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Abstract. The paper presents new method for sequential classification of the time series observa-
tions. Methods and algorithms of sequential recognition are obtained on the basis of the recursive
equations for sufficient statistics. These recursive equations allow to construct algorithms of cur-
rent classification of observable sequences in the rate of entering its values into the on-line opera-
tion. Classification algorithms are realized in the form of computer programs, including personal
computers. They allow to build multi-channel conveyer computational structures for the sequential
recognizers of time series observations.
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1. Introduction

Recognition of random processes based on a description of classes by dynamic model
in the form of differential and difference stochastic equations was considered in a paper
by Shpilewski (1971) and by Petrow and Shpilewski (1974). Further, the Markov mod-
els gained a wide dissemination in practice (Shpilewski, 1980). The proposed approach
to the recognition of stationary random processes appeared to be extremely fruitful. It
allowed to obtain constructive methods of recognition of random processes with contin-
uous and discrete time, to work out dynamic classification algorithms in the recognition
of sequences in current time.

Sequential recognition of M classes time series observation are considered in the
given paper. A practically important class of stochastic models for describing a discrete
random processes are (Box, Jenkins, 1970):

– autoregressive processes of order p, AR(p)

y[n] =

p∑
i=1

am[i]y[n− i] + v[n], (1)
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– moving average processes of order q, MA(q)

y[n] = v[n]−
q∑
i=1

bm[i]v[n− i], (2)

– autoregressive-moving average processes of order (p, q), ARMA(p, q)

y[n]−
p∑
i=1

am[i]y[n− i] = v[n]−
q∑
i=1

bm[i]v[n− i], (3)

where n = 1, 2, . . . , N . Parameters of the dynamic models (1), (2), (3) are defined in the
learning regime by the realizations of known status. For this purpose the methods of the
least squares, maximal likelihood, Bayes or Yule-Wolker equations are used.

Moving average and autoregressive-moving average processes are not the Markov
processes, therefore, methods that have been developed earlier for Markov processes can-
not be applied to the MA(q) and ARMA(p, q).

2. Statement of the Problem

Let on a measurable space (Ω, F ) a stochastic processes Y (n) with a discrete time

Y (n) = [y[1], y[2], y[3], . . . , y[n], . . .] (4)

are given. Let {Fn}, n > 0 be a non decreasing family of σ-algebraFn = σ{y[ν], ν ≺ n}
and F = σ{UFn} in relation to which Y [1 : n] is measurable. With respect to the
observable process Y (n), M alternative hypotheses

H = {h1, h2, h3, . . . , hM}

are introduced. If pm is an a-priori probability of the hypothesis hm, then

pm > 0,
M∑
m=1

pm = 1.

M probability measures Pm, m = 1, 2, . . . ,M , are linked with the hypothesis hm
and P =

∑
pmPm. Let P [1 : n], Pm[1 : n] be restriction of measures P , Pm on σ-al-

gebra Fn.
The problem of multialternative recognition of the observable sample

y[1 : n] = [y[1], y[2], y[3], . . . , y[n]] (5)
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rests on breaking the sample space A (respectively Ω) into nonintersecting sets Am (or Ω

into ωm) from the condition of the minimum of the error probability

Per(n) = min
Am

M∑
m=1

Per,m(n) {y[1 : n] /∈ Am, hm} , (6)

for the decision rule

hk: y[1 : n] ∈ Ak. (7)

3. General Solution

The construction of abstract sets Am in the space of realisations may by obtained using
decision rules: the observed realisation (2) belongs to the class hm, for which the a-
posterior probability of class hm is maximal

hk: P (hk/y[1 : n]) = max
m

P (hm/y[1 : n]) . (8)

The a-posterior probability of the class hm is equal

P (hm/y[1 : n]) = pmf (y[1 : n]/hm) /f (y[1 : n]) .

