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Abstract. In this paper we suggest a three-language (3L) paradigm for building the program gen-
erator models. The basis of the paradigm is a relationship model of the specification, scripting and
target languages. It is not necessary that all three languages would be the separate ones. We con-
sider some internal relationship (roles) between the capabilities of a given language for specifying,
scripting (gluing) and describing the domain functionality. We also assume that a target language is
basic. We introduce domain architecture (functionality) with the generic components usually com-
posed using the scripting and target languages. The specification language is for describing user’s
needs for the domain functionality to be extracted from the system. We present the framework for
implementing the 3L paradigm and some results from the experimental systems developed for a
validation of the approach.
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1. Introduction

Program generation is the process of producing code automatically by a program gener-
ator. In contrast to a compiler, a generator usually produces code in a high-level target
language. The target language may be either the conventional or domain-specific lan-
guage. In recent years the interest grows in the program generators increasingly. The
reason is that future of software engineering lies in the automated development of well-
understood software in order to keep pace with the ever-increasing productivity in the
development and production of computer hardware.

It is a non-trivial task to build a generator or generating system for several reasons.
First, a generator is usually applied in a domain-specific area. A generator can’t be build
without understanding of its domain. It is not sufficient to propose a domain model. The
model must be validated through extensive experiments and prototyping. Next, a genera-
tor can’t be considered as a stand-alone system only, but as a subsystem of the integrated
system, too. Finally, for the generalisation purposes and accessibility of the results for
a wider community, the tool design principles must be identified and represented in a
domain-independent way. The generalisation can be achieved by introducing some for-
malism and abstraction. This requires more deep domain knowledge and efforts from the
designer than building a system from scratch.
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Program generators were already mentioned twenty-five years ago (or so) in the
literature. From the perspective, now we can observe an evident shift: 1) from the
template-centric to component-based models; 2) from the domain-dependent to domain-
independent models; 3) from the fine-grained to course-grained components; 4) from the
stand-alone implementations to implementations linking domain analysis and architec-
tures with software generators.

In this paper we suggest a three-language (3L) paradigm for building the program
generator models. The paradigm basis is a relationship model of the specification, script-
ing and target languages. However, it is not necessary that all three languages would
be the separate ones. We describe boundaries, roles and relationship of these languages
from the viewpoint of building a generating system for a given domain. With respect to
the control and transformation capabilities, our models are abstract machines that can
be interpreted as generalised translators for higher-order programs. We present some
results of experiments gained from the experimental generating systems developed for a
validation of the approach.

The structure of the paper is as follows. We present the review of the related works
in Section 2. We describe our approach in general in Section 3. We present the details of
our 3L paradigm in Section 4. Some implementation results are given in Section 5. We
describe the experimental results in Section 6. Finally, we present summary, evaluation
of the results and concluding remarks in Sections 7 and 8, respectively.

2. Review of the Related Works

Program generators are the invention of about twenty-five years old. According to our
knowledge, perhaps, the first referencing to the problem has been made by several authors
in the area of compiler generators (Johnson, 1975; Lesk, 1975; see also Terry, 1997). The
domain-specific generators have been in use in some specialised areas, such as discrete
event simulation (Luker et al., 1979), hardware testing (Tinaztepe et al., 1979; Oswald
et al., 1983), teaching of programming (Teitelbaum et al., 1981). The main intention of
their usage was to increase the programming productivity for inexperienced users. Several
years later, CASE (Computer-Aided Software Engineering) tools (Terry, 1987) and ap-
plication generators in data processing area (Phelps, 1987) became available as a market
product for workstations and mainframes. Luker and Burns summarise the achievements
of the first decade in (Luker et al., 1986). Their work focuses on the generalised structure
(generator’s model) and user’s dialogue (the specification problem).

Program generators have received an increased attention at the end of 90’s with the
development of research in reuse. Lex & Yacc, perhaps, is the best-known example of
a program generator (Mason et al., 1990; Levine et al., 1992). The initial understanding
of the up-to-date generator models can be gained through analysis of the tool definitions.
“A generator creates derived components and various relationships from languages and
templates. The generator is often a conversational or language-driven tool” (Jacobson
et al., 1997). Lim (1998) presents other view: a generator is “a higher-level automatic
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builder that hides the manual interconnection of components using a problem-oriented
language, template or option filter, or a visual environment”. Furthermore, the author adds
that “the generator enables concise specification of the desired (piece of) the application,
and then generates code and/or procedure calls in some other language”.

At the abstract level, many authors conceive a generator model as a process that uses
(transforms) two structures (parts): the invariant and variant ones. The invariant part is
reused without changes. The variant part serves for adding a functionality to customise the
invariant part. The central problem is how the invariant part should be represented. A for-
malism or abstraction used to represent the invariant part varies in a wide range: from the
simplest templates, such as language structures with “holes”, i.e., omitted non-terminals
(Teitelbaum et al., 1981) to more sophisticated templates, such as used in skeleton or
kitchen sink approaches (Sametinger, 1997); from the generics and packages in domain-
specific languages, such as VHDL (Ashenden, 1996; VHDL Tutorial, 1996) to domain-
specific language itself; from the language patterns, such as assembly language to object-
oriented abstraction in such language as C++ (Sametinger, 1997); from the programming
language extensions (e.g., P++ is the C++ extension in GenVoca model (Batory et al.,
1995)) to scripting languages, such as TCL (Ousterhout, 1993).

