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Abstract. An estimation of the generalization performance of classifier is one of most important
problems in pattern clasification and neural network training theory. In this paper we estimate the
generalization error (mean expected probability of classification) for randomized linear zero empir-
ical error (RLZEE) classifier which was considered by Raudys, Di¢ilinas and Basalykas. Instead of
“non-explicit” asymptotics of a generalization error of RLZEE classifier for centered multivariate
spherically Gaussian classes proposed by Basalykas ef al. (1996) we obtain an “explicit” and more
simple asymptotics. We also present the numerical simulations illustrating our theoretical results
and comparing them with each other and previously obtained results.
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1. Introduction

An estimation of the generalization performance of classifier is one of most important
problems in pattern clasification and neural network training theory.

A significant part of theoretical results belongs to analysis of a standard linear dis-
criminant function in a case when true pattern classes are Gaussian. Sitgreaves (1961)
derived the first exact but very complicated for calculations formula for the expected
classification error of the standard Fisher linear discriminant function (DF). John (1961)
represented the linear discriminant function with known covariance matrix as a differ-
ence of two independent chi-square variables and expressed the expected error in a form

*Part of this work was done while being at the Institute of Mathematics and Informatics, Vilnius, Lithuania.
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of infinite sum. Raudys (1967) used this result and derived the first simple asymptotic for-
mula for the expected probability of misclassification (PMC) of the Euclidean distance
classifier when the sample size N — oo. Best known asymptotic expansion for the ex-
pected classification error of the Fisher linear DF for the case when covariance matrix is
known belongs to Okamoto (1963). Later two simple formulae for the expected error of
the standard Fisher linear DF were obtained by Deev (1970, 1972) and Raudys (1972).
An experimental comparison of these results was made by Wyman et al. (1990).

A large group of linear classification algorithms does not rely on the assumption about
normality of the data. For a linear rule which minimizes an empirical error a number of
error bounds and approximate asymptotic formulae have been derived (see, e.g., Amari,
1993; Amari et al., 1992; Haussler ef al., 1994; Meir, 1995; Vapnik, 1982). In this type
of investigations, no assumptions about the distribution of pattern classes is made. There-
fore, the obtained estimates are either very pessimistic and unrealistic upper error bounds
or depend on some unknown coefficients.

In this paper we consider a randomized linear zero empirical error (RLZEE) classifier
and seek for a simple analytical expression for the generalization error when the pattern
classes are sphericallly Gaussian and a Mahalanob distance between pattern classes is
known. The RLZEE classifier shortly can be defined as follows. A training set

1 1 1 2 2 2
L={x{"xM . x( x® xP L x)Y

of p-dimensional (p > 2) observation vectors from two different classes m; and 7o
is given. Let C; and Csy be centers (means) of classes m; and 7o, respectively. We
call the data (i.e., classes m; and my) centered if C; + Co = 0 and non-centered
otherwise. According to some a priori distribution we randomly generate coefficients
ap, ai, .- .,ap € R and verify if a hyperplane

a1r1+ - +apTp +ag =0

discriminates given vectors without errors, i.e., if it satisfies the following (ZEE) condi-
tion:

ATX! >0 VX!lelLnm,
rxh 4 o b L m (ZEB)
AXj+a0<O VXjELﬂﬂ'Q,
where AT = (ai1,...,a,). Suppose that we successfully found such a hyperplane
(a0, A) (in opposite case we generate new coefficients ag, a1, ..., a, and so on). The

question is how well this hyperplane discriminates unknown data from classes 7, and
o, 1.6., we are interested in an expected probability of misclassification (PMC) of this
classifier. In neural networks literature the expected PMC usually is called generalization
error because it shows how well the given classifier generalizes. In this paper we will use
both these terms in arbitrary way.

