how true shadow prices can
be computed with or without modification to existing software.
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1. Introduction

In most elementary treatment of linear programming, such as typically found in text-
books on Management Science and Operations Research, the dual variables of an LP
are interpreted as marginal values of the right-hand side coefficients. As the latter often
represent resources of limited supply, such marginal values have come to be known as
shadow prices. They indicate how much additional units of the corresponding resources
are worth. However, this equivalence between dual variables and shadow prices holds
only under the assumption of nondegeneracy. Their nonequivalence in general, while per-
haps well known among specialists, is almost never discussed in textbooks for students
and would be practitioners (exceptions are, e.g., Murty (1983) and Shapiro (1979)). See
also Rubin and Wagner (1990) for a managerially oriented discussion.) Even commercial
software for LP fails to alert users of this caveat. As a result, misleading outputs of LP
models may have resulted in many inadvertent misuses of the approach. The purpose of
this article is to summarize known results on this topic that have appeared in the literature,
generalize them to handle any LP formulation, examine how true shadow prices can be
computed with existing software, and show extensions to LP software that may be useful
for the automatic generation of such prices.
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2. Previous Results

For conciseness, we summarize only theoretical results in the literature, well known or
otherwise, that are essential to the computation of shadow prices. A state-of-the-art survey
with an extensive bibliography was given by Gal (1986). Related topics such as unique-
ness of solutions and degeneracy of LP’s can be found in other works in the list of ref-
erences (Evans and Baker (1982), Gal (1986), Greenberg (1986), Mangasarian (1979),
Pérold (1981)).

Consider the following primal-dual pair of linear programs:
maximize cTx

(P) subject to Ax 6 b
x > 0;

Minimize bTy

(D) subject to ATy > c
y > 0;

where A is m× n, c ∈ Rn, x ∈ Rn, b ∈ Rm, y ∈ Rm.

DEFINITION 1. Denote the optimal objective value for (P), as a function of the right-
hand side, by

v(b) = max{cTx | Ax 6 b; x > 0};

the set of feasible solutions and the set of optimal solutions to (P) by

X = {x ∈ Rn | Ax 6 b; x > 0},
X∗ = {x ∈ X | cTx = v(b)}

respectively; and the set of feasible solutions and the set of optimal solutions to (D) by

Y = {y ∈ Rm | ATy > c, y > 0},
Y ∗ = {y ∈ Y | bTy = v(b)}.

PROPOSITION 1 [See, e.g., Murty (1983), Rockafeller (1970)]. v(b) is a non-decreasing,
piecewise linear concave function.

DEFINITION 2. The set of subgradients for a concave function f : Rm → R is defined as

∂f(b) = {y ∈ Rm | f(b+ u) 6 f(b) + uTy, for all u ∈ Rm}.

PROPOSITION 2 [See, e.g., Ch. 8 in Murty (1983)]. When v(b) is finite, ∂v(b) = Y ∗.

DEFINITION 3. The directional derivative of a function f : Rm → R at b in the direction
of u is defined as

Duf(b) = lim
t→0+

f(b+ tu)− f(b)

t
.
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PROPOSITION 3 [See, e.g., Gauvin (1980), Rockafeller (1970), Shapiro (1979)].

Duv(b) = min{uTy | y ∈ ∂v(b)}.

DEFINITION 4. For (P), the buying (or positive) shadow price of constraint i is defined
as

p+
i = De(i)v(b),

and the selling (or negative) shadow price of constraint i is defined as

p−i = −D−e(i)v(b),

where e(i) is the ith unit vector.
In other words, the buying shadow price is the (instantaneous) rate of change in v(b)

for an increase in bi and the selling shadow price is the negative of the (instantaneous)
rate of change in v(b) for a decrease in bi.

PROPOSITION 4 [Gauvin (1980)].

p+
i = min{yi | y ∈ Y ∗},
p−i = max{yi | y ∈ Y ∗}.

DEFINITION 5. Denote the index set of the basic variables in an optimal tableau for (P)
by B, the index set of the nonbasic variables by N , the index set of slack variables by S.
Denote the row of reduced costs by d, the right-hand side by β, the ith row and the jth
column of the tableau by âi and âj respectively. Let dS and âiS be d and âi restricted to
S respectively. Let T = {i | βi = 0} be the index set for the rows with degeneracy and
y∗ be the current dual optimal solution, i.e., y∗ = dS .