Perhaps, there is no universal abstraction that suits best for most practical purposes,
i.e., for building reusable components and generators. However, the known abstractions
might be categorized into two large categories with respect to the target language as fol-
lows: the internal and external abstractions. By the internal abstractions we mean those
that exist in a given language we use to describe the component (generics, packages,
abstract data types, mechanisms that support object-orientation and other kind of gen-
eralisation, etc.). By the external abstractions we mean those that are or might be intro-
duced as an extension of a given language (scripting languages, the above-mentioned Ba-
tory’s P++, etc.). The external abstraction is called a meta-program, too (Batory, 1998a).
The template abstraction (aka skeleton, frame; for discrepancies in terminology see in
(Sametinger, 1997; Bassett, 1997)) might be interpreted either as an internal or external
abstraction. That depends upon what is the nature of the template: if it is a part of the
language itself, for example, PASCAL(PL/CS)_structures with “holes” (Teitelbaum et al.,
1981), ATLAS_frames (Oswald et al., 1983; Štuikys et al., 1993) may be considered as
the internal abstractions. However, FSM1 templates in the form of state tables are intro-
duced into the generating system from outside (Štuikys et al., 1997) and should be treated
as an external abstraction.

Furthermore, some formalism such as HOL (Higher-Order Logic) is powerful enough
and can be used as a tool for implementing the abstraction independently (Milne, 1994).
Other abstractions such as scripting languages are supplementary for target languages.
The role of scripting (aka gluing, composition) languages for reuse was pointed out by
several authors (Griss, 1993; Ousterhout, 1998). The scripting language may be inter-
preted as a higher-order language aiming to glue subcomponents developed in other lan-
guage into a system. The latter may be either a domain-specific or conventional language.

1Finite State Machine
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The capabilities of scripting languages vary from simple to the sophisticated ones such
as TCL (Ousterhout, 1998; Schneider et al., 1999).

At the lower level of a generating model analysis, one should conceive that the invari-
ant part is more related with a generic library, and the variant part is more related with a
specification module of a generator. Actually the invariant part must be treated as a set of
generic components, the items of a generic library. The library component-centric gen-
eration models as well as tools or frameworks for implementing generators itself might
be recognized as perspective directions in generative reuse (Thibault et al., 1997; Batory
et al., 1998; Biggerstaff, 1998; Czarnecki et al., 1999). To build a generic component
or generator, first we need to extract commonalties, differences and similarities from a
domain. The activity that serves for achieving this aim is called domain analysis (DA).
The primary goal of DA is to build a domain model. The most general domain model
is a domain language (Prieto-Diaz, 1990; Iscoe et al., 1991). Many different approaches
exist how to perform DA (Batory, 1998b; Neighbors, 1998). The best known example is
FODA, the Feature-Oriented DA method (Sametinger, 1997). A domain can be treated as
well-understood one, if a maturity level of domain knowledge is high. That level can be
measured, for example, by the number of standards, their status and evolution, the num-
ber of systems and their maturity, the quality and population of products, the efforts and
support from industry and governments, the number of subdomains, the number of publi-
cations existing in (sub)domains, etc. Among others, the applications related to hardware
design with the standard high-level domain language VHDL (VHDL Interactive Tutorial,
1996) must be mentioned.

For well-understood domains, such as mentioned above, a domain language already
exists. According to Pietro-Diaz (Prieto-Diaz, 1990) this is the “reuse of analysis of in-
formation” and it is the “most powerful sort of reuse”. The standard high-level language
yields a very broad knowledge for understanding of the domain. As a result, the domain
can be subdivided into subdomains and applications. For example, the standard VHDL
can be split into subsets such as VITAL (Chang, 1998) for more narrow applications. The
domain content is very important for successful reuse. Biggerstaff (Biggerstaff, 1998)
has reported the argument that “the first order term in the success equation of reuse is
the amount of domain-specific content and the second order term is the specific technol-
ogy chosen in which to express that content”. A domain-specific language (DSL) allows
to express better the domain content and implement reuse rather than conventional pro-
gramming language (Thibault et al, 1999; Hudak, 1998). This is the first reason why
DSLs have attracted the increased attention in recent years. The second reason is the less
cost at the latest life cycle phase of a software system implemented with DSL (Hudak,
1998). Both languages (the conventional and DSL), however, may reside in the same
integrated system as follows from the next analysis.

Usually a representation of the target system (application) in a DSL is not a self-aimed
product. For domain-specific applications, such as real time systems (ATLAS-related ap-
plications (IEEE standard ATLAS Test Language, 1981), partially VHDL-related appli-
cations), the target product is the lower-level control data (program) to control the produc-
tion line process (instruments, equipment). In this case a DSL serves for interfacing be-
tween the higher-level and lower-level specifications. However, the latter is implemented
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using the conventional language (e.g., C or C++) and its environment (ARINC Specifica-
tion 608–1, 1989; Štuikys et al., 1993).

Our research in automatic program generation is related with some domains, includ-
ing VHDL domain. We analyse how the language supports the following capabilities in
our generator models:

a) the representation of the domain object functionality in some generalised manner
(generic component design);

b) the scripting of the related functionality in order to express the higher-order func-
tionality (variations);

c) the specifying of a domain problem when generating its abstract description in the
target language;

d) the composition of the language abstractions with abstractions of the external lan-
guage Open PROMOL (Štuikys et al., 2000) for the purposes of generalisation.

The context in which the different subsets of the same language (VHDL in our case)
can play a role of scripting, specification and describing the given functionality at the
same time is a very important feature of the approach proposed. Its details are as follows.