The RLZEE classifier since 1993 has been intensively studied by Raudys et al. (see,
for example, Basalykas ef al., 1996; Raudys, 1993; Raudys, 1997; Raudys and Dicitnas,
1996). The main results of these studies were:
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(1) The following exact formula for an expected PMC (which we also will call a gener-
alization error) in a case of centered p-variate (p > 2) spherically Gaussian classes
w1, T2 (Basalykas, 1996; Diciiinas, 2001; Raudys, 1993) was obtained:

f_ f_ (MC | u,w)P(ZEE | u, w) f (u, w) du dw

MEP , (D
fioo f71P (ZEE | u,w) f (u, w) du dw
where the density of random variables » and w is
1(1- )p 3)/2
f(uvw) = ( )(p+1)/2’ € (_17 1)7 w e R7 (2)
1
PMC | u,w) = 5[ <——+ )+<I><—%5—w>], 3)
N N
P(ZEE | u,w) = [@(%6—1—10)} {@(%—w)} . 4)
In (3), (4) ® is the normal distribution function
= /r o(t)dt, where ¢(t) = L e t°/2 Q)
oo ’ V2T ’

N is a half of the length of the training set, and ¢ is the distance between the classes
st and T 2.

(2) The following asymptotics of expected PMC for the same classes as in (1) was
derived (Basalykas, 1996):

5UO 5UO

MEPy = @(—7) —¢(——>(A1 + Ay + As + Ag) +0<N12>

where u is a root of some integral equation (see (14)) and A; are terms depending
in some complicated form on p, IV, 6 and ug (see Section 2).

(3) The following simple “thumb” asymptotics of expected PMC was constructed
heuristically on the ground of the table of the values of exact formula (Raudys,
1997):

) 1
MEPy ~ & —= . 6
N < 2\/1+(1.6+0.185)(p/N)1~85/5) ©

Above mentioned results, however, contain some negative features: (a) the exact for-
mula is the ratio of two double integrals of some “non-regular” functions, and therefore
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requires long and careful calculations, and (b) the asymptotical formula is “non-explicit”
(it contains a root of integral equation which has to be solved in numerical way).

In this paper we obtain an “explicit” asymptotics in a case of centered data. In some
cases (for example, when p = const, § > 1 and N is big enough) this formula becomes
very simple; it has not above mentioned negative features (a), (b) and can be used instead
of above mentioned results (1)—(3). We also present the numerical simulations illustrat-
ing our theoretical results and comparing them with each other and previously obtained
results.

2. An Asymptotical Expansion of Generalization Error

As it was already shortly mentioned in Section 1, approximately integrating (1) Basalykas
et al. (1996) obtained the following analytical expression for generalization error of
RLZEE classifier:

(SU() 5UO

MEPNZCD(_T) —¢<—_)(A1 +A2+A3+A4)+O<]$2> @)

where
A= Fruo)’ ®)
o (SQUO
Ay = T 127 (ug)’ )
B Z///( )
SR (10
B (uo)
M= T )i (w0) (an
for
oy, 2 ou 5 _ _ 9(6u/2)
Z(u)zlné(%>+%1n(1—u2), A:pz;Ng, (13)

up (0 < wp < 1) is a solution of equation

5¢(%‘) (1-u?) = zm><52“> (14)

and functions ® and ¢ represent normal distribution and density, respectively (see (5)).

The aim of this section is to obtain an asymptotical solution of equation (14), which al-
lows to derive a simple asymptotical expansion for generalization error. Complete deriva-
tion consists of the following steps:
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Derivation of asymptotical expression of ug for A = (p — 3)/(2N) — 0.
Asymptotical expression of auxiliary terms (31 (uo), 8 (uo) and 1/Z" (uy).
Inserting of auxiliary terms into expressions for A;, As, A3 and Ay.
Asymptotical expression of ¢(—dug/2) and ®(—ug/2).