Then the decision rule (8) will take the form

hk: pkf (y[1 : n]/hk) = max
m

pmf (y[1 : n]/hm) . (9)

The probability density function f(y[1 : n]/hm) in (9) for discrete random processes
y[1 : n] (1) for each class hm we present in the form

f (y[1 : n]/hm) = f (y[1]/hm)
n−1∏
i=1

f (y[i+ 1]/y[1 : i], hm) , (10)

or in the recursive form

f (y[1 : n+ 1]/hm) = f (y[1 : n]/hm) f (y[n+ 1]/y[1 : n], hm) (11)

with the initial conditions f(y[1]/hm).
The recursive equations for the likelihood function Lm(n) follow from (11)

Lm(n+ 1) = Lm(n)f (y[n+ 1]/y[1 : n], hm) (12)

with the initial conditionsLm(1) = f(y[1]/hm).
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The Bayesian decision rule (8) take the form

hk: pkLk(n) = max
m

pmLm(n). (13)

The logarithm of likelihood function lm(n) = ln(Lm(n)) satisfies the recursive equa-
tions

lm(n+ 1) = lm(n) + ln (f (y[n+ 1]/y[1 : n], hm)) (14)

with the initial conditions lm(1) = ln(f(y[1]/hm)).

The Bayesian decision rule (8) take the form

hk: ln pk + lk(n) = max
m

(ln pm + lm(n)) . (15)

The logarithm of likelihood function ratio um(n) = ln(Lm(n)/LM(n)) satisfies the
recursive equations

um(n+ 1) = um(n) + ln (f (y[n+ 1]/y[1 : n], hm))

− ln (f (y[n+ 1]/y[1 : n], hM )) (16)

with the initial conditions um(1) = ln(f(y[1]/Sm)/f(y[1]/hM).

The Bayesian decision rule (8) take the form

hk: ln pk + uk(n) = max
m

(ln pm + um(n)) . (17)

The considered general mathematical statement of processes recognition problem and
standard solution extremely simplify the problem and conceal those difficulties, which
arise while solving practical problem. In order to build the constructive methods for the
recognition of real processes two moments have an essential value:

– in what form the measures Pm, m = 1, 2, . . . ,M are set for description of real
processes;

– what degree of indeterminacy is in setting of the set measure.

The methods of recognition of the discrete random processes based on the use of time
series models in the form of stochastic recurrent equation (1), (2), (3) for the description
of the classes is considered in the given paper.

4. Recursive Algorithms of AR(p) Observations Recognition

Autoregressive processes of order p AR(p)

y[n] =

p∑
i=1

am[i]y[n− i] + v[n] (18)
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with initial condition, y[0] = y[−1] = .. = y[1 − p] = 0, where v[n] is white noise
process normal distribution, having mean zero and constant variance

E (v[n]) = 0, var(v[n]) = σ2

are taken as discrete random processes of m-th class model. The stationarity conditions
for autoregressive processes may be expressed by saying that the roots of characteristic
equation

zp −
p∑
i=1

am[i]zp−i = 0

for the processes (18) must lie inside the unit circle.
The sequential classification of AR observations we shall get on the basis of the fol-

lowing algorithm.

Algorithm 1
The discrete random processes described by equation (14) are general Markov. A

transient probability density functions in (10), (11), (12) are normal and have the form

f (y[n+ 1]/y[1 : n], Sm)

=
1√
2πσ

exp

{
−
(
y[n+ 1]−

p−1∑
i=0

am[i]y[n− i]
)2

/(2σ2)

}
. (19)

Substituting (19) into (12) we have the recursive equations for Lm(n).
The logarithm of likelihood function lm(n) satisfies the recursive equations

lm(n+1) = lm(n)−
(
y[n+1]−

p−1∑
i=0

am[i]y[n− i]
)2

/(2σ2)− log(2πσ2)/2. (20)

The logarithm of likelihood function ratio um(n) in decision rule (13) satisfies the
recursive equations

um(n+ 1) = um(n)−
(
y[n+ 1]−

p−1∑
i=0

am[i]y[n− i]
)2

/(2σ2)

+

(
y[n+ 1]−

p−1∑
i=0

aM [i]y[n− i]
)2

/(2σ2). (21)

Recursive equations (20), (21) and decision rules (15), (17) give us the recursive
recognition of m classes AR(p) observations.
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EXAMPLE 1. The discrete random processes (4) of the three classes h1, h2, h3 are de-
scribed by the AR models (22) of order p = 6.

y[n] = +1, 2y[n− 1]− 1.06y[n− 2] + 0.85y[n− 3]

−0.31y[n− 4] + 0.19y[n− 5]− 0.06y[n− 6] + v[n],

y[n] = +0.6y[n− 1]− 0.26y[n− 2]− 0.34y[n− 3] (22)

+0.81y[n− 4]− 0.07y[n− 5] + 0.01y[n− 6] + v[n],

y[n] = −1, 6y[n− 1]− 0.91y[n− 2] + 0.39y[n− 3]

+0.80y[n− 4] + 0.37y[n− 5] + 0.05y[n− 6] + v[n].

