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Abstract. This work is an attempt of generalization of the simple statement about the requirements
of commutation of words for the case of languages. In the paper, the necessary condition for com-
mutation of languages are obtained, and in the prefix case the necessary and sufficient conditions
are obtained. It is important to note that the considered alphabets and languages can be infinite.

The possibilities of application of the obtained results are shown in the other problems of the
theory of formal languages. The boundary problems for the further solution are formulated.
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1. Introduction

In many textbooks on the theory of formal languages (see, e.g., Salomaa, 1981), the
following simple statement is considered.

PROPOSITION 1.1. uv = vu if and only if

(∃w ∈ Σ∗, k, l ∈ N0) (u = wk, v = wl).

This work is an attempt of generalization of the sectional statement about the require-
ments of a commutation of words for the case of languages. Up to the extremity the
considered problem is not decided, i.e., in general case for the use in other problems
necessary and sufficient requirements of this equality are not obtained.

The yet not solved problems are formulated as hypotheses. In the present paper, the
obtained necessary conditions are reduced, and for the prefix case the necessary and suf-
ficient are.

In the previous publications of the authors (see, e.g., Melnikov, 1995), the special
cases of the sectional statements were applied to the solution of equivalent problems in
special subclasses of context-free languages class. In the present paper more composite
statements are obtained – in particular, when the considered alphabets (or the languages
over them) are infinite. The authors hope that the same criteria and also criteria obtained
in this paper for more common tasks, can be used in some other problems of the formal
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languages theory. (Some of such problems were considered in (Melnikov, 1995). In the
same papers, the subjects were formulated for further examination, i.e., a complex of
bound problems.)

2. Preliminaries

Let us consider free monoid (Σ, · , e) and its supermonoid (P(Σ), · , {e}).
The definitions, connected with the formal languages theory, are used by Salomaa

(1981), Aho et al. (1985). Let us consider also some other definitions used below.
Let v = a1a2 . . . an, and for somem 6 n, we have u = a1a2 . . . am. Then u is called

the prefix of the word v. We shall write this fact as u ∈ pref (v) (if m < n we shall write
u ∈ opref (v)).

Let U and V satisfy of condition:

(∀u ∈ U)(∃v ∈ U)(u ∈ opref (v)).

Then if U ∈ pref (V ) we shall write U
⊂∞ V .

Let U and V is infinite languages. If U ⊆ opref (V ) and V ⊆ opref (U) we shall
write U

∼∞ V and the languages U and V is equivalent in infinity.
Let us remark that below we shall denote infinite languages by large bold letters

(A, . . . ,D), and finite ones by A . . . ,D.
Also let us designate ‖A‖min as the length of the shortest word of the language A.
Let us designate for arbitrary languageA

pv (A) = {u ∈ A | (∀v ∈ A)(u /∈ opref (v))} .

For example, let above alphabet ∆ = {0, 1} the languages

C = {0, 100, 101, 111}, D = {01, 110}

be given. Then we have

pv (D) = C

for this languages.
If (∀u, v ∈ A)(u /∈ opref (v)), then we shall call set (language) A prefix set (lan-

guage), we shall write this fact as Pr (A).
The code above alphabetA is any subset from A∗, which is the basis of a free monoid

from A∗. I.e., C ⊆ A∗ is a code, if any equality

x1 . . . xm = y1 . . . yn,

where from

x1, . . . , xm, y1, . . . , yn
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follows, that

m = n and x1 = y1, . . . , xn = yn.

The code C ⊆ A∗ is termed prefix if no word from C is not the left divider of other
word from C, i.e., CA+ ∩ C = ∅.

The code above the alphabetA is termed maximum, if it is not contained in any other
code aboveA.

For any alphabet ∆, we shall consider the following recursion definition of a set of
maximum prefix codes above ∆. Let us designate the defined set of languages mp (∆);

– we consider that ∆ ∈ mp (∆);
– for any C ∈ mp (∆) and B ⊆ C, we suppose

(C \B ∪B∆ ∈ mp (∆)) .

If the set D is such that for some of C ∈ mp (∆) the condition C ⊆ D is carried out,
we shall write D ∈ mp +(∆).

Let us consider the examples for the two last definitions. Let the languages

C = { 0, 100, 101, 11 } and D = C ∪ { 01, 110 }

be given above the alphabet ∆ = { 0, 1 }. Then

C ∈ mp (∆)

besides C,D ∈ mp +(∆).
For the alphabet Σ = { a, b } and set A = { ab, bbc } it is possible, for example to

consider that ∆A = ∆, and the morphism

h : ∆∗A → Σ∗

is given thus:

hA(0) = ab, hA(1) = bba.