Final derivation of asymptotics of MEP .

wok W =

2.1. Asymptotics of ug for A — 0

Equation (14) is equivalent to equation

D(bu/2)
Pp2— L Au—1=0. 15
v 2 Soeu) ()
For A — 0 its solution uo(A) — 1. Therefore, let us approximate uq by some polynomial
depending on A:

up =1+ aX+bA” + A’ + O(A). (16)

REMARK 1. Though A = (p — 3)/(2N) — 0, the number of features p may increase.
For example, for p = O(v/N) X is of order 1/v/N, and according to (16) and estimates
presented below we will obtain generalization error with accuracy O(1/N?).

Below we use Taylor expansions of functions ® and ¢ near the point 2y = 6/2. It is
easy to verify that

e 0 e )
Py (5) and ¢5C1=f¢<§). (19)
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Inserting (16) into (17) and (18) we obtain

3
q’(%) = O + gm(m + X% +0(N)) — ‘15—6¢5(aA +0o(N)? +0(A2)
= D5+ ad+ BN +o(N), (20)
for
_ bpsa 8¢5 (8b — 6%a?)
a=— and ﬁ*T, Q1)
and
2 2 2
‘b(é%) = ¢s — %%(a)\—i—b)\z +0(\?)) + (6 342)5 ) (a)\+0()\))2
+0(N) = g5+ pA+vA® +0(M), (22)
for
2 9 9 s
= K Z&a ond o s ((6 324)a 8b)' o)

After inserting (16), (20) and (22) into (15) and simple algebra we have

2aps A + 2apr? + 2av X3 + aZps A2 4+ aZud3 4 2bds A% + 20u® + 2abps A3

2
+2cgs\* + g(‘I’M +a®sA? + bPsA® + aX? + aaX® + BA?) 4+ 0(A?) =0.

Equalizing the coefficients of terms with A, A\? and A\® we obtain a system of equations:

20psa + 2®s = 0,
26pa + 6psa’ + 28¢sb + 2adPs + 2a = 0, 24)
26va + Spa® + 26pb + 26¢sab + 28¢sc + 20®@s5 + 2aa + 23 = 0.

Let us denote

wr B(5/2) [ @
"= 5662) (‘ %)' =

It is easy to verify that system of equations (24) has the following solution:

a:*htﬁ

_hs 142

b= (1+hs+ 38%hs), (26)
h

(36"h3 + 1686°hZ + 106°hs + 24hs + 8).

c=—

s
32
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Below instead of (16) and (26) we also will use more simple expressions
up=1—hsA+o(N\) and u2=1—2hs\+o(N\).
2.2. Asymptotics of B1(uo), 81 (uo) and 1/Z" (uyp)

Let us return to equations (8)—(13). Since

pdef oy b (U )= S 2
Syt = go(5+v) w20 = o i
therefore
PN 6%u?  3bu 9
ﬂl(“)?ﬁ(l 1 T¢2¢)7

83 8%u?  3bu 9 22 u(3 + u?)
(-5 - e-w) - i

Equations (20)—(23), (25) and (26) yield

o(%50) = 0= ol
¢<6%> = b5+ 232N+ o).
Hence,
_ %2(1 + %)\4‘0()\)) (1 + % +0(/\)>
and

- % (1 + —6%; 2005 4 o()\)) :
bs

387

27)

(28)

(29)

(30)

€1y}

(32)

(33)

(34)

(35)



388 V. Diciiinas and S. Raudys

Inserting (34), (35) into equations (12) and (29)—(31) we obtain

1 6 6 2
Bi(ug) = A+ o(ﬁ> +5(1—hsx+ 0()\))%‘; (1 + %A + o(A))
b3 0®s + 2¢s
= (1 + —2% A+ 0()\)>

6
g5 b3 6(0®s +2¢5) 1 1
= T{)(SJF(}Tng (TJri))\JFO(N) +o(A)
P5(6Ps + 2¢s)
292

8202 + 4D + 65505 + 87 < ) )
v <1+ st A +0() rem). 66
(2

Bilu) = 5o+ (1+ (1)

x [1—%(1 +0(1)) —% (1+0(1)) %(1 +o(1)) - %(1 + 0(1))}
695 (407 — 5°DF — 66Ps¢ps — 8¢5)