3. A General Description of the Approach

We introduce a paradigm for building the program generator models. At the abstract level,
we describe our approach using the following concepts: the target language (TL), specifi-
cation language (SpL), scripting language (ScL), generic component (GC), generic com-
ponent library (GCL) and abstract machine for transformation and control (see Fig.1).
Each concept has a particular role and relates to the abstract “building blocks” that may be
evolved for representing the models at the lower level. As the term “language” plays the
essential role in this case, we call our model the language-centric model. Our approach
is based on two assumptions.

The first assumption is that a generating system should perform at least three basic
functions:

a) to allow specifying a domain problem;
b) to allow representing domain functionality in some generalised manner;
c) to produce a target system with respect to a given specification.
The second assumption is that three languages may describe these functions: the tar-

get, scripting, and specification. 3L paradigm doesn’t mean that these languages are nec-
essarily the separate and independent ones. Either the different subsets of a given lan-
guage can play a role of a target, scripting and specification language, or two separate
languages combined into a system in a appropriate way can enhance these capabilities.

However, the TL is always assumed as basic. The rest two languages are complemen-
tary to the basic one. In other words, our paradigm is based on a particular relationship
between these three languages with a particular role of the TL. This relationship exists
because there is no “pure” TL. Each language that we use to express domain functional-
ity also contains some capabilities for gluing the different functionality and specifying a
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Fig. 1. The paradigm of a generating system.

domain problem. Composing in an appropriate way a system, say, of two different lan-
guages (one of them is a TL), we can enhance the specification and scripting capabilities
of a TL in a desirable manner for generating purposes. The problem we deal with is
formulated as follows:

1) how to capture a relationship between capabilities of a TL to express a domain
functionality;

2) how to describe scripting of the different functionality for generalisation purposes
and specify a domain problem (how to built the relationship model);

3) how to enhance this model introducing extra capabilities with an external language;

4) how to explore and use this model for building generating systems.

It is a conventional way to specify a domain problem (the input to the system) by
writing a specification. We assume that a SpL serves for this purpose. We use this term
here in a narrow sense having in mind the abstract but not formal specifications (such
as HOL, Z or VDM). Furthermore, we assume also that SpL may be a subset of a given
target or scripting language. The yield of the system is a target program. A TL is for
coding a target program that describes the domain functionality. Later, at the lower level
of the model description, we assign a particular meaning to both the TL and SpL.

A component (an instance) is a black-box entity that encapsulates a service or a pre-
scribed functionality behind the well-established interface. The GC (aka reusable compo-
nent) encapsulates a set of the component instances. A concrete instance can be derived
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in a particular way from that GC. Since a GC is some generalisation, the number of GC’s
is much less than the total number of instances. No matter how large or small is a collec-
tion of GC’s used in the generative system, we need to have a library, called the GCL, for
keeping them.

A ScL is a tool for developing and representing either GC’s or a system composed
from GC’s (in other words, either the fine-grained or coarse-grained GC’s). Input data
for developing a GC is a domain knowledge gained as a result of domain analysis (DA). A
structure of a GC may be conceived of as a concise collection of the component instances.
An instance of a component represents an algorithm or functionality of the target domain.
We assume that a TL is for describing this functionality. The aim of GC’s is to introduce
the target domain (application) algorithms in a generalised way for the generating system.
In other words, a GC is a concise description of the different functionality delivered as a
logically complete structure. A GC may be either the generalised instance or a composi-
tion of instances. Before the development of GC’s, the application algorithms should be
disclosed and understood. This is a matter of DA. We assume that algorithms can be de-
scribed in a domain-specific language (DSL), as well as in a conventional programming
language (the TL in this context). In our model a role of a ScL is either to generalise or
compose the component instances for developing GC’s. In general, this means that a ScL
is not the self-contained. It should be used together with a TL. A TL serves for describing
target algorithms while a ScL serves for composition and generalisation. However, we
assume that some “overlapping” of the roles of those languages may exist, as it will be
shown in the next Section.

4. The Relationship Model between Languages in 3L Paradigm

In the previous Section we have pointed out a relationship between the TL and ScL.
Below we present a more accurate model. This relationship model comprises all three
languages and their features. Note that we analyse this model in the narrow sense here,
i.e., only from the viewpoint of building of the generating systems. One important aspect
of the model (see Fig. 2, a) is that there may be either a specific or advanced language(s)
which (whose) different subsets (or separate constructs) can play a role of the TL, ScL
and SpL at the same time (see in Fig. 2, a the relationship chains 1, 2 and 3). We detail
this model feature in Fig. 2, b. We present the roles of three languages in the right-hand
side of the table. The left-hand side of the table illustrates concrete instances (names) of
the languages that we analyse in the role of the TL, ScL and SpL while implementing a
generating system.

One can assume (see Fig. 2, b) that Open PROMOL (this is a full title of the
language) and its processor play the central role in our approach. Open PROMOL
(PROgram MOdification Language) is the scripting language aiming to specify modi-
fications of a program written in a TL. The language has been developed as an exper-
imental language to support the generic (reusable) components and generating systems
design. The main concept of the language is a set of external functions, initially described
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Variants (cases) for implementing (testing) Roles of
the conceptual model languages