Then the following

hA(C) = { ab, bba ab ab, bba ab bba, bba bba } ∈ mp (A),

hA(D) = {ab, bba ab ab, bba ab bba, bba bba,

ab bba, bba bba ab } ∈ mp +(A)

is fulfilled.
Thus, we shall consider equality

AB = BA (1)
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on sets of languages (i.e., in global supermonoids of free monoids).
Let us mark that the considered sets A and B can contain e, because of it there arise

problems, considered in Section 3. Moreover, if e is not contained in considered sets, the
further proved statement 3.1 is trivial.

3. The Case of Arbitrary Finite Languages

Thus, at first we shall consider the case of finite languages. Without any proof, we shall
mark the following obvious fact: If AB = BA,

(∀k, l ∈ N0) (AkBl = BlAk). (2)
1

PROPOSITION 3.1. If AB = BA, B∗
⊂∞ A∗.

Proof. As we have said before, we shall consider in this section the case of finite sets A
and B only.2

Let us assume at first that A 63 e. Let us consider any word v ∈ B∗, choose l ∈ N0,
for which v ∈ Bl, designate k = |v|+ 1. The requirement

v ∈ opref (BlAk)

is carried out (e /∈ A, consiquently e /∈ Ak, therefore in the latter case it is really possible
to write “opref ”, and not just “pref ”). According to the marked above, BlAk = AkBl,
therefore

v ∈ opref (AkBl).

As e /∈ A, we have

‖A∗‖min > k > |v| v ∈ opref (Ak).

We surveyed an arbitrary word v ∈ B∗, hense at e /∈ A the condition

B∗ ⊆ opref (A∗)

(i.e.,B∗
⊂∞ A∗) is carried out. Further in the proved statement it is considered thatA 3 e.

Let us assume that B∗ 6⊂ opref (A∗), i.e.,

(∃v ∈ B∗) (v /∈ opref (A∗)).

1Generally, all the concatanations from k + l of languages, among which A is met k times and B is met l
times, are equal.

2 Hence, it is possible to consider also the considered alphabet Σ finite.
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Let us choose l ∈ N so that v ∈ Bl, and consider the language

D = {w ∈ A∗ |w ∈ pref (v) } .

Let us remark that

v /∈ opref (A∗),

hence v /∈ D, therefore it is possible by the alternate mode to define D as

D = {w ∈ A∗ |w ∈ opref (v) } .

Let us choose any word u ∈ max(D), let

u ∈ Ak1 and |u| = m

(thus we shall choose the numbers k1 andm). AsA 6= {e}, that at any i < j the inequality
takes place∣∣Ai∣∣ < ∣∣Aj∣∣ .
Therefore it is possible to pick some k2 ∈ N, such that∣∣Ak2

∣∣ > (m+ 1)·
∣∣Bl∣∣ .

Let us designate

k = max(k1, k2).

Let us remark that according to requirements e ∈ A and u ∈ Ak1 the word u enters each
of languagesAi at i > k1, consiquentlyAk 3 u.

Let us designate

v = ua1a2 . . . an ,

where

a1, a2, . . . , an ∈ Σ ,

and n > 0; let us define languages

C1 = {u, ua1, ua1a2, . . . , ua1a2 . . . an−1 } ,

C2 = vΣ∗ , C = C1 ∪ C2.
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Let us consider language D = AkBl. According to the marked above, the equality
D = BlAk is also correct. Let us estimate the number of (various) elemets of set D ∩ C
by two modes.

First, we shall consider an entryD asAkBl. All words of the type uw, wherew ∈ Bl,
can belong to D ∩ C. As, according to the supposition |u| = m, the word u has exactly
m various own prefixes (including e), and the condition

u′w ∈ D ∩ C

for some w ∈ Bl can be carried out for an arbitrary word u′ of the last set (u′ ∈
opref (u)), the total number of elements of set D ∩ C is estimated from above as fol-
lows:

|D ∩ C| 6
∣∣Bl∣∣+m·

∣∣Bl∣∣ = (m+ 1)·
∣∣Bl∣∣ . (3)

(We really have counted all the words of the set D ∩C, since the requirement u′′ ∈ C at
u′′ ∈ Ak and u′′ 6= u can not be carried out for the following reason. If u′′ was included
into language C1, the mode of choice of u as an element of the set max(D) would be
untrue, i.e.,

u′′ ∈ A∗ and |u′′| > |u|.