= so7 +o(1), (37)
and
1 (1 —ud)?
Z"(uo)  —Ee (0 4 o) (1 - ud)2 — A(1 + ud)
_ A4RZX +o(N)
— 200 (S0 4 ) A(4hZA + o(N)) — A2 + o(1))
B 4h§)\ +o(A) 9

2.3. Asymptotics of A1, Aa, As and Ay

From (27) and (36) we obtain

(% 203
A= <1 5¢5>\ * ()\)> ¢ (6Ps + 2¢5)

8202 + 402 + 65Dys + 82 1
x [1-— 6 SN+ O( ) +o(\ )
< 4¢5(5¢5 + 2¢s) »

_ 2@% (1 53‘1)2 + 85@2 + 652‘1)5(;55 + 8Dsps + 85¢6 \

05(6Ps + 20s) 465 (6P + 2¢s)

+o( ! )+o(>\))
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Equations (9), (27) and (38) yield

Ay = —%2(1 +0(1)) (=2hgA + o(N)) = i‘%?)\ +0o(N).
s

Inserting (30) and (31) into (10) we have

631/10 1— U%(SQ . 3U06
4 2

82 § -2
‘(1 ul) { v (% +¢0)(1 R +ug)} .
According to (16) and (26),
hs 1o 2 2
uozlfh(s)\Jr? 1+h5+§5 hs | A2 +0(\?),
1
ud =1 —2hs\ + hs (1 + 2hs + 552‘h5)X2 +0(N?).
Therefore,
2 1 1o
lquZZh(s)\ 1— §+h5+15 hs )\JrO()\) .
Inserting (34), (35) and (41)—(43) into (40) we obtain
Ay = [m@ — hsh+o(N) (4 — 2hsA + o))
1 1, 9
x 2hsA( 1 — 5+hé+z—15 hs | A+ 0(X) | +0(A?)
X i(1 +0(1)) é(1 +0o(1)) + L(1 +0(1))
4h6 2 (Sh&

-2
x 4h3(1+0(1))A +2 — 2hs A + o()\)] A2

Wo — 2¢§> (1—u2)’ + 2\ (3 + ug)]
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(39)

(40)

(41)

(42)

(43)

= [16h5 (1 - ;h(s)\ - o(A)) (1 - (% + hs + ié%)k + o(A)) + O(A)]

1 1 1 -2
1 2
X —4[ + (—2+—45 h&—h5)>\+0()\):|

2

1 1 1
= 4hs {1— (— + ghg + Zé%)A + o(A)}[l— (1+§62h5—2h5>x+o(x)}

@( _ 36205 + 2Bs5 + 680

7 1505 )\—l—o()\)).
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Finally, let us insert (36)—(38) into (11):

P3 65 (403 — 62P3 — 6Ds¢s — 8¢3)
(257 o) ( o= +o)

202
8 ¢ (6Ps + 2¢5) (1+0(1))
_ Ds(402 — 6202 — 66Dsp5 — 8¢3)
= 2602 (6%5 + 2¢5) Aol

Ay

2.4. Asymptotics of p(—bug/2) and D(—bug/2)

Obviously, ¢(—x) = ¢(z). Hence, equation (33) yields

6u0 o 6(1)5
(b(_T) = ¢s <1 + 4755)\ + o()\)>. (44)

It remains to find an asymptotics of ®(—8ug/2). Taylor expansion near the point g =
—6/2 gives

()

2
@(—§> (]552(1—’110)—}—%6—(1—1@)2

2 4 4
(62 — 4)ps 6°
O D% 81— ) +o((1— wo)?)
= @(%) + &%[hw — A% — X +o(\?)]
3 3062 3
+ ‘5% [h202 — 2h5bA° 4+ 0(X%)] + %A?’ +o(\%),

where b and c are given by (26). Substituting (26) into above equation after little algebra
we obtain

