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Abstract. The accuracy of adaptive integration algorithms for solving stiff ODE is investigated.
The analysis is done by comparing the discrete and exact amplification factors of the equations. It
is proved that the usage of stiffness number of the Jacobian matrix is sufficient in order to estimate
the complexity of solving ODE problems by explicit integration algorithms. The complexity of
implicit integration algorithms depends on the distribution of eigenvalues of the Jacobian. Results
of numerical experiments are presented.
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1. Introduction

We consider the time integration of stiff systems of ODE given in the form

dU
dt

= f(t, U), 0 < t 6 T, (1)

U(0) = U0,

where f is a nonlinear map f : R × Rm → Rm, U is a vector of m components. Many
models of real world applications are described by initial value problems for systems
of ODE. The reaction term f usually introduces stiffness into the problem. The precise
definition of stiffness is not very important for our purposes. We can assume that stiffness
means that the problem describes processes with a huge range of characteristic reaction
times. Good surveys on stiff systems of ODE are given by Dekker and Verwer (1984),
Aiken (1985), Higham and Trefethen (1993), Hairer and Wanner (1996).

Numerical methods for solving systems of ODE can be divided into two large groups,
for non stiff and stiff problems. Explicit methods are usually used for integration of non
stiff problems, and implicit methods are preferred when ODE are stiff.
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The stiffness of initial value problem for a system of ODE obviously depends on the
differential equation itself, but we must also take into account the size of the tolerance to
be used, the integration interval and the initial values.

One simple stiffness detection technique connects the stiffness of the initial value
problem (1) with the stiffness of the Jacobian matrix J . A survey on such techniques is
given in (Ekeland et al., 1998).

Most modern integration algorithms are adaptive. They use a stepsize selection strate-
gy that tries in each step to find the largest possible stepsize such that the local truncation
error is kept smaller than the user-defined tolerance ε. If the aposteriori estimated local
error is larger than ε, the step is rejected, and a smaller stepsize is tried.

The current work is devoted to the investigation of the efficiency of explicit and im-
plicit adaptive integration algorithms for solving linearized systems of ODE. We shall
prove that stiffness number of the Jacobian matrix gives important information about
stiff ODE but this information is not sufficient in order to evaluate the computational
difficulty of stiff ODEs.

The remainder of the paper is organized as follows. Section 2 describes finite differen-
ce schemes, gives an analysis of the discretization errors associated with these schemes,
and presents stability results. Section 3 describes our adaptive integration technique. Sec-
tion 4 presents the results of numerical experiments, and Section 5 states our conclusions.

2. Finite–Difference Schemes

As was stated above, the eigenvalues of the Jacobian J of f in (1) give important infor-
mation about the stiffness of the initial-value problem for ODE. Hence, we consider the
following system of linear ODE

dU
dt

+AU = 0, 0 < t 6 T, (2)

U(0) = U0,

here A is m×m constant matrix. Let assume that A is diagonalizable with real eigenval-
ues, so that we can decompose it

A = RDR−1,

where

D = diag(λ1, λ2, . . . , λm)

is a diagonal matrix of eigenvalues, and R = (R1, R2, . . . , Rm) is a matrix of right
eigenvectors, i.e.,

ARj = λjRj , j = 1, 2, · · · ,m.
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We will always assume that the eigenvalues of A are positive

0 < λ1 6 λ2 6 . . . 6 λm,

and the system of eigenvectorsR is complete, e.g., the initial vector U0 has the eigenvec-
tor expansion

U0 =
m∑
j=1

αjRj .

The problem (2) is called stiff, if the stiffness number S = λm/λ1 of matrix A is a
large number, i.e., S � 1.

We discretize the system of ODE (2) on the nonuniform difference grid

ωτ = {tn: tn = tn−1 + τn, n = 1, 2, · · · , N}.

Let V n = V (tn) denotes approximation of the solution U(tn) at the discrete grid points.
For the time integration we consider the following schemes (see, Richtmyer and Mor-

ton, 1967; Stetter, 1973; Butcher, 1987):

Forward Euler scheme:

V n − V n−1

τn
+AV n−1 = 0. (3)

Backward Euler scheme:

V n − V n−1

τn
+AV n = 0. (4)

Centered Euler scheme:

V n − V n−1

τn
+A

V n + V n−1

2
= 0. (5)

Rosenbrock scheme: (see, Shirkov, 1984 )

Wn

τn
+A

(
1 + i

2
Wn + V n−1

)
= 0,

V n = V n−1 + ReWn, i =
√
−1. (6)

2.1. Local Truncation Error

As was stated in Section 1, most adaptive integration algorithms try to keep the local
truncation error constant and smaller than a user-defined tolerance ε.
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The local truncation error Ψn is defined replacing V n in a difference scheme by the
exact solution Un at the corresponding point. It is obvious that Ψn is a measure how well
the difference scheme approximates the differential equation locally. Assuming that exact
solutions are smooth and expanding some terms of Ψn in Taylor series about Un we get
the following well-known results.