PROPOSITION 5 [Akgül (1984), Best (1982)]. Y ∗ is characterized by

y ∈ Y ∗ ⇐⇒ y = y∗ +
∑
{tkâkS | k ∈ T }

for some t ∈ R|T | such that

d+
∑
{tkâk | k ∈ T } > 0.

3. The General Case

The above definition of shadow prices found in the literature (e.g., Akgül (1984), Gal
(1986), Gauvin (1980), Murty (1983)) assumes an LP in the canonical form (P) such that
“prices” are always nonnegative quantities. This way, v(b) tends to increase or decrease
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with bi. To accommodate both maximization and minimization problems with any com-
bination of inequality as well as equality constraints we need a more general definition
that allows a consistent sign convention.

DEFINITION 6a. For any LP, the incremental shadow price pi+ of constraint i is defined
as the instantaneous rate of improvement in v(b) with an increase in bi; the decremental
shadow price (pi−) of constraint i is defined as the negative of the instantaneous rate of
improvement in v(b) with a decrease in bi.

In this sense, a negative incremental price or a positive decremental price is the rate of
deterioration of the objective value as the right-hand side is changed. Note that whether
an improvement actually involves an increase or a decrease in the objective value v(b)

depends on the direction of optimization. For example, when minimizing it is possible
to incur an increase in v(b) by decreasing the right-hand side of a less-than-or-equal-to
constraint. The increase in v(b) is a negative improvement. This gives a negative in-
stantaneous rate of improvement with a decrease in bi. By definition, the decremental
shadow price which is the negative of this rate comes out positive. Although it may ap-
pear somewhat cumbersome at first sight, this definition of shadow prices is necessary
for consistency in the general case.

Table 1

Interpretation of shadow prices

Minimization:

Type of constraint Increase in v(b) Decrease in v(b)

6 pi− < 0 pi+ > 0

> pi+ < 0 pi− > 0

= pi+ < 0 or pi− < 0 pi+ > 0 or pi− > 0;

Maximization:

Type of constraint Increase in v(b) Decrease in v(b)

6 pi+ > 0 pi− < 0

> pi− > 0 pi+ < 0

= pi+ > 0 or pi− > 0 pi+ < 0 or pi− < 0;

DEFINITION 6b. Suppose LP in general has the form

maximize cTx

(LP) subject to Lx 6 p
Gx > q
Ex = r

x > 0.
Let
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maximize cTx

(P′) subject to Lx 6 p
−Gx 6 −q
Ex 6 r
−Ex 6 −r
x > 0;

and
minimize pTyL − qTyG + rT(yE+ − yE−)

(D′) subject to LTyL −GTyG + ET(yE+ − yE−) > c
yL, yG, yE+, yE− > 0

be the expression of (LP) in the form of (P) and (D) in §2. Finally let the equivalent
problem to (D′) be

minimize pTyL − qTyG + rTyE
(DLP) subject to LTyL −GTyG + ETyE > c

yL > 0

yG 6 0

yE unrestricted.

In the following proposition, Y and Y ∗ for (LP) is defined using (DLP). This con-
vention is standard practice in LP implementation (see, e.g., Ho (1987), IBM, MPSX/370
(1979), Shapiro (1979)). Finally, let Y ′ and Y

′∗ correspond to (D′). Note that yG in (DLP)
is −yG in (D′) and yE in (DLP) is yE+ − yE− in (D′).

PROPOSITION 6. For any LP:

pi+ = min{yi | y ∈ Y ∗}
pi− = max{yi | y ∈ Y ∗}.

Proof. First consider the case of maximization. For less-than-or-equal-to constraints, the
results follow from Proposition 4. A greater-than-or-equal-to constraints aix > bi can be
written as −aix 6 −bi as in (P′). Applying Proposition 4 to (P′) and (D′)

pi+ = instantaneous rate of improvement with increase of bi in (LP)
= instantaneous rate of improvement with decrease of−bi in (P′)
= −max{yi | y ∈ Y ′∗} [by applying Proposition 4 to (P′)]
= min{−yi | y ∈ Y

′∗}
= min{yi | y ∈ Y ∗}. [since yG in (DLP) is −yG in (D′)]

Expressing an equal-to constraint as two less-than-or-equal-to constraints as in (P′),
we have

pi+ = instantaneous rate of improvement with increase of bi in (LP)
= instantaneous rate of improvement with increase of bi

+ instantaneous rate of improvement with decrease of −bi in (P′)
=min{yiE+ | y∈Y

′∗}−max{yiE− | y∈Y
′∗} [by Proposition 4 on (P′)]

= min{yiE+ | y ∈ Y
′∗}+ min{−yiE− | y ∈ Y

′∗}
= min{yiE+ − yiE− | y ∈ Y

′∗}
= min{yiE | y ∈ Y ∗}. [since yE in (DLP) is yiE+ − yiE− in (D′)]
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The proof for pi− is similar.
For minimization, the objective min cTx can be written as −max(−cTx). Both

(D′) and (DLP) are as before except −c replaces c. Since any rate of improvement in
max(−cTx) is the same as that in min(cTx), the results follow.