The sufficient statistics u1, u2, u3 are calculated using the recursive equations (21).
The class of the observable signal we determine by decision rule (17).The process of
dynamical recognition of the observable realisations are presented on the Figs. 1–3.

5. Recursive Algorithms of MA(q) Observations Recognition

Moving average processes of order q MA(q)

y[n] = v[n]−
q∑
i=1

bm[i]v[n− i] (23)

with initial condition v[0] = 0, v[−1] = 0, . . . , v[−q] = 0 are taken as discrete random
processes m classes model. The invariability conditions for moving average processes
may be expressed by saying that the roots of characteristic equation for the processes (23)

zq −
q∑
i=1

bm[i]zq−i = 0

must lie inside the unit circle. Moving average processes described by equation (23) are
non-Markov processes. We give recursive equations for sufficient statistics (7) on the
basis of the algorithm.

Algorithm 2
The conditional probability density function f(y[n+ 1]/y[1 : n], hm) is normal with

E (y[n+ 1]/y[1 : n], hm) = −em[1 : n]y[1 : n]′,

var (y[n+ 1]/y[1 : n], hm) = σ2,
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Fig. 1. Current recognition of the AR 1st class observations.

Fig. 2. Current recognition of the AR 2nd class observations.

Fig. 3. Current recognition of the AR 3rd class observations.
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where {′) sign of transposition, E(y[1]) = 0 and e[1 : n] satisfy the system of the
recursive equations for each m

n = 1 : N,

Cq = Cq +D ∗Bq;
D = Cq[1];

Cq = [Cq[2 : q, 0]];

e[1 : n] = [D, e];

(24)

with initial condition e = [], Bq[i] = b[i], Cq[i] = 0, i = 1, 2, . . . , q, D = 1.
A transient probability density functions in (10), (11), (12) are normal and has the

form

f (y[n+ 1]/y[1 : n], hm)

=
1√
2πσ

exp
{
− (y[n+ 1] + em[1 : n]y[1 : n]′)

2
/(2σ2)

}
. (25)

The logarithm of likelihood function lm(n) satisfies the recursive equations

lm(n+1) = lm(n)−(y[n+ 1] + em[1 : n]y[1 : n]′)
2
/(2σ2)−log(2πσ2)/2. (26)

The logarithm of likelihood function ratio um(n) in decision rule (13) satisfies the
recursive equations

um(n+ 1) = um(n)− (y[n+ 1] + em[1 : n]y[1 : n]′)
2
/(2σ2)

+ (y[n+ 1] + eM [1 : n]y[1 : n]′)
2
/(2σ2). (27)

Recursive equations (26), (27) and decision rules (15), (17) give us the recursive
recognition of m classes MA(q) observations.

EXAMPLE 2. Moving average processes of order 2, MA(2)

y[n] = v[n]− 0.3v[n− 1] + 0.4v[n− 2],

y[n] = v[n]− 0.4v[n− 1]− 0.3v[n− 2],

y[n] = v[n] + 1.0v[n− 1] + 0.3v[n− 2],

y[n] = v[n] + 0.2v[n− 1]− 0.5v[n− 2]

(28)

with initial condition v[0] = 0, v[−1] = 0, v[−2] = 0 are taken as discrete random
processes of four classes h1, h2, h3, h4 model. The sufficient statistics u1, u2, u3, u4 are
calculated using the recursive equations (27). The class of the observable signal we de-
termine by decision rule (17). The process of dynamical recognition of the observable
realizations are presented on the Figs. 4–7.
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Fig. 4. Current recognition of the MA 1st class observations.

Fig. 5. Current recognition of the MA 2nd class observations.

Fig. 6. Current recognition of the MA 3rd class observations.
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Fig. 7. Current recognition of the MA 4th class observations.

6. Recursive Algorithms of ARMA(p,q) Observations Recognition

Autoregressive-moving average processes of order (p, q)

y[n]−
p∑
i=1

am[i]y[n− i] = v[n]−
q∑
i=1

bm[i]v[n− i] (29)

with initial condition y[0] = y[−1] = .. = y[1 − p] = 0 and v[0] = 0, v[−1] =

0, . . . , v[−q] = 0 are taken as discrete random processes m classes model. The station-
arity and invertibility conditions for autoregressive-moving average processes may be
expressed by saying that the roots of characteristic equation for the processes (18), (23)
must lie inside the unit circle. We give recursive equations for sufficient statistics (7) on
the basis of the Algorithm 3.