SpL ScL TL
1) TL≡PROMOL; ScL≡PROMOL; SpL≡PROMOL; TL TL TL
2) TL≡VHDL; ScL≡VHDL; SpL≡VHDL; TL TL TL
3) TL≡VHDL; ScL≡PROMOL; SpL≡PROMOL; ScL ScL TL
4) TL≡C++; ScL≡PROMOL; SpL≡PROMOL; ScL ScL TL
5) TL≡PASCAL; ScL≡PROMOL; SpL≡PROMOL; ScL ScL TL
6) TL≡BNF; ScL≡PROMOL; SpL≡PROMOL; ScL ScL TL
7) TL≡VHDL; ScL≡PROMOL; SpL≡VHDL; TL ScL TL
8) TL≡JAVA; ScL≡PROMOL; SpL≡PROMOL ScL ScL TL
9) TL≡CLARION; ScL≡PROMOL; SpL≡PROMOL; ScL ScL TL

b)

Fig. 2. Relationship of target, specification and scripting languages (a) and variants of the model (b).

in (Štuikys, 1998). This set is still open for extensions that might arise due to the new ap-
plications to be introduced. We argue that the component generalisation can be achieved
with Open PROMOL through the external pre-programmed modifications of the given
target program.

For more than two years the language and its processor is exploited by post-graduate
students as an experimental tool. As PROMOL processor has been developed using Lex
& Yacc, we can support a rapid prototyping and carry out continuous improvements and
extensions on both platforms, the Win32 (Windows NT32) and UNIX (SunOS). However,
the main concept of the language has been preserved during this process becauseexternal
functions are a powerful abstraction allowing to perform a composition for modification
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and generalization in a simple and natural way. A function always returns a string of the
TL that is being composed with its context in some pre-programmed way. The script-
ing program is a particular composition of the functions. A function has the format as
follows:

@function_name[argument1, argument2, . . ., argumentn]; here n > 0.

Some functions such as @if , @case, @for can be found as control structures (opera-
tors) in the conventional programming languages under different or similar names. How-
ever, other functions such as @gen (this function serves for generating the “look-alike”
strings in a TL) are specific for Open PROMOL.

The language has actually one type, the string type. However, this type can be inter-
preted in different contexts differently (either as a text, integer, real, binary or enumerated
type). Because this difference can be recognized from the context, there are no attributes
for the explicit declaration of the type. So, the language may be regarded as a typeless
language, this is a feature of the ScL (Ousterhout, 1998).

An example that illustrates the PROMOL usage for representing explicitly the multi-
plication of matrixes follows below (see Fig. 3). The PROMOL functions are integrated
together with the symbols of a TL as follows: C[ ] = A[ ] ∗ B[ ]+;. As a result of inter-
pretation of the program and taking into account that (r1 = 2; c1 = 2; r2 = 2; c2 = 2),
we will receive:

C[1, 1] = A[1, 1] ∗B[1, 1] +A[1, 2] ∗B[2, 1];

C[1, 2] = A[1, 1] ∗B[1, 2] +A[1, 2] ∗B[2, 2];

C[2, 1] = A[2, 1] ∗B[1, 1] +A[2, 2] ∗B[2, 1];

C[2, 2] = A[2, 1] ∗B[1, 2] +A[2, 2] ∗B[2, 2];

From the architectural (structural) viewpoint, a PROMOL specification (aka compo-
nent) can be represented in two different ways. The first representation is a single specifi-
cation module as given in Fig. 3. The second one is a set of interrelated external modules
(see Štuikys, 2000). A single module consists of two parts: the interface program and
specification body (implementation).

We distinguish two points to the specification with respect to the development and
usage phases: the designer’s viewpoint and user’s viewpoint. The specification’s designer
implements the requirements for modification and generalization using the PROMOL
language and its processor. He (she) implements a specification as a generic component
in a whole. The implementation covers the statement of requirements, the specification
development (analysis of a domain model, mapping of a given set of requirements into
set of parameter values, i.e., coding of the interface program, and coding the specification
body with external functions), testing and certification. A user usually works with the
interface program and produces instances from the specifications developed by a designer.
From the user’s viewpoint, the interface program is visible, and the specification body is
hidden. This is an ideal case. Of course, a user can modify, if needed, the previously
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$
“Specify the number of rows in the first matrix:” {2..10} r1:=10;
“Specify the number of columns in the first matrix:” {2..10} c1:=10;
“Specify the number of rows in the second matrix:” {2..10} r2:=10;
“Specify the number of columns in the second matrix: {2..10} c2:=10;

$
@if[c1/ = r2, {
Matrix multiplication is impossible.
},{
@for[i, 1, r1, {

@for[j, 1, c2, {
C [ @sub[i], @sub[j] ] = @for[k, 1, c1,
{A [ @sub[i],@sub[k]]∗ B [ @sub[k],@sub[j]]@if[k/ = c1, {+}, {; }] }

] @– the end of the second inner for function
}] @– the end of the first inner for function

}] @– the end of the outer for function
}] @– the end of the if function

Fig. 3. PROMOL specification represents explicitly the multiplication of two matrixes in a TL.

developed specification without any restrictions. This view is very important because the
interface program can be understood as a problem specification part for the processor.

In Fig. 4 we deliver a generalized template of an interface program (compare it with
the one given in Fig. 3). It describes a domain problem specification. The following is
new in this template: a) the include statement for declaration of external promol_modules
which might be used in the specification; b) conditional assignment that is executed only
if the given condition (represented by a logical expression) has value true (or 1) (note that
the condition must be expressed by parameters which values have been already specified).
By the specification capabilities of PROMOL we mean those we use to code interface
programs.

As has been stated previously, a specification can possess a hierarchical structure
consisting of the interrelated external modules. In this case interface program also has
the hierarchical structure, i.e. each module has its own interface program. We summarize
analysis of PROMOL and its specification as follows.