And if condition u′′ ∈ C2 was satisfied, the condition v ∈ opref (A∗) would be also
satisfied, but this contradicts the mode of choice v.)

Thus, there are no elements of language D ∩ C, except for enumerated, i.e., the in-
equality (3) is carried out.

Second, we shall consider notation D as BlAk. Owing to A 3 e, the requirement
v ∈ Bl is carried out, therefore all the elements of set D of the type vw, where w ∈ Ak ,
belong also C2, and hence C. Thus, the number of (various) elements of languageD∩C
is not less than the number of various elements Ak, and according to the requirement
k > k2 and the mode of the choice k2, we have

|D ∩ C| > (m+ 1)·
∣∣Bl∣∣ . (4)

Thus, the contradiction (3) and (4) is obtained, it proves the requirement

B∗ ⊆ opref (A∗)

i.e., B∗
⊂∞ A∗.

By double application of the statement 3.1 the following theorem is proved.

Theorem 3.1. If AB = BA, A∗
∼∞ B∗.
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Let us apply the theory from the paper (Melnikov, 1995) to any languages A and
B, satisfying the requirement (1). We obtain that from the explored equality (1) and its
corollary, i.e., the requirementA∗

∼∞ B∗ (Theorem 3.1), it results that above the alphabet
Σ∗ there is some set C, such that

A,B ∈ mp + (C).

Or in an alternate statement:

∃ h−1
C (A), h−1

C (B) ∈ mp + (∆C).

Let us remark that though for some u ∈ A ∪B the set h−1
C (u) can contain more than

one element (since the morphism h−1
C , corresponding to language C, not without fall is

injective), the languages

A′ = h−1
C (A) and B′ = h−1

C (B)

satisfy the relation

A′B′ = B′A′. (5)

The proof of the statement (5) will be carried out by contradiction by means of application
of the morphism hC to considered sets.

Thus, we can apply the special inverse morphism to setsA andB, satisfying the equal-
ity (1), getting the similar correlation (5) for new “decoded” sets A′ and B′. Moreover,
it is known that each of languagesA′ and B′ contains some maximum prefix code above
the alphabet ∆C as subset. Some possible algorithms of choice of an approaching set C
were discussed in (Melnikov, 1995; Melnikov, 1993).

And, as it was said earlier, some of the problems of the theory of formal languages,
possible for application of criteria obtained in this section, were surveyed in (Melnikov,
1995). However in those papers, there is essential the fact, whether the considered lan-
guages may be infinite. Therefore in the next section we shall consider generalizing of
the statements, proved in this one.

4. The Case of Arbitrary Infinite Languages

The statement considered in this section is the generalizing of the theorem proved above
for the sets having some finite numbers of atoms. Now we shall prove it for the case of
infinite sets.

As we said before, sets denoted by A, B (etc.) may contain infinitely many words.
Let us designate as Ai a sublanguage consisting from words of the language A of

length i.
For sets of infinite languages over the alphabet Σ, we’ll define some special partial lin-

ear order. It can be considered as generalizing of simple relation “contains more words”.
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DEFINITION 4.1. Let us define linear order� for finite and infinite alphabets

• Let the alphabet Σ be finite.
We shall write A � B, if there exists n such that the following condition holds:

|A1| = |B1|, |A2| = |B2|, . . . , |An−1| = |Bn−1|, |An| > |Bn|.

• Let the alphabet Σ be infinite.
We shall write A � B, if there exists n such that the following conditions holds:

A1 = B1 or (A1 6⊂ B1 and B1 6⊂ A1),

A2 = B2 or (A2 6⊂ B2 and B2 6⊂ A2),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

An−1 = Bn−1 or (An−1 6⊂ Bn−1 and Bn−1 6⊂ An−1),

An ⊃ Bn.

For example, for any alphabet Σ the language Σ∗ “contains more words” than the
language (Σ2)∗. It is obvious that if An ⊂ Bn, then An ≺ Bn.

Now we shall prove the fact, which is the generalizing of Proposition 3.1 for an infinite
case. Let us remark that the condition of proposition is, of course, the same as in that case,
but the alphabets and languages may be infinite.

PROPOSITION 4.1. If AB = BA, then B∗
⊂∞ A∗.