Algorithm 3
The conditional probability density function f(y[n+ 1]/y[1 : n], hm) is normal with

E (y[n+ 1]/y[1 : n], hm) = −cm[1 : n]y[1 : n]′,

var(y[n+ 1]/y[1 : n], hm) = σ2,
(30)

where E(y[n + 1]/y[1 : n], hm) is linear function of observed sample y[1 : n], {′) sign
of transposition and c[1 : i] satisfy the system of recursive equation

d[1 : r] = g[1 : r] + b[1 : r]d[1];

g[1 : r] = [d[2 : i], 0];

c[1 : i] = [d[1], c[1 : i]];

(31)
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Fig. 8. Current recognition of the ARMA 1st class observations.

Fig. 9. Current recognition of the ARMA 2nd class observations.

Fig. 10. Current recognition of the ARMA 3rd class observations.
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where r = max(p, q), with the initial conditions for the recursive equations:

E(y[1]) = 0, g[1 : r] = a[1 : r], d[1] = 1, c[1] = [].

A transient probability density functions in (10), (11), (12) are normal and has the
form

f (y[n+ 1]/y[1 : n], hm)

=
1√
2πσ

exp
{
− (y[n+ 1] + cm[1 : n]y[1 : n]′)

2
/(2σ2)

}
. (32)

The logarithm of likelihood function lm(n) satisfies the recursive equations

lm(n+ 1)= lm(n)−(y[n+ 1]+cm[1 : n]y[1 : n]′)
2
/(2σ2)−log(2πσ2)/2. (33)

The logarithm of likelihood function ratio um(n) in decision rule (13) satisfies the recur-
sive equations

um(n+ 1) = um(n) − (y[n+ 1] + cm[1 : n]y[1 : n]′)
2
/(2σ2)

+ (y[n+ 1] + cM [1 : n]y[1 : n]′)
2
/(2σ2). (34)

Recursive equations (33), (34) and decision rules (15), (17) give us the recursive
recognition of m classes ARMA(p, q) observations.

EXAMPLE 3. Autoregressive-moving average processes of order (2, 1)

y[n]− 0.4y[n− 1]− 0.3y[n− 2] = v[n] + 0.3v[n− 1],

y[n]− 0.5y[n− 1] + 0.7y[n− 2] = v[n]− 0.5v[n− 1], (35)

y[n]− 0.3y[n− 1] + 0.3y[n− 2] = v[n]− 0.7v[n− 1]

with initial condition y[0] = y[−1] = 0 and v[0] = 0 are taken as discrete random
processes three classes h1, h2, h3 model. The sufficient statistics u1, u2, u3 are calculated
using the recursive equations (27). The class of the observable signal we determine by
decision rule (17). The process of dynamical recognition of the observable realisations
are presented on the Figs. 8–10.

7. Conclusion

This paper is intended to introduce the reader to aspects of the theory and practice of re-
cursive recognition of the discrete random processes observations. The time series models
as AR(p), MA(q), ARMA(p, q) are used for a discrete random processes description.
The recursive equations for sufficient statistics are obtained. These recursive equations
allow to construct algorithms of current classification of observable sequences in the rate
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of entering its values into the on-line operation. The recursive algorithms for non Markov
processes are obtained. Classification algorithms are realised in the form of computer
programs.
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Laiko eiluči ↪u stebėjim ↪u atpažinimo rekursyvūs algoritmai

Edward SHPILEWSKI

Straipsnyje pateikiamas laiko eiluči ↪u realizacij ↪u nuoseklaus klasifikavimo metodai. Nuoseklaus at-
pažinimo metodai ir algoritmai yra gauti pakankamos statistikos rekurentini ↪u lygči ↪u pagrindu. Šios
rekurentinės lygtys leidžia konstruoti nuosekli ↪u ateinanči ↪u stebėjimo sek ↪u klasifikavimo algorit-
mus. Klasifikavimo algoritmas realizuotas kompiuterio programomis. Algoritmas leidžia konstruoti
daugiakanales skaičiavimo struktūras laiko eiluči ↪u nuosekliam atpažinimui.