I o
@(—%) - <I>(—§> + O+ CoN? + C5A% +0(N%), (45)
where
1
Ol = §¢57
[oF3 9

Cy = — 6°P 40 46 46
2 166(;55( s+ 4P + 46¢s), (46)

i
Oy = 965‘; 5 (26°®3 + 16607 + 95° Do s + 36@sps + 12663 ).
)
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2.5. Asymptotics of MEP y

Using the results of Sections 2.3 and 2.4 we can rewrite equation (7) as

_ o Ps 2 3 3\, 0P 0®s
MEPy = <1>( 2> + A+ oA+ CA +o(A )+8N 1+4¢5)‘+0()‘)
242 495

X {m+%+(B1+BZ+B3+B4))\+O()\):|

~o(3)

P P P 4 1
= (b(_§> + —6>\ + CQ)\Q + C3>\3 +O()\3) + —6(36 6 1 ¢6)_

2 2 4(6Ds + 2¢5) N
05 A A 1
+?(Bl +Bg+Bg+B4+B5)N+O(ﬁ)+O<m>, (47)
where
B - _ DF(8°PF + 88DF + 667 P55 + 8PsPs + 8¢)
e 25¢2(6@5 + 2¢5)2 ’
@2
By, = —5
2 2¢§7
Ds(362P5 + 205 + 66¢5)
By =— 5242 )
s
B, _ Bs(40F — 6202 — 65505 — 893)
4 25¢2(6@s + 2¢5) ’
¢§(3(5‘I>5 + 4¢s)
Bs =

203 (85 + 2¢5)”

C5 and Cj are given by (46) and A = (p — 3)/(2N) — 0.
For p = const, A = O(1/N). In this case we obtain more simple asymptotical expres-
sion for MEP :

- o Ds(p—3)  Ds(36Ps +4¢s)\ 1 1
MEPN‘I)(§>+< 1 + 1(5%; + 265) >N +O(m). (48)

Since

36®s + 4¢s 3_ 205
6®s + 205 6®s + 205

therefore we obtain

5\ @ o
MEPN~<I>(—§> LA o0

1
4 N 2(695 +2¢5) N 9
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fs

"0 5w, 25

It is easy to show that £(6) | 0 (6§ — oo) and maxs t(6) = t(0) = 0.25. Since p > 4, we
have (®5/4)(p/N) = ®s/N, therefore the last term in the right-hand side of (49) is very
small comparing with the first two terms (at least, for 6 > 1, since ¢(1) ~ 0.1261), and
we can rewrite (49) in an extremely simple form:

6 1_/6\p
MEPy ~ <I>(—§> 4 Zq><§> & (50)

3. Numerical Simulations

Figures 1 and 2 compare the following expressions of the generalization error for 6 = 2
and 6 = 4, respectively:

(i) an asymptotic formula (7) of Basalykas ef al. (1996);
(i1) our asymptotic formula (47);

(iii) our short asymptotics (50);

(iv) an empirical formula (6) of Raudys (1997).

The exact values of MEPy obtained using (i)—(iv) for 6 = 2,4 and p = 10 and 50,
are presented in Tables 1 and 2, respectively. Since there was demonstrated in (Basalykas
et al., 1996) that the formula of Basalykas et al. is very accurate, here we consider its
values as the exact ones. In (Basalykas ef al., 1996) was also mentioned that the MEP
mainly depends on a ratio p/N. Therefore, though our derivation of formulas (47) and
(50) is valid for p > 4, these formulas together with Tables 1 and 2 in obvious way can
be used for the case p < 3.