Proof. Suppose that A 63 e. Considering any word v ∈ B∗, we shall choose l ∈ N0, for
which v ∈ Bl; we shall designate k = |v|+ 1. Thus, following condition holds:

v ∈ opref (BlAk).

According to mentioned above, BlAk = AkBl, therefore

v ∈ opref (AkBl).

Since e /∈ A, we have

‖A∗‖min > qk > |v| and v ∈ opref (Ak).

Let us consider any word v ∈ B∗. Since e /∈ A, the following condition holds:

B∗ ⊆ opref (A∗).
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(i.e., B∗ ⊂∞ A∗.)
Thus, further in this statement we shall suppose that A 3 e.
Let us suppose that B∗ 6⊂ opref (A∗), i.e.,

(∃v ∈ B∗) (v /∈ opref (A∗)).

Let us choose l ∈ N such that v ∈ Bl. Let us consider also language

D = {w ∈ A∗|w ∈ pref (v)}.

By the method of constructionD is finite.
Let us remark that

v /∈ opref (A∗),

then v /∈ D, therefore it is possible to determine D by another way, i.e.,

D = {w ∈ A∗|w ∈ opref (v)}.

Since D is finite, it is possible to choose some word u ∈ max(D). Let the following
condition holds:

u ∈ Ak1 and |u| = m.

(We choose here the numbers k1 and m.)
Since A 6= {e}, for each i < j the inequality holds:

Ai ≺ Aj .

Therefore it is possible to choose some k2 ∈ N , such that

|Ak2 | > (m+ 1)· |Bl|.

As we did in the proof of Proposiotion 3.1, denote

k = max(k1, k2).

Let us remark that according to condidtions e ∈ A and u ∈ Ak1 , the word u belongs to
the languagesAi for each i > k1, thereforeAk 3 u.

Let us denote

v = ua1a2 . . . an ,

where

a1, a2, . . . , an ∈ Σ ,
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and, obviously, n > 0. We’ll define finite languages

C1 = {u, ua1, ua1a2, . . . , ua1a2 . . . an−1},

C2 = vΣ∗ , C = C1 ∪ C2.

Let us consider the language D = AkBl. According to Section 3, the equality D =

BlAk also holds. Let us count the number of various elements of the set D ∩ C by two
ways.

First, consider D as D = AkBl. All the words of uw, where w ∈ Bl, can belong
to D ∩ C. Therefore, according to the supposition |u| = m, the word u has equally M
various own prefixes (including e), then the condition

u′w ∈ D ∩ C

holds for any word u′ of the last set (i.e., u′ ∈ opref (u)) and some w ∈ Bl is choosed by
u′.

By the definition of the relation �, for the language D ∩ C, we obtain the following
conditions:

|D ∩ C| > |Bl|+m· |Bl| = (m+ 1)· |Bl|. (6)

(We have really counted all the words of the set D ∩ C, since the condition u′′ ∈ C,
u′′ ∈ Ak and u′′ 6= u cannot be true because of the following facts. If u′′ belongs to the
language C1, then we have a contradiction with the way of choosing u as the element of
the set max(D), since

u′′ ∈ A∗ and |u′′| � |u|.

And if condition u′′ ∈ C2 holds, we would have v ∈ opref (A∗), and the last fact contra-
dicts to the way of choosing v.)

Thus, there are no elements of the language D ∩ C, except enumerated ones, i.e., the
inequality (6) holds.

Second, consider the language D as D = BlAk. Owing to A 3 e, the condition
v ∈ Bl is carried out, therefore all the elements of the set D of the type vw (where
w ∈ Ak) belong also to C2, and therefore to C. Thus, the number of various elements of
the languageD∩C is not less than the number of various elements ofAk. And according
to the condition k > k2 and the way of choosing k2, we have

|D ∩ C| > (m+ 1)· |Bl|. (7)

Thus we have obtained the contradction of (6) to (7), therefore

B∗ ⊆ opref (A∗),

i.e., B∗ ⊂∞ A∗.
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For an infinite case the following theorem also holds.

Theorem 4.1. If AB = BA, then A∗
∼∞ B∗.

5. The Case of Prefix Languages

Below we shall consider other individual cases of equality (1), i.e., when one of consid-
ered languages contains no more than two words.

Let us consider equality (1) in the prefix case, i.e., let the requirements Pr (A) and
Pr (B) be carried out.

Theorem 5.1. If AB = BA, Pr (A) and Pr (B),

(∃C ∈ Σ∗, k, l ∈ N0) (A = Ck, B = Cl).