The modification (generalisation) power and scripting flexibility of the language
mainly depends upon:

a) parameterization and specification capabilities (the language implements the
multi-level parameterization concept with respect to the target program: external
file (module) name - promol_function itself - argument of the function - a nested
function as an argument of the given function (see Fig. 4 and 3));

b) a computation power (the language allows the main arithmetic, relational and logi-
cal operators, expressions for the above mentioned operators, standard computation
functions such as cos);
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$
@include[< module_name_1 >, ... ,< module_name_k >]
$

“A question_1 related with the parameter_1 of the application:”
{< list_of_values_of_parameter_1 >} < parameter_1 >:=< value_from_list_1 >;

... ... ...
[<condition>] “A question_i related with the parameter_i of the application:”

{< list_of_ values_of_ parameter_ i >} < parameter_i >:=< value_from_list_i >;
... ... ...

“A question_n related with the parameter_n of the application:”
{< list_of_values_of_parameter_n >} < parameter_n >:= < value_from_list_n >;

$

Fig. 4. PROMOL interface program template for specifying a domain problem.

c) capabilities to manipulate with a unique data type, the string type, and recognise
other types (integer, real, bit) from the context;

d) capabilities of nesting (an argument of a particular function may be other PROMOL
function; there are no constrains on the nesting deepness if the nesting is allowed
for that argument);

e) the capability to compose external PROMOL modules;

f) usage of the special editor PROMed (PROMOL editor) that allows syntax high-
lighting and in this way to overcome partially difficulties caused by the prettyprint-
ing problem;

g) the independence of the PROMOL processor from the target language.

As has been stated previously, ScL (PROMOL in our case) is used together with the
TL. The standard VHDL (VHDL, Interactive Tutorial , 1996) stands for this purpose in
VHDL-related applications. We distinguish the following language capabilities (roles): a)
to express domain functionality (i.e., to describe domain algorithms in the conventional
way); b) to represent either a system as a set of scripts (subcomponents) or express the
domain functionality in a more general way; and c) to specify the target system with the
specification capabilities of the language. In other words, we consider the standard as a
language consisting of two interrelated (overlapped) subsets: the structural subset and
functional subset. At the highest level, for example, we specify the target system with the
structural subset.

We can summarise the main result of the previous analysis as follows (see also Fig. 5):
1) In order to develop GC’s, we can use the following abstractions: external PROMOL

functions, the internal abstractions of the TL, and the mixed abstractions (external
functions and internal capabilities of a TL);

2) We can cover a family of instances of domain models only with a few GC’s;
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Fig. 5. A graphical interpretation of the relationship of TL, ScL and SpL: a) view of PROMOL as SpL + ScL;
b) view of VHDL + PROMOL; c) VHDL in role of TL, SpL and ScL.

3) As a number of GC’s is small and a number of instances produced from those GC’s
may be large, a processor that interprets those GC’s can be treated as a program
generator for a narrow application.

4) VHDL contains many advanced internal abstractions that allow developing a
generic component. A generic component is a powerful mechanism for implement-
ing reuse. The framework for the development of GC’s is as follows. First, we need
to formulate the requirements as precisely as possible. Next, we need to analyse
the application domains for which we intend to use the developed GC. Finally, we
must map the given set of requirements and user’s needs expressing them with the
abstractions that allow generalising a component.

5. The Extended Models and their Implementation in Experimental Systems

In this Section we will introduce several experimental generating systems based on the 3L
paradigm. The cases (see Fig. 2, b) can be categorised (combined) into three categories
as follows:

a) PROMOL processor as a stand-alone generator (case 1, case 3, case 4, case 5,
case 6, case 8, case 9);

b) generator model that uses DSL (VHDL) abstractions only (case 2);

c) generating system that uses the PROMOL processor as a subsystem (case 7).

In Fig. 6 we deliver the extended representation of our model. This representation
covers DA of domains under consideration, too. We restrict here the application building
and analysis for a few domains. The examples are: VHDL-oriented applications, applica-
tions related with various types of transformations, such as a Chebyshev’s approximation
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Fig. 6. The extended view of the 3L paradigm.

of functions, Fast Fourier Transformation, etc. The latter applications are also known as
data specialisation (Chirokoff et al., 1999) or program specialisation (Glück et al., 1995).

Other cases are described in our works (Štuikys, 2000; Ziberkas, 2000; Štuikys et al.,
2000). In the next subsection we present the role of the generic component library (GCL)
in our approach.

5.1. Role of GCL in the 3L Paradigm

The library concept is fundamental for many tools and applications. It allows imple-
menting the “black-box” reuse and achieving a higher productivity in software systems.
The library model used in our generator’s paradigm allows to combine two approaches,
the compositional and generative reuse, and extract the inherent efficiency (“use-as-is”,
productivity) that resides in each approach. Our library model has the following charac-
teristics.

First, the number of its items is relatively small because the items are generic compo-
nents (GC’s). We produce a GC using some abstraction that allows representing a family
of related instances of domain objects, in many cases, with one component. Next, we
allow different abstractions (either internal abstractions of the TL itself, such as gener-
ics, packages, unconstrained array types, etc., or external abstractions, such as external
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Fig. 7. GC model for a given application domain.

(1 – interface of VHDL component instance; 2 – VHDL implementation (or its functionality);

1
′
– interface of GC developed using VHDL abstractions only; 2

′
– GC implementation using VHDL

abstractions only; 1∗– interface of GC developed using mixed abstractions (PROMOL + VHDL);

2∗– GC implementation using mixed abstractions).

functions of the higher-level scripting language, or mixed abstractions). This ensures flex-
ibility for the system. Finally, the component structure is unique in our model no matter
what abstraction we use (Fig. 7).

