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Abstract. This article is an introduction to the simplest mathematical model, which describes the
hormone interaction during the menstrual cycle. Modifications of the mathematical model of the
menstrual cycle including the mathematical model with the time delay depending on function re-
searched and the mathematical model with the dispersed time delay are researched and described
here. A numerical investigation was conducted, during which solutions for the above mentioned
models were calculated. The solutions found are compared mutually and with the clinical data.
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1. Introduction

At the beginning of the 20th century much attention was paid for the female reproduc-
tive system. After invention of the steroidal hormones their functioning mechanisms were
started explained. For the solution of this problem mathematical models were employed.
In 1972 R. Bogumil with co-authors (Bogumil et al., 1972) offered a very detailed math-
ematical model of the menstrual cycle, which contains 34 non-linear equations, but the
large number of equations makes it difficult to find the expression for its solution.

Referring to the scheme of hormone interaction during the menstrual cycle (Švitra et
al., 1998), interrelations of the analyzed system were interpreted as an ecological problem
“predator – prey”. Then we describe the dynamics of the sexual hormones during the
menstrual cycle by the following mathematical model (Švitra and Grigolienė, 1998a):
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Here L(t), F (t), P (t) – correspondingly concentration of LH (luteinising hormone),
FSH (follicle stimulating hormone) and progesterone P in blood at the time moment t;
E (t), E+(t) – correspondingly concentration of estradiol E in blood at the time t in
the pre- and post ovular phase; KE , KE+ , KP , KL, KF – correspondingly estradiol E
(in the pre- and post ovular phase), progesterone P, LH, FSH average concentrations in
blood. Parameters rE , rE+ , rP , rL, rF characterize the growth rate of the corresponding
hormone concentration, and parameters a, b, c realize regulation, which happens through
the feedback mechanism.

This mathematical model is researched in works (Švitra and Grigolienė, 1997; Švitra
and Grigolienė, 1998a).

The production of hormone E has the main role in the analyzed system (Grigolienė
et al., 1999). If the secretion of E before the ovulation is normal, then after the ovula-
tion production of E+ will be not disturbed. And vice versa if the production of E by
follicle is not sufficient, then during the post ovular phase secretion of the yellow corpus-
cle hormones will be disturbed. Clinical data confirms this interrelation (Speroff et al.,
1989).

2. Modifications of the Mathematical Model of the Menstrual Cycle

2.1. The Mathematical Model of Menstrual Cycle with Time Delay Depending on the
Searched Function

The changing physiological quantities such as sleeping cycle, health condition, metabolic,
physiological and many other factors all have influence on the hormone changes, and it
influences hormone secretion in pituitary and ovary. So, the hormone concentration at the
given moment later influences the hormone concentration. Thus, speaking about the time
delay in the female menstrual cycle we can claim that in this system it depends on the
searched function, i.e., the hormone concentration in blood at the certain time moment.

Behavior of the solution of the non-linear equation system (1)–(6) depends on behav-
ior of the solutions of (2) and (5) equations system. It was found during the analysis of
the equation system (1)–(6) (Švitra and Grigolienė, 1998a). As we mentioned before, E
production plays the main role in the analyzed system.

Let’s say that time delay in preovular phase hE depends on searched functionE (t),
then we put down the equation system (1)–(6) as follows:
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Ė+(t) = rE+

[
E (t)

KE
−
E+

(
t− hE+

)
KE+

]
E+(t), (11)

E(t) = E (t) + E+ (t− hE ) , (12)

where time delay ∆ (E ) depends on the searched function.
We choose the following form of ∆ dependence from E (t)

∆ (E ) = hE exp
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. (13)

The choice of the time delay expression is not casual here and it has its biological
sense: when hormone concentration in blood is high, its synthesis is slowing down and
vice versa (Grigolienė et al., 1999). Let’s analyze the modified mathematical model (7)–
(12).

Linear Analysis. Let’s say that parameters reflecting feedback a = c = α = 0.
Then behavior of the solutions of the equation system (7)–(12) will be described by the
following behavior of the solutions of the equation system:
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From (15) follows, that 0 < ∆ (E ) 6 hE exp d.
The equation system (14)–(16) has the following states of equilibrium:

E (t) = E+(t) ≡ 0; (17)

E (t) ≡ KE , E+(t) ≡ 0; (18)

E (t) ≡ KE , E+(t) ≡ KE+ . (19)

The states of equilibrium (17) and (18) are always unstable.
We will analyze the stability of (19) equilibrium state. We change variables E (t) =
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Characteristic quasipolinomial of the linear part of the equation system (20)–(21)

P (λ) = (λ+ drE exp (−λhE ))
(
λ+ rE+ exp

(
−λhE+

))
(22)

has the before researched properties (Švitra and Grigolienė, 1998a). When drE hE < π
2

and rE+hE+ < π
2 then all roots of the equation P (λ) = 0 have negative real parts, and

when drE hE = π
2 and rE+hE+ < π

2 a pair of imaginary roots ±π2 i appears in this
equation. The following statement is correct.