Since y∗, the current dual optimal solution given by the optimal basis, belongs to
Y ∗, some or all (e.g., when (P) is nondegenerate) of its components may already be true
shadow prices. Therefore, we need to identify such cases and then proceed to find the
remaining missing shadow prices. This can be done using right-hand side ranging in LP
sensitivity analysis.

DEFINITION 7. For constraint i, let ri+ and ri− be the allowable increase and allowable
decrease given by the right-hand side range analysis.

PROPOSITION 7. If ri+ > 0, then pi+ = y∗i . If ri− > 0, then pi− = y∗i .

Proof. It suffices to show for the case of (P). The general case follows with appropriate
sign manipulations.

If ri+ > 0, then for small enough ∆bi > 0, v(b+ei∆bi) = cBB
−1(b+ei∆bi) where

B is the current optimal basis, cB are the objective coefficients of the basic variables, and
ei is the ith unit column vector. Therefore

pi+ = lim[∆bi → 0+]{v(b+ ei∆bi)− v(b)}/∆bi
= cBB

−1ei

= y∗i .

The proof for pi− is similar.

4. Algorithms

For any shadow price p+
i or p−i that is not given by y∗, two approaches can be taken for

its computation.

I. Direct Search using:

a) parametrization;
b) perturbation;

II. Constrained Dual using:

c) dual simplex;
d) implicit Y*.
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a) Right-Hand Side Parametrization

By varying the right-hand side bi parametrically, an adjacent basis (in the sense of Murty
(1983)) with a different objective value is sought. If found, the dual variable yi for this
new basis provides a rate of improvement leading into this basis, which will be the same
as the rate of improvement leading out of our original optimal basis. If the objective
value will not change, the rate of improvement is zero. In this case, either the direction
of change is infeasible or any change in bi in that direction will not affect the objective
value.

b) Right-Hand Side Perturbation

This is direct application of the definition of shadow prices. The right-hand side coeffi-
cient is altered by a suitably small amount, the LP reoptimized and the rate of change
computed. See Dantzig (1981) for a more sophisticated version of this approach.

c) Constrained Dual

This follows from Proposition 6. Each missing shadow price requires the solution of
(DLP) with bTy = v(b) and yi optimized. With conventional software, this method is too
cumbersome to be practical. In enhanced software, the method below is more efficient.

d) Implicit Y ∗

In this method, any missing shadow price can be solved by a subproblem implied by
Propositions 5 and 6. For example, for pi+, we have

Minimize [y∗ +
∑
{tkâkS | k ∈ T }]ei

(S+) subject to
∑
{tkâk | k ∈ T } > −d.

where t ∈ R|T |. For finding pi−, a subproblem (S−) is obtained from (S+) maximiz-
ing the same objective. In Section 7, efficient implementation of this approach will be
discussed.

5. A Numerical Example

Before duscussing the implementation of methods to compute true shadow prices, it will
help fix ideas by considering a numerical example. Consider the following LP adapted
from Ho (1987), Chapter 3.

Minimize 74A +40B +50C +10D

Subject to 3A +B +2C > 8

2A +2B +D > 11

4A +3C > 10.667

A, B, C, D > 0
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Let S1, S2, S3 be the slack variables and X, Y, Z be the dual variables to the first,
second and third constraints respectively. The optimal solution to the LP is

A = 2.667

B = 0.0

C = 0.0

D = 5.667

S1 = 0.0

S2 = 0.0

S3 = 0.0

with an objective value of 254.00. However, S1 is basic and the primal optimal solution
is degenerate. Indeed, there are two alternative optimal dual (basic) solutions, namely,

X = 0.0

Y = −10.0

Z = −13.5

and
X = −18.0

Y = −10.0

Z = 0.0.
Note that the output of any commercially available LP software lists only one or the

other dual optimal solution which cannot be interpreted directly as marginal values. The
minimum and maximum values for the optimal dual solutions are given in Table 2.

The interpretation of these values as shadow prices are tabulated in Table 3.
The ∆bi and ∆v(b) columns are obtained from actual perturbations of the LP. The

results verify Proposition 6.