Lemma 2.1. Let assume that U ∈ C2(0, T ), then |Ψn| = O(τ) for the forward and
backward Euler schemes. If U ∈ C3(0, T ), then |Ψn| = O(τ2) for the centered Euler
and Rosenbrock schemes.

2.2. Stability

The Lax equivalence theorem says, that for a consistent linear method, stability is neces-
sary and sufficient for convergence (see, Richtmyer and Morton, 1967 ). We consider the
eigenvectors expansion of the discrete function

V n =

m∑
j=1

vnj Rj . (7)

If we put (7) into a finite difference scheme, we obtain m decoupled equations

vnj = ρj(τλj)v
n−1
j , j = 1, 2, · · · ,m.

Then we define the amplification factor of the difference scheme as

ρ(τ) = max
16j6m

|ρj(τλj)|.

The finite difference scheme is stable provided

ρ(τ) 6 1. (8)

In some applications it is important to guarantee that the asymptotical behavior of the
discrete solution is the same as for the exact solution. The finite difference scheme is said
to be asymptotically stable provided (see, Samarskij, 1988)

ρ(τ) = |ρ1(τλ1)| < 1.

Asymptotical stability analysis of large number of finite difference schemes for PDE is
given by Čiegis (1991).

The finite difference scheme is said to be positive provided

ρj(τλj) > 0, j = 1, 2, · · · ,m.

Such condition is very important for solving problems, which describe mass conservation
in chemical reactions.
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Table 1

Stability of finite difference schemes for the linear problem (2)

Scheme ρj Stability Asympt. stability Positivity

(3) 1− τλj τ 6 2
λm

τ < 1
λm

τ 6 1
λm

(4) 1
1+τλj

∞ ∞ ∞

(5)
1−0.5τλj
1+0.5τλj

∞ τ < 2√
λ1λm

τ 6 2
λm

(6) 1
1+τλj+0.5τ2λ2

j

∞ ∞ ∞

The amplification factors and stability conditions of finite difference schemes (3)-(6)
are listed in Table 1.

It follows from Table 1 that the backward Euler and Rosenbrock schemes satisfy
unconditionally all stability requirements. The centered Euler scheme is unconditionally
stable with respect to the stability definition (8), but we need to put restrictions on stepsize
τ in order to preserve positivity and asymptotical stability of its solution.

3. Adaptive Integration Algorithm

We use the following stepsize selection strategy

τn = min(τn1, τn2, τ0), (9)

where τ0 is a user-defined maximal stepsize, τn1 is the largest possible stepsize such that
the appropriate stability requirement is satisfied, e.g.,

ρ(τn1) 6 1,

and τn2 is the largest possible stepsize such that the local discretization error is smaller
than a user-defined tolerance

|(ρj(τn2λj)− e−τn2λj )vn−1
j | 6 ε, j = 1, 2, · · · ,m. (10)

By using such definition of the local discretization error we estimate the error intro-
duced during one integration step starting with the initial value V n−1

j . Then the exact
solution of ODE is given by

unj = e−τn2λjvn−1
j ,

and the solution of finite difference scheme is given by

vnj = ρj(τn2λj)v
n−1
j .
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A similar definition of the local discretization error was used in Shirkov (1984). The
local discretization error is closely connected to the local truncation error, defined in
Section 2. For example, the local truncation error of the forward Euler scheme is given
by

Ψn
j =

1

τn
(e−τnλj − ρj(τnλj))un−1

j .

We shall investigate computational costs of this adaptive integration algorithm by
making direct computational experiments with various test problems. MatrixA is selected
artificially with the goal to describe important cases of stiff ODE.

4. Numerical Experiments

In this section we solve two different types of stiff ODE. The definition of stiffness num-
ber S depends only on minimal and maximal eigenvalues of matrix A. Hence in the first
set of test problems we use 2× 2 matrix A with two eigenvalues

λ1 = 1, λ2 = 10k, k = 3, 4, 5, 6. (11)

In the second example we use m×m matrix A with the same stiffness number S =

106 but with different distributions of eigenvalues:

m = 2, λ1 = 1, λ2 = 106,

m = 3, λ1 = 1, λ2 = 103, λ3 = 106,

m = 4, λ1 = 1, λ2 = 102, λ3 = 104, λ3 = 106,

m = 5, λj = 10j−1, j = 1, 2, · · · , 7.

(12)

The problem (2) is solved in the interval [0, 6] and the tolerance ε is set to 10−4. In all
numerical experiments, we take τ0 = 0.2 as the maximal allowed stepsize in the adaptive
stepsize selection algorithm (9).