Theorem 1. When 0 < drE hE < π
2 and 0 < rE+hE+ < π

2 then equilibrium state
(19) of the differential equation system (14)–(16) is locally asymptotically stable.

Nonlinear Analysis. We have the system of the non-linear differential equations (20)
and (21). Correct is that drE hE < π

2 and rE+hE+ < π
2 . Referring to the Chatchinson’s

equation modification properties (Švitra, 1989), the following statement is correct.
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2 > 0 is sufficiently small, then equation (20) has its
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Properties of function b2(d), when d = a are described by (Švitra, 1989).
When rE+hE+ < π

2 then the differential equation (21) will have the only stable
periodic solution as well.

y(τ) = ξy1(τ) + ξ2y2(τ) + . . . . (26)

Accordingly, the differential equations (14) and (16) will have the periodic solutions.
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Theorem 3. When 0 < rE hE − π
2 = ε << 1 and when 0 6 d 6 d0 the system

(14)–(16) in the equilibrium state (19) will have the stable periodic solution
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where x2(τ) is expressed by the formula (24) and σ, τ , ξ by the formula (25),
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⌊
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)⌋
, (28)

here y1(τ), y2(τ), σ, τ and ξ are calculated in the same way (Švitra and Grigolienė,
1998a).

2.2. The Mathematical Model of Menstrual Cycle with Distributed Time Delay

We may interpret the time delay during the menstrual cycle as a function dispersed ac-
cording to the certain law. Referring to the above-presented comments we will change the
equation (2) of the equation system (1)–(6) to the equation with distributed time delay.
Then we may write down the equation system (1)–(6)
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The differential equation (30) is a generalization of the equation (2). By its biological
sense hE max > hE min, and non-negative function H(s) is a characteristic of the age

structure of the concentration of the hormone E_. Additionally
hE max∫
hE min

H (s) d s = 1.

Let’s make an analysis of the mathematical model (29)–(34) of the menstrual cycle.

Linear analysis. Let’s say parameters of the reflecting feedback mechanism are a =

c = α = 0. Then behavior of the solutions of the equation system (29)–(34) will be
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described by the following behavior of the equation system solutions:
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The equation system (35)–(36) will have the equilibrium states (17), (18), (19).
Obviously the equilibrium states (17) and (18) are not stable. We will further research

system of the equations (35) and (36) in the environment of its equilibrium state (19).
We can judge about the local asymptotic stability of the equilibrium state (19) of the

equation system (35)–(36) after the research of the characteristic quasipolinomial of the
equation system (35)–(36)

P (λ) =

λ+ rE

hE max∫
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H (s) exp (−λs) d s

 [λ+ rE+ exp
(
−λhE+

)]
(37)

roots positioning in the complex plain surface.
Positioning of the quasipolinomial P (λ) = λ+ rE+ exp

(
−λhE+

)
roots in the com-

plex plain surface has been already researched (Švitra and Grigolienė, 1998a). We will
find positioning of the quasipolinomial

P (λ) = λ+ rE

hE max∫
hE min

H (s) exp (−λs) d s (38)

roots in the complex plain surface. We will use the D-partitioning method.
Quasiplinomial (38) has the zero root when

p = −rE . (39)

The straight line (39) is one of the lines making theD-partitioning boundaries of the plain
surface p rE .

Let’s say λ = iσ (σ > 0), then from the equation

λ+ rE

hE max∫
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H (s) exp (−λs) d s = 0 (40)

we will get the remaining equations of the D-partitioning curves in the parametric form

rE =
σ
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, (41)



The Mathematical Model of the Female Menstrual Cycle and its Modifications 417

p = −rE
hE max∫
hE min

H (s) cosσsd s. (42)

As σ → 0 we determine the so-called cups A (p0, rE 0), whose coordinates are:

rE 0 =
1

hE max∫
hE min

H (s) sd s

, (43)

p0 = −rE 0. (44)

Referring to the available clinical data and recommendations (Speroff et al., 1989;
Bogumil et al., 1972; Švitra, 1989), let’s say that

H (s) = a exp

⌊
−1

2
(s− h∗)2

⌋
, (45)

where a > 0, h∗ = hE min+hE max

2 , hE min = 5 days, hE max = 9 days.
In Fig. 1 the D-partitioning of the plane surface p rE is made. Area D0 is the area of

asymptotic stability, in the area D2 two roots with positive real part appears, and so on.