The structure, i.e., the library item, consists of two interrelated parts: the interface and
implementation. In general, the interface serves for communicating with the environment
or other components. As we have the hierarchical environment (system-level, processor-
level), the interface has the hierarchical structure, too (see Fig. 7). Note that the lowest
level interface of a component (1 or 1’ in Fig. 7)serves for communicating with other
components. The implementation serves for implementing a functionality or algorithm
(generalised or concrete) of the component. This view to the component is common for
each component type including the library item (it is represented at the highest level
of the model). The interface of a library-level GC contains the following data: 1) the
status of a component: TL, certification level (number of test cases, type of tools used for
validation, etc.); 2) characteristics of a component: name, data (signal) types, abstraction
used, characteristics of its functionality, application domain, statistics.

The structure of GC presents the component model. It is visible in the model (see
Fig. 7) as a single structure, i.e., it is represented with respect to the highest level external
agent (human or system). However, the internal structure of GC may be a complex system
consisted of the lower-level components. In such a case we say that a GC represents an
architecture of a domain application. Furthermore, GC as architecture does not depend
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Fig. 8. Two approaches for developing a GC: a) with external abstractions; b) with internal abstractions of a TL.

upon abstraction used for composing that GC (see Fig. 8).
The experiments reported in (Ziberkas, 2000) have shown that both abstractions

(VHDL only and VHDL+PROMOL) are applicable and, in many cases, yield the very
similar result of the synthesis. We don’t have the intention to show a comprehensive
comparison of these two abstractions here. Our recommendation is to apply both in GC
design.

To build GCL for a generator we need, first, to undergo through analysis and, next,
through the implementation of a set of requirements that may be categorised into two
categories: 1) user requirements; 2) tool requirements. The first category mainly relates
to (sub)domain objects, their characteristics and attributes, such as functionality and ef-
ficiency of GC’s. For different domains the efficiency criteria may be different. For ex-
ample, for the VHDL-related applications and given technology, the efficiency criterion
is either the area of the chip that can be produced from the given component or the
input-output delay. For transformation-based domains a more likely criterion will be the
performance of a target program.

As for tool requirements, the most important requirements are as follows: domain
boundaries and applicability (the number and quality of GC), compatibility of GC’s, ef-
ficiency in use (adaptability, extensibility and maintainability).

5.2. PROMOL Processor as a Stand-Alone Program Generator

Suppose we possess the GCL containing items that have the structure as described in Fig.
8. Suppose we have a program that performs the following actions: a) reads an item from
the GCL; b) recognises the type of abstractions used in the GC; c) transfers the GC to
PROMOL processor if the GC possesses the PROMOL abstractions. Let us now consider
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Fig. 9. PROMOL processor as a stand-alone C++ code generator.

a system, which consists of GC and PROMOL processor. The latter interprets a GC. The
way in which the interpretation follows depends upon the selected mode for the process.
For example, a user can choose a mode in which the interface program of GC will be
processed using the default parameter values (see Fig. 2 and 3). In this case the problem
specification phase is omitted because the processor uses the default specification. If a
user needs to change the problem specification program (aka interface program) he (she)
should select another mode allowing to perform modifications of that program. As has
been stated previously, we use the PROMOL processor for different applications. The
tool stands for a program generator for those domains. How the PROMOL processor
stands for C code generator, we will illustrate below.

Take, for example, the transformation-based applications (Glück et al., 1995; Chi-
rokoff et al., 1999). The main intention of the PROMOL usage in such applications is to
show the applicability of the approach for computing time reduction and increasing per-
formance of the algorithms. This can be achieved assuming that the execution of a target
program may be split into two phases: the early phase and late phase. The early phase
implements the static computing of the transformation algorithm, while the late phase
implements dynamic or run time computing. At the earlier phase using PROMOL we
carry out calculus, which are time-consuming such as cos(x) and also perform enrolling
of the loops. As a result, the PROMOL processor creates a set of target programs called
specialised programs each containing the different number of points. A generation of the
specialised program follows as it is stated in Fig. 9.

The usage of the PROMOL processor for specialisation of C++ programs does not re-
quire the full potential of the language. We need a subset of the language to be used in this
case. Furthermore, a specification in PROMOL developed for this application represents
a stand-alone component. This specification may be treated as a fine-grained component
no matter that the instances produced by this component may have a large size (this will
become evident after analysing the experimental results).

We can demonstrate wider capabilities of the language when developing with PRO-
MOL the course-grained but stand-alone components in VHDL. Let us return to the
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Fig. 10. A simplified architecture of the system-level VHDL generator.

model given in Fig. 7. This model allows to implement a more complicated system, ac-
tually an application in a given domain. However, this application should be represented
as a stand-alone instance. The specification itself may consist of external modules as
it is shown in (Štuikys, 2000). But this model can also be generalised in the following
way. One can assume that a particular external module may be a constituent of several
independent root modules.

5.3. A Generating System Using the PROMOL Processor as a Subsystem

Till now we have analysed generating systems that have had a single specification or, in
other words, GC and its processor. As has been stated in previous sections, a GC itself
may represent a system containing lower-level components. A great deal of instances can
be produced through processing. No matter how large or small CG is, there is always a
need for user to compose a system from components by linking components externally,
not only using the hidden (prescribed) packaging of smaller components in GC. The ex-
ternal composition of a system is more flexible because user can implement the particular
requirements.