Table 2

Extreme values in Y ∗ for example LP

Constraint min max

First -18.0 0.0

Second -10.0 -10.0

Third -13.5 0.0

Table 3

Shadow prices for the example LP.

Constraint ∆bi ∆v(b) pi+ pi−

First -0.1 0.0 0.0

+0.1 +1.8 -18.0

Second -0.1 -1.0 -10.0

+0.1 +1.0 -10.0

Third -0.1 0.0 0.0

+0.1 +1.35 -13.5
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6. Computing with Conventional LP Codes

Given that the outputs of conventional LP codes do not provide complete information on
all the true shadow prices it is of interest to see if one can still obtain such answers using
only the very same codes. For this purpose, we use two popular packages: LINDO (1986)
on IBM PC’s and MPSX/370 (1979) on IBM mainframes.

Two different procedures are suggested for use with LINDO:
i) parametric right-hand side;
ii) perturbation.
In the parametric approach, LINDO is used to solve the LP and do the Range (Sen-

sitivity) analysis. See Fig. 1 for the screen output at this stage. For each right-hand side
that has an allowable increase of zero, the following procedure is performed. The PARA
command is used with a new right-hand side value that is large enough to force a change
in the objective value if possible.

Fig. 2 shows the output from PARA for the first constraint in our example. The dual
variable (-18.00) corresponding to the first new objective value gives the incremental
shadow price (pi+) sought. In cases where the objective value does not change, the last
dual variable listed should be used.

Similarly, for each right-hand side that has an allowable decrease of zero, the PARA
command is used with a decrement to the right-hand side value to find the decremental
shadow price. Fig. 3 shows the output from PARA for the third constraint in the example.

Note that whenever the objective changes in one case of parametrization, the LP needs
to be resolved before proceeding with another case. This is necessary because LINDO
starts with the last available tableau to execute the PARA option. Therefore, performing
consecutive parametric analysis will not lead to desired results. This is a definite draw-
back of this approach with LINDO as the LP may have to be solved as many times as
there are missing shadow prices.

The perturbation procedure involves using the ALTER command to change a right-
hand side value, again by an appropriately small amount. Then the LP is resolved and the
output is examined to determine missing shadow prices using their definitions directly.
The results of this procedure for the example are listed in Table 3 in §5.

With LINDO, this approach is not as inefficient as it may seem because the last tableau
available is used to start an altered LP. However additional computation must be per-
formed to determine the rates of change. Also, the perturbations must be made indepen-
dently. This means the original problem must be retrieved at each step, or another ALTER
must be used to erase the previous case.

Using MPSX/370, two procedures are suggested. First, solve LP with the RANGE
option. Examine the ranges for row at limit levels for correct cases of shadow prices. For
all other cases, use the PARARHS option. In MPSX/370, this is based on incrementing
the original right-hand side by successive multiples of a change column until a maximum
increment is reached. All three parameters: the change column, the multiple, and the
maximum increment must be specified in the control program. The change column is
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: MIN 74A+40B+50C+10D
?ST
?3A+B+2C>8
?2A+2B+D>11
?4A+3C>10.666667
?END
:GO
LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION
1) 254.000000
VARIABLE VALUE REDUCED COST

A 2.666667 .000000
B .000000 20.000000
C .000000 9.500000
D 5.666667 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 .000000
3) .000000 -10.000000
4) .000000 -13.500000

NO. ITERATIONS = 2

DO RANGE(SENSITIVITY) ANALYSIS?
?Y

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
A 74.000000 12.666670 54.000000
B 40.000000 INFINITY 20.000000
C 50.000000 INFINITY 9.500000
D 10.000000 10.000000 6.333333

ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE

2 8.000000 .000000 .000000
3 11.000000 INFINITY 5.666667
4 10.666670 .000000 .000000

Fig. 1. LINDO output for example LP.



Computing True Shadow Prices in Linear Programming 431

: PARA
ROW:
2
NEW RHS VALUE =
8.001

VAR VAR PIVOT RHS DUAL OBJ
OUT IN ROW VAL VARIABLE VAL

ART SLK 4 2 8.00000 .000000 254.000
D SLK 3 3 16.5000 -18.0000 407.000

Fig. 2. LINDO PARA output for first constraint.

: PARA
ROW:
4
NEW RHS VALUE =
10.6

VAR VAR PIVOT RHS DUAL OBJ
OUT IN ROW VAL VARIABLE VAL

SLK 2 SLK 4 2 10.6667 -13.5000 254.000
ART ART 0 10.6667 .000000 254.000

Fig. 3. LINDO PARA output for last constraint.

the appropriate unit vector for finding an incremental shadow price and the negative unit
vector for finding a decremental shadow price. The parameters should be chosen to reduce
extraneous computation and output.