Proof. If A = B, the proved statement is correct at

C = A = B k = L = 1.

And if A = {e} (in the prefix case it is equivalent to that A 3 e), the statement is correct
at

C = B , k = 0 , l = 1 ;

similarly for B = {e}.
Considering these cases, in the below proved theorem we can expect that A 6= B,

and none of these sets contains e (i.e., not equal to {e}). At least one of two following
statements is carried out with this restriction:

(∃u ∈ A, v ∈ B) (u(v)) (8)

(∃u ∈ A, v ∈ B) (v ∈ opref (u)) (9)

(so far we do not confirm that exactly one of them) is true.
Let (8) be carried out (if (9), the reasonings are similar). Let us consider w ∈ Σ∗

such, that v = uw for any words u and v chosen according to the requirement (8). The
requirement

uwA ⊆ BA = AB ,

is carried out, therefore wA ⊆ B.
We shall designate D the association of all words w, which can be chosen according

to fixed u ∈ A and some satisfying (8) word v ∈ B. According to the mentioned the
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above, DA ⊆ B; therefore in case DA 6= B the requirement (1) is not fulfilled owing to
Pr (B). Thus,

D·A = B, (10)

and the requirement (9) is not fulfilled still.
According to (1) and (10), the equality

ADA = DAA

is carried owt, therefore owing to Pr (A) the following is correct:

AD = DA and Pr (D).

Thus, the requirements of the proved theorem are fulfilled and for languages A and D
(instead of A and B), and, as e /∈ A ∪B, the following is also correct:

‖A ∪D‖min < ‖A ∪B‖min (11)

(we have used elementary inequality, linking numbers ‖A‖min in two languages).
Let us designate now

A0 = A1 = A , B0 = B , B1 = D.

If A1 6= B1, so by applying all the explained above to languages A1 and B1, we receive
some A2 and B2 etc. According to the introduced labels of languages Ai and Bi and to
generalization of the statement (10) for all possible i the following inequalities are carried
out

‖Ai+1 ∪Bi+1‖min < ‖Ai ∪Bi‖min ,

similar to (11). It follows from these inequalities that the described process of building-up
of pairs sets Ai and Bi is finite, i.e., for some m ∈ N the following is correct:

A0 6= B0, A1 6= B1, . . . , Am−1 6= Bm−1, Am = Bm.

Let us designate

C = Am = Bm.

According to the method of building-upC,

{Am−1, Bm−1 } =
{
C,C2

}
,
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hence

{Am−2, Bm−2 } ⊆
{
C,C2, C3

}
,

and so on. Thus for some natural k and l the equalities

A = Ck , B = Cl

are fulfilled. The case when one of the sets is equal to {e} was surveyed earlier. Uniting
these two cases, we obtain that for the language C chosen by us

(∃k, l ∈ N0) (A = Ck, B = Cl) ,

as was to be proved.

Note. In case of the infinite alphabet Σ the proved theorem has the following numeri-
cal interpretation.

First, according to the Theorem 3.1 it is possible to consider that the sets A and B
contain some maximum prefix codes (i.e.,

A,B ∈ mp + (Σ);

see the following subsection on this theme). And as we consider the case of prefix sets,
A and B are maximum prefix codes, i.e.,

A,B ∈ mp (Σ).

Second, we shall rank the alphabet Σ, i.e., we shall consider any ration of the strict
order “≺”: if

Σ = { a1, a2, . . . , an } ,

then let us assume, for example,

a1 ≺ a2 ≺ · · · ≺ an.

By means of the entered relation “≺” let us rank also words from Σ∗, i.e., we shall
consider them in the lexicographic (alphabetic) order. We shall consider any languages
here only in specified order, i.e., let our sets A and B be

A = (u1, u2, . . . , uk) , where u1 ≺ u2 ≺ · · · ≺ uk ,

B = (v1, v2, . . . , vl) , where v1 ≺ v2 ≺ · · · ≺ vl
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(we use parentheses, as we consider A and B as serially ordered sets, i.e., the finite
sequences). We shall designate the coresponding sequences of lengths of words

D(A) =

(
|u1|, |u2|, . . . , |uk|

)
D(B) =

(
|v1|, |v2|, . . . , |vl|

)
.

It is simple to be convinced that as the order of the letters of the alphabet is fixed be-
forehand, so the arbitrary set A ∈ mp (Σ) is recovered in the unique fashion sequence
of lengths D(A) (i.e., such map from the set of maximum prefix codes into the set of
numerical sequences is an injection).