4.1. Spectral Stability

In this section we use the general stability condition (8). Table 2 presents the numbers of
steps required for different integration algorithms to solve the first test problem (11).

It is easy to see that the stepsize of the explicit Euler scheme is restricted due to sta-
bility requirements and the number of steps depends linearly on the stiffness of matrix
A. It follows from this example that the stiffness number S can not be used to estimate
costs of implicit adaptive integration algorithms. We note that second order accurate in-
tegration schemes (i.e., the centered Euler and Rosenbrock schemes) are computationally
more efficient than the first order accurate backward Euler scheme.

In Table 3 we present the numbers of steps required for different integration algo-
rithms to solve the second test problem (12).
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Table 2

Number of integration steps for solving Example 1

k FES BES CES ROS

3 3133 271 59 66

4 30133 272 59 66

5 300130 272 59 66

6 3000103 272 59 66

Table 3

Number of integration steps for solving Example 2

m FES BES CES ROS

2 3000103 272 59 66

3 3000103 408 84 95

4 3000108 529 107 122

7 3000172 718 145 170

It follows from results given in Table 3 that the number of integration steps for im-
plicit integration schemes depends linearly on the number of clusters in the distribution
of matrix A eigenvalues. After resolving accurately the transition of jth component, the
stepsize increases in accordance with the size of (j + 1)th eigenvalue. The centered Eu-
ler scheme was most efficient for this test problem, but the other unconditionally stable
schemes (i.e., the backward Euler and Rosenbrock schemes) were also efficient.

4.2. Asymptotical Stability

In this section we investigate the efficiency of adaptive integration schemes when the
asymptotical behavior of the solution is most important. Hence we change the stabil-
ity condition in the stepsize selection algorithm and define τn1 in accordance with the
requirement

ρ(τ) = | ρ1(τλ1)|.

As it follows from Table 1, this new condition makes impact only on the explicit and
centered Euler schemes. In Table 4 we present results of numerical experiments for the
second test problem (12).

The centered Euler scheme solves the problem in more steps than the backward Euler
and Rosenbrock schemes, but still can be used in numerical simulations.
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Table 4

Experiments with asymptotically stable difference schemes

m FES BES CES ROS

2 6000069 272 3025 66

3 6000069 408 3046 95

4 6000069 529 3053 122

7 6000119 718 3078 170

Table 5

Experiments with difference schemes satisfying the positivity condition

m FES BES CES ROS

2 6000069 272 2999991 66

3 6000069 408 2999991 95

4 6000069 529 2999991 122

7 6000119 718 2999992 170

4.3. Positivity of Difference Schemes

Many real-life problems of computational chemistry, ecology, atmosferic transport-
chemistry lead to initial-value problems for ODE. The vectorU defines concentrations of
different species and all its components must be nonnegative. In this section we investi-
gate the efficiency of adaptive integration algorithms with τn1 chosen in accordance with
the positivity requirement for the amplification factor of the difference scheme

ρj(τ1λj) > 0.

As it follows from Table 1, this positivity condition makes impact only on the centered
Euler schemes. In Table 5 we present results of numerical experiments for the second test
problem (12).

These results show that the centered Euler scheme is only twice faster than the forward
Euler scheme if positivity of solution must be guaranteed.

5. Conclusions

In this paper we have investigated the efficiency of adaptive integration algorithms for
solving stiff initial-value ODE. It is proved that the stiffness number of the Jacobian
matrix J gives a sufficient information to estimate the computational costs of explicit
schemes.
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The computational complexity of implicit integration algorithms depends on the dis-
tribution of eigenvalues of the Jacobian matrix. It is proved that unconditional stability of
difference schemes is more important than the order of local truncation error. Numerical
results obtained solving two sets of test problems demonstrate that the backward Euler
and Rosenbrock schemes are most efficient and accurate.
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Diferencialini ↪u lygči ↪u standži ↪uj ↪u sistem ↪u adaptyvusis integravimas

Raimondas ČIEGIS, Remigijus ČIEGIS, Olga SUBOČ

Šiame darbe nagrinėjamas adaptyvi ↪uj ↪u integravimo algoritm ↪u efektyvumas, kai sprendžiamos
standžiosios paprast ↪uj ↪u diferencialini ↪u lygči ↪u sistemos. Lokalioji vieno žingsnio paklaida ↪ivertinama
palyginant diferencialinės lygties ir jos aproksimacijos augimo daugiklius. Parodyta, kad išreikš-
tini ↪u integravimo algoritm ↪u kaštus galima pakankamai tiksliai ↪ivertinti remiantis sistemos jako-
biano s ↪alygotumo skaičiumi. Neišreikštini ↪u integravimo algoritm ↪u skaičiavimo kaštai priklauso ne
nuo matricos s ↪alygotumo skaičiaus, bet nuo matricos tikrini ↪u reikšmi ↪u sankaupos tašk ↪u skaičiaus.