The simplified architecture of the system-level generator is given in Fig. 10. As
Lex&Yacc is an application generator, our system implements three-level generator’s
model:

• system-level generator (highest level),
• promol processor (middle level),
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entity GATE_SYSTEM is
port(d : in bit_vector(1 to 4);

p : out bit);
end GATE_SYSTEM;

architecture PARITY_CHECK of GATE_SYSTEM is
signal s1, s2 : bit;
component GATE_XOR port(x1, x2 : in bit; y : out bit);
end component;

begin
u1 : GATE_XOR port map(x1=> d(1), x2=> d(2), y=> s1);
u2 : GATE_XOR port map(x1=> d(3), x2=> d(4), y=> s2);
u3 : GATE_XOR port map(x1=> s1, x2=> s2, y=> p );

end PARITY_CHECK;

Fig. 11. The parity control system composed from 3 XOR gates.

• Lex &Yacc (lowest level).

A user carries out the domain problem specification using graphical SpL. The output
of the generating system is a target system described in VHDL. If a GC has only the
VHDL abstraction, the PROMOL processing cycle is omitted.

Here we will formulate some problems, which may arise when implementing the
system level generator:

1) domain analysis and GCL design;

2) compatibility of the components to make up a system;

3) integration of the lower-level subsystems into the generating system;

4) a specification problem for generating application for a given domain.

These problems are interrelated and should be considered more thoroughly. We con-
sider briefly only the last mentioned problem in the next subsection.

5.4. Graphical SpL Versus Textual SpL

For domains related with hardware design the VHDL structural subset can play a role
of the SpL (see Fig. 11). From the user’s viewpoint, it is more convenient to use the
graphical language, but not an abstract textual language. As for the usage of the structural
subset of VHDL, we can observe some correspondence between the graphical and textual
representation (see Fig. 11 and 12). Furthermore, with the textual representation in mind,
we have a case when all three languages (TL, ScL, SpL) are different.

Regardless of some agreements (standards) for representing the domain objects such
as gates and their attributes graphically, we need to have a higher accuracy for graphi-
cal representations with respect to the accuracy that has the textual representation. We



The Language-Centric Program Generator Models: 3L Paradigm 343

Fig. 12. A graphical representation of two-level parity control system (a) and component (b).

illustrate the difficulties that may arise for graphical representation with the following
example. Suppose we need to deliver the generic delay constant between the input-output
chain in the XOR gate in the above mentioned parity check system. It can be written in
VHDL, for example, for gate u1 as follows:

component GATE_XOR
generic (T: TIME);
port(x1, x2: in bit; y: out bit);

end component;
u1: GATE_XOR generic map (T => 2 ns)

port map(x1=> d(1), x2=> d(2), y=> s1);

It is not quite clear how the same attributes should be presented graphically not loos-
ing the representation accuracy and clarity. One of the solutions of the problem might be
such as that implemented in the experimental generating system described in Section 5.2.
In this system the both representation forms, the graphical and textual SpL, are used.
A user specifies a domain problem (system) interactively using graphical icons for rep-
resenting domain objects and lines for representing wires (signals), the nets for linking
objects. Prompts are used for specifying particular attributes, such as generics, that must
be incorporated into the description. These attributes are not the part of the graphical
representation. They are incorporated in the internal system model only. At the system
specification phase, the textual representation of the system to be created is hidden from
user, too. A generating system creates the full textual representation in VHDL only after
completion of the specification phase.

One can assume that this two-stage specification scheme is a compromise between
two interrelated representation forms, the graphical and textual languages. Furthermore,
we can consider that the specification created in the structural VHDL is a part of a target
program given in the TL.
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Table 1

Comparison of two approaches for program specialization of the FFT algorithm (Glück et al. 1995)

Program type Number Perform- Perform- Perform- Perform- Program Program Program Program
of points ance in ance ance in ms ance volume volume volume volume
for FFT µs ratio (Glück et ratio in bytes ratio in lines ratio1

(our al. 1995) (Glück (our (Glück Glück
result) et al. result) et al. et al.

1995) 1995) 1995)

unspecialised 80.41 2.17 615 151
16 6.69 5.05 7.59 4.64

specialised 12.02 0.43 4667 701

unspecialised 191.98 5.71 615 151
32 4.56 4.17 17.94 9.72

specialised 42.70 1.37 11035 1469

unspecialised 514.65 15.27 615 151
64 3.10 3.56 41.38 20.32

specialised 166.00 4.29 24446 3069

unspecialised 1245.80 40.86 615 151
128 2.91 2.86 94.90 42.36

specialised 427.60 14.22 58363 6397

1Note. Other implementation language and different measurement units used, perhaps, can explain different
ratio of program volume.

6. Experimental Results Gained from the Systems

We deliver the partial results (see Table 1 and 2) gained from the experimental system.
The primary objective of the experiments is to advocate the applicability of the approach.

Table 1 illustrates the applicability of PROMOL processor as a stand-alone program
generator for specialisation of a target program in C. Actually we regenerated with our
approach the results given in (Glück et al., 1995). Non-adequate environments in the ex-
periments can explain small discrepancies in the program speedup and memory losses.
Note that we have performed the program evaluation (analysis) in that experiment manu-
ally and automated the specialised program generation only.

Table 2 delivers an illustrative example for comparison of three different generating
models for VHDL applications. No matter that each model has a slightly different source
code (syntactically but not semantically) and it has been created in different way, the final
solution (the results of the synthesis) is very close for the same domain object (system).
The discrepancies are due to the inadequate interpretation of the source code by synthesis
tools we have used for experiments.