On the definition of maximum prefix codes it is simple to show that

AB ∈ mp (Σ)

(i.e., the set of maximum prefix codes is the undermonoid of considered global super-
monoid of a free monoid). Therefore we can use label D(AB) in just particular sense. It
is easily proved that

D(AB) =
(
|u1|· |v1|, . . . , |u1|· |vl|,

|u2|· |v1|, . . . , |u2|· |vl|, . . . , |uk|· |v1|, . . . , |uk|· |vl|
)
.

Hence, condition (1) is equivalent to equality

D(AB) = D(BA).

6. Conclusion

In this section some interesting examples and problems for further solution are consid-
ered.

We shall consider some examples. In the prefix case all pairs of languages A and
B, for which the requirement (1) is carried out, can be constructed on the basis of the
Theorem 5.1. It is obvious that (1) is correct also for any languages A and B, each of
which can be noted as⋃

i∈I
Σi

For some set of indexes I ⊆ N0.
Let us present a less obvious example nonprefixA and B:

Σ = {0, 1},

A = Σ ∪ { 00, 01, 11 } ∪Σ3, B = Σ ∪Σ2; (12)
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then

AB = BA =
⋃

26i65

Σi.

All examples (these and any others) can be changed by means of application to lan-
guages A and B of the same morphism, but it is not necessary injective.

Two hypotheses, for which the authors now have neither proofs, nor counterexamples,
are formulated further.

The essence of the first hypothesis is: if (1) is fulfilled, that equality

pv (A)· pv (B) = pv (B)· pv (A) (13)

is carried out.

Let us remark that for an arbitrary language

A ∈ mp + (Σ)

according to the definition of the set mp the requirement

pv (A) ∈ mp (Σ)

is carried out, therefore if the first hypothesis is correct (i.e., if equality (13) for arbitrary
commuting languagesA and B is really fulfilled), according to the Theorem 3.1,

pv (A) = Ck and pv (B) = Cl

for some C ⊆ Σ∗ (of the prefix set) and numbers k, l ∈ N0.
On the basis of these equalities the second hypothesis is stated: with the marked labels

it is possible to pick the set C thus, that A,B ⊆ C∗.
(We shall remark that, for example, pairs of infinite languages

A = Σ2Σ∗ and B = Σ4Σ∗

for the arbitrary alphabet Σ are not counterexamples to the second hypothesis, as we can
pick not only C = Σ2, but also C = Σ.)

For the analysis of both formulated hypotheses we use expression:

pv (A)· pv (B) 6= pv (A·B). (14)

For confirmation (14) we shall consider such an example:

Σ = {0, 1}, A = B = { 0, 01, 100, 101, 110, 111 } .
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Let us remark that here

A, B, AB ∈ mp + (Σ).

The inequality (14) thus can be tested immediately.3

In summary let us mark that with the problem of exposition of criteria of equality
AB = BA, and also with many problems, considered in previous sections and in (Mel-
nikov, 1995; Melnikov, 1993), the problem “of taking the root” from some given language
immediately is bound: for the given language A ⊆ Σ∗ it is required to find the greatest
possible n ∈ N and depending on n language B ⊆ Σ∗, such that A = Bn. Up to
the extremity this problem is not explored by the authors yet, therefore we shall adduce
only one interesting example, having some analogy to the example (12): for the arbitrary
alphabet Σ (including at |Σ| = 1 and |Σ| = ω) from language⋃

26i610

Σi

not only the "obvious" square root is extracted,⋃
16i65

Σi

but also ⋃
i∈{ 1,2,4,5 }

Σi.

Thus, in case of languages, the operation of taking the root of a given degree is not a
(unique) function.
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Laisv ↪uj ↪u monoid ↪u globaliojo supermonoido perstatiniai

Anna Brosalina, Boris Melnikov

Straipsnyje siekiama apibendrinti formaliosios kalbos žodži ↪u perstatymo reikalavimus. Jame su-
formuluotos pakankamos formaliosios kalbos komutatyvumo s ↪alygos. Prefiksinėms kalboms su-
formuluotos taip pat ir būtinosios s ↪alygos. Rezultatai galioja taip pat ir begaliniams alfabetams
bei begalinėms kalboms. Parodyta, kaip naudoti gautus rezultatus kai kurioms kitoms svarbioms
formali ↪uj ↪u kalb ↪u teorijos problemoms spr ↪esti.