Nonlinear Analysis. With an aim to simplify the calculations and remembering proper-

ties of δ functions, we can change expression
hE max∫
hE min

H (s)E (t− s) d s in the equation

(30) into expressionE (t−h∗). When there is a low dispersion then h∗ is close to 7. Then

Fig. 1. The D-partition on the plane of parameters p and rE .
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nonlinear analysis of the equation system (29)–(34) is analogous to nonlinear analysis of
the simplest mathematical model of the menstrual cycle (Švitra and Grigolienė, 1998a).

3. Results of Numerical Investigation

We proceed directly numerical investigation of the mathematical models (1)–(6) and
(7)–(12) and comparison of the results obtained with the experimental data (Speroff et
al., 1989). The expressions of the stable periodic solutions are presented in (Švitra and
Grigolienė, 1998a) and in (27), (28).

Referring to the methodology offered by (Švitra, 1989) and experimental data, quan-
titative meaning of parameters are rE = 0, 33; rE+ = 0, 15; rP = 0, 49; rL = 5, 5 and
rF = 5, 6. Average meanings of the parameters KE , KE+ , KP , KL ir KF are known
from the experimental data. We refer to (Speroff et al., 1989) and findKE = 150 pg/ml,
KE+ = 100 pg/ml, KP = 2 ng/ml, KL = 35 µU/ml ir KF = 20 µU/ml. For the feed-
back parameters we ascribe the following meanings a = −0.23, b = −0.1, c = 0.135 ir
α = 0.15.

Time delays hE and hE+ introduced in the equation system (1)–(6) characterize the
time period, which is necessary to mature follicle and start producing estradiol. Estra-
diol E_ concentration depends on degree of follicle maturity: the younger follicle the less
estrogen are produced and vice versa, i.e., in the preovular phase changes in E_ con-
centration at the time moment t depend on concentration at the time moment t − hE .
Analogously the time delay hE+ is interpreted in post ovular phase. Referring to the ex-
perimental data from (Bogumil et al., 1972) we will consider that hE > hE+ , because
in yellow corpuscle cell the typical structure of cells – steroid producers – is created; for
that reason biosynthesis in post ovular phase is shorter; therefore hE = 7 days, hE+ = 2

days.
With the help of imitational modeling system ModelMaker v. 3.0 solutions of the

simplest mathematical model (1)–(6) of the menstrual cycle were calculated. Fig. 2 shows
female hormone dynamics during the menstrual cycle.

Solving the (7)–(12) equation system using numerical methods quantitative meanings
of parameters rE+ , rP , rL, rF , average meanings of parameters KE , KE+ , KP , KL,
KF , meanings of feedback parameters a, b, c, α remain the same as in the first case.
Parameter rE = 0, 29. Using the same method and the expressions (27), (28) we get the
estradiol dynamics during menstrual cycle in equation system (7)–(12) case.

4. Conclusions

The offered theoretical models give a good description of the real situation in the long
period (28 days) cycle. Their precision is confirmed by the correspondence between the-
oretically and practically calculated hormone concentrations in patients’ blood during all
phases of the menstrual cycle. The main regulator in these models is the mechanism of
feedback (positive and negative) and parameters regulating it, therefore the model reflects



The Mathematical Model of the Female Menstrual Cycle and its Modifications 419

Fig. 2. Sexual hormones dynamics in main case.

Fig. 3. E dynamics in main case and in modification.

the shifts in hormone levels during the deviations of the menstrual cycle. In Fig. 3 estra-
diol E_ dynamics is shown in the preovular phase calculated using each mathematical
model. The meanings of the simplest mathematical model of the menstrual cycle and
mathematical model with time delay depending on the searched function are not much
different from each other.
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nonlinear modeling in biology and ecology.

Moters ovuliacinio ciklo matematinis modelis ir jo modifikacijos

Rasa GRIGOLIENĖ, Donatas ŠVITRA

Straipsnyje supažindinama su paprasčiausiu matematiniu modeliu, aprašančiu hormon ↪u s ↪aveik ↪a
ovuliacinio ciklo metu. Pasiūlytos ir ištirtos ovuliacinio ciklo matematinio modelio modifikacijos
– matematinis modelis su vėlavimu, priklausančiu nuo ieškomos funkcijos, bei matematinis mode-
lis su pasiskirsčiusiu vėlavimu. Atliktas skaitinis eksperimentas, kurio metu rasti minėt ↪u modeli ↪u
sprendiniai. Gauti sprendiniai palyginti su klinikiniais duomenimis bei tarpusavyje.