Note that in MPSX/370, each PARARHS command is based on the optimal tableau of
the LP and not on the tableau for the previous parametrization. Therefore, no redundant
resolution of the LP is necessary as is the case with LINDO.

Since MPSX/370 is not interactive, the above procedure can become cumbersome.
For the same reason, the perturbation method is deemed impractical. However, the para-
metric approach can be automated at the expense of extraneous computation. This second
procedure is carried out by setting up in a single control program all the PARARHS runs,
regardless of whether they eventually become necessary or not.

7. Computing with Enhanced LP Codes

As we have seen above, although it is possible to reconstruct all true shadow prices for
an LP by repeated application of available features in conventional software, it would
be much more convenient to have such information generated automatically. This will of
course involve the modification of existing codes. To gain insight into the complexities
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VARIABLE VALUE REDUCED COST
1 2.666666667E+00 0.000000000E+00
2 0.000000000E+00 2.000000000E+00
3 0.000000000E+00 1.400000000E+00
4 5.666666667E+00 0.000000000E+00

ROW LOGICAL DUAL VALUE
1 -2.540000000E+02 1.000000000E+00
2 0.000000000E+00 -1.800000000E+01
3 0.000000000E+00 -1.000000000E+01
4 6.357828776E-07 5.551115123E-17

SHADOW PRICES:
ROW INCREMENTAL DECREMENTAL

2 -1.800000000E+01 0.000000000E+00
3 -1.000000000E+01 -1.000000000E+01
4 -1.350000241E+01 0.000000000E+00

Fig. 4. Output from experimental LP code.

of such attempts we have extended an experimental LP code to include the computation
of true shadow prices using method d) described earlier.

Consider subproblem (S+) in Section 4. Each column in this LP is the transpose of a
degenerate row in the optimal tableau of (P). There are n+m constraints, corresponding
to the variables (including slacks) in (P). Note that a basic variables in the optimal tableau
implies either a null constraint in (S+) or a nonnegativity constraint on a tk. Therefore,
(S+) effectively has n constraints in nonnegative variables tk, k ∈ T . Computationally, it
is more efficient to solve its dual. Letting J be the index set of nonbasic variables in the
optimal tableau of (P), the dual to (S+) can be written as follows.

Maximize
∑
−djwj

(DS+) subject to
∑
âkjwj 6 âkSi, k ∈ T ;
wj > 0, j ∈ J .

Each column in (DS+) is simply a column in the optimal tableau of (P) restricted to the
degenerate rows. Although the tableau would not be explicitly available in an advanced
implementation of the Revised Simplex Method, the data for (DS+) can be reconstructed
efficiently. Moreover, different cases involve only changing of the right-hand side. There-
fore, shadow prices can be computed by an appropriate sequence of (DS+) and (DS−).
Fig. 4 shows the output from an experimental code for our example.

8. Discussion

It is shown that conventional LP software does not provide complete shadow prices in
general. Although marginal values can indeed be found using repeated applications of
existing codes, it would be desirable to automate such computations in commercial pack-
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ages. This can be done without extensive modifications. In view of the fact that dual
variables are routinely interpreted (often incorrectly as we have seen) as shadow prices
by practitioners, it is important that only truly meaningful information is generated.

Author’s Note

This article is based on unpublished research completed in 1987 at the University of
Tennessee, Knoxville, with the assistance of Darren Smith. While the software used is
outdated, the principles and results remain intact.
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Tiksli ↪u šešėlini ↪u kain ↪u skaičiavimas tiesiniame programvime

James K. HO

Yra žinoma, kad tiesiniame programavime duali ↪u kintam ↪uj ↪u optimalios reikšmės gali būti. inter-
pretuojamos kaip dešinės pusės koeficient ↪u šešėlinės kainos (kraštinės reikšmės). Toks duali ↪u kin-
tam ↪uj ↪u ir šešėlini ↪u kain ↪u ekvivalentiškumas galimas tik esant neišsigimimo prielaidai. Esamos pro-
graminės sistemos dažniausia šios prielaidos netikrina. Straipsnyje apžvelgiamo ir apibendrinamo
kylančios problemos ir demonstruojama, kaip tikslios šešėlinės kainos gali būti skaičiuojamos mod-
ifikuojant turim ↪a programin ↪e ↪irang ↪a arba be modifikavimo.