7. Summary and Evaluation of the Results

Our approach for building generators can be summarised as follows.
Firstly, we create a generic component library (GCL) for a given application domain.

A generic component (GC) is a generalised specification representing the different func-
tionality (features) of the same domain object. A GC represents a set of component in-
stances which, when applied, yields a concrete instance derived from that GC. As we use
GC’s, the size of the library is usually small. Our generators work in two modes: 1) a gen-
erator is a system that produces the stand-alone instances in a given target language from
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Table 2

Comparison of the results gained from three generation models for VHDL domain

Domain object List of VHDL code size Chip characterictics Architecture
(system) components in KB size

Generic Instance Number Area Delay in bits
of cells in ns

Adder created from GG12, 1 bit 4.9 4.9 17 10,320.8 3.08 4
GA1 (VHDL Adder 4.9 4.9 37 20,748.0 5.65 8
abstraction only) 4.9 4.9 77 41,602.4 10.81 16

4.9 4.9 157 83,311.2 21.18 32

Adder created GG23, generic 3.2 2.6 19 10,366.4 3.18 4
from GA gate system 3.2 2.8 39 20,793.6 5.95 8
(VHDL+PROMOL) equations 3.2 3.3 79 41,648.0 11.50 16

3.2 4.4 159 83,356.8 22.66 32

Adder generated by Gate instances 0.3 6.1 12 10,244.8 3.33 4
system-level derived from 0.3 9.5 24 20,489.6 5.60 8
generator from GG34 GG3 0.5 8.5 48 40,979.2 10.47 16

1GA – generic adder.
2GG1 – generic gate composed with VHDL abstraction only.
3GG2 – generic gate composed with VHDL+PROMOL abstractions.
4GC3 – other generic gate composed with VHDL + PROMOL abstractions, Cadence Synopsis synthesis tools

have been used.

GC’s (VHDL instances, C specialised programs, etc.); 2) a generator produces a VHDL
system (application) composed from VHDL instances while the instances are generated
from the GC’s.

Secondly, and this is the most important, we introduce the following abstractions:
a) the target language abstractions to express different variations of a domain functional-
ity; b) the external language abstractions (the PROMOL abstractions); c) the mixed ab-
stractions. More specifically, these abstractions allow us to build the relationship model
for representing domain functionality, scripting variations of a different functionality and
specifying a domain problem. More generally, we present this model as a paradigm that
describes the relationship of three languages (target, scripting and specification) for im-
plementing generation systems.

Finally, at the implementation stage, we use other tools as “components-from-the-
shelf”: the Lex&Yacc for implementing the PROMOL processor, and the PROMOL pro-
cessor for implementing generators. The system-level VHDL generator, for example,
explores the VHDL capabilities for specifying the target system to be built. However, we
use the graphical interface for specification of a target system. This allows hiding the lan-
guage abstractions from the user. The GCL and PROMOL processor are non-visible for
the user, too. We analyse several domains and carry out experiments with experimental
systems.

From the conceptual standpoint, other authors also use hybrid approaches, which
combine pure components with some generation technology (Biggerstaff, 1998; Ba-
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tory et al., 1995; Batory, 1998b). The systems reported in the literature, perhaps, have
a higher maturity2 level. However, we have achieved the presented results in a specific
way demonstrating the applicability and domain independence of the approach.

8. Concluding Remarks

VHDL, as a domain-specific language, allows expressing the domain content well and
implementing this content in generating systems. The generative factors predominate over
other technology factors. Our approach combines the following technological factors: the
domain-specific and conventional languages, componentry and generative factors. How-
ever, for purposes of generalisation, i.e., generic component building, and higher flexibil-
ity for expressing different variations of a domain functionality, we introduce the external
language, called Open PROMOL, as a complementary to the given target language. The
external language allows enhancing the specification capabilities of a generating system,
too.

We have developed several experimental systems, which have approved the 3L
paradigm. We have achieved this result in a specific way. We demonstrate the follow-
ing result: a) the role of domain content and domain-specific language to express this
content; b) the independence of Open PROMOL from a given domain and a target lan-
guage; c) the role of the mixed abstractions for implementing generation systems; d) the
applicability of the approach for building generating systems.
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Trij ↪u kalb ↪u paradigma program ↪u generatori ↪u modeliams kurti

Vytautas ŠTUIKYS, Giedrius ZIBERKAS, Robertas DAMAŠEVIČIUS

Straipnyje pasiūlyta paradigma program ↪u generatori ↪u modeliams kurti. Paradigmos esm ↪e sudaro
3 kalbos: tikslinė, scenarij ↪u (klijavimo, komponavimo) ir specifikavimo. Mes parodome, kad net
viena ↪i problem ↪a orientuota kalba gali atlikti ši ↪u trij ↪u kalb ↪u vaidmen ↪i. Paprastai srities architektūr ↪a,
t.y. generinius komponentus mes aprašome vartodami dvi kalbas (tikslin ↪e ir scenarij ↪u). Mes pateiki-
ame ši ↪u trij ↪u kalb ↪u roles, santyk ↪i (ryšius) ir ribas iš generavimo sistemos sukūrimo pozicij ↪u
duot ↪ajai sričiai. Valdymo ir transformavimo galimybi ↪u atžvilgiu mūs ↪u modeliai gali būti traktuo-
jami kaip abstrakčios mašinos arba apibendrinti transliatoriai aukštesnio lygio programoms kurti.
Mes pateikiame kai kuriuos eksperimentus pasiūlytam metodui validuoti.