Figures 1 and 2 show that for the small NV values an empirical formula of Raudys can
be useful while for the bigger N values our short asymptotics is sufficiently accurate. We
also can see that for the bigger ¢ one needs to take the bigger N to make our formula
accurate. Indeed, one can notice that in equations (16), (20), (22) and (32) the factors
Cy. of \¥ (A = (p — 3)/(2N)) increase together with k increasing. Moving from Cy\*
to Ck+1Ak+1 this increasing is of the order §/ fs, therefore these equations are valid for
such § that

6 p—3
7672 o o)
i.e.,
5
N> P

2£(6/2)
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Fig. 1. Generalization error versus length NV of learning set for p = 10 and 6 = 2.
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The numerical simulations show that for § > 1 starting from Ny = ép/f(6/2) our

short asymptotics (50) is sufficiently accurate (for n > Np). By example, if p = 10, for

0 = 2and 6 = 4 we have Ny = 83 and 741, respectively (compare with Figs. 1, 2 and
Table 1).

Table 1

Generalization error values obtained by different authors (p = 10). B means Basalykas et al., D (Di¢itnas) —

this paper, equation (47), S — short asymptotics (50), R — Raudys

N 10 20 50 100 200 500 1000 2000 10000
6 = 2, Bayes’ error MEPo, = 0.1587
B 0.2745 0.2303 0.1930  0.1773 0.1684  0.1627 0.1607 0.1597 0.1589
D 0.3026  0.2260  0.1922  0.1772 0.1684  0.1627 0.1607 0.1597 0.1589
S 0.3690  0.2638 0.2007  0.1797 0.1692  0.1629 0.1608 0.1597 0.1589
R 0.2805 0.2244  0.1812  0.1677 0.1622  0.1596 0.1590  0.1588 0.1587
6 = 4, Bayes’ error MEPo, = 0.0228
B 0.1189  0.0822  0.0530  0.0403 0.0327 0.0272 0.0251 0.0239  0.0230
D * * 0.0715 0.0399  0.0322  0.0271 0.0250  0.0239  0.0230
S 0.2671 0.1449 0.0716  0.0472 0.0350  0.0276 0.0252  0.0240  0.0230
R 0.1362  0.0868 0.0492  0.0358 0.0292  0.0253 0.0240  0.0234  0.0229
*

— unapplicapable value.
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Fig. 2. Generalization error versus length N of learning set for p = 10 and 6 = 4.

Table 2
Generalization error values obtained by different authors (p = 50)
N 10 20 50 100 200 500 1000 2000 10000
6 = 2, Bayes’ error MEPo, = 0.1587
B 0.4039  0.3493 0.2753 0.2313 0.2008 0.1776 0.1686  0.1637 0.1597
D * * * 0.2528 0.2023 0.1776  0.1686  0.1637 0.1597
S * * 0.3690  0.2638 0.2112  0.1797  0.1692  0.1639  0.1597
R 0.4108 0.3624  0.2805 0.2244 0.1885 0.1677 0.1622  0.1600  0.1588
6 = 4, Bayes’ error MEPo, = 0.0228
B 0.4039  0.3493 0.2753 0.2313 0.2008 0.1776 0.1686  0.1637 0.1597
D * * * 0.2528 0.2023 0.1776  0.1686  0.1637 0.1597
S * * 0.3690  0.2638 0.2112  0.1797 0.1692  0.1639  0.1597
R

0.4108  0.3624  0.2805  0.2244  0.1885  0.1677  0.1622  0.1600  0.1588

*

— unapplicapable value.
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Atsitiktinio nulinés empirinés klaidos tiesinio klasifikatoriaus vidutiné
tikétina klaida: paprasta asimptotika centruotu duomenu atveju

Valdas DICTONAS, Sartinas RAUDYS

Siame straipsnyje gauta atsitiktinio nulinés empirinés klaidos tiesinio klasifikatoriaus vidutinés
tikétinos klaidos (VTK) isreikstiné asimptotika centruoty duomeny atveju. Taip pat pasiiilyta kita
labai paprasta asimptotiné VTK formulé ir iSnagrinétos salygos, prie kuriu §i formulé tampa
pakankamai tiksli. Gauty formuliy tikslumas palygintas su kity autoriu pasiiilytu formuliy tikslumu.



