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Abstract. In the previous paper (Pupeikis, 2000) the problem of closed-loop robust identification
using the direct approach in the presence of outliers in observations have been considered. The aim
of the given paper is a development of the indirect approach used for the estimation of parame-
ters of a closed-loop discrete-time dynamic system in the case of additive correlated noise with
outliers contaminated uniformly in it. To calculate current M-estimates of unknown parameters of
such a system by means of processing input and noisy output observations, obtained from closed-
loop experiments, the recursive robust technique based on an ordinary recursive least square (RLS)
algorithm is applied here. The results of numerical simulation of closed-loop system (Fig. 3) by
computer (Figs. 4–7) are given.
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1. Introduction

Adaptive control systems act while the properties of controlled processes and signals are
varying in time. The quality of performance of an adaptive control system strongly de-
pends on the accuracy of a tuned process model and on the closed-loop identification
technique to be applied. Some interesting results on optimal experiment design for the
case that no explicit constraints are imposed on the input or output variance and the mis-
fit in both the dynamics model and the noise model is penalized are given in (Forsell
and Ljung, 2000). There are several ways to identify the open-loop characteristics (Gus-
tavsson et al., 1974). One can divide these identification methods into three groups (Iser-
mann, 1982): a direct approach, an indirect approach and an joint input-output approach.
The direct approach ignores the feedback and identifies the open-loop system using only
input-output observations, obtained from closed-loop experiments. It is known (Forsell
and Ljung, 1999) that the direct approach gives consistency and optimal accuracy in
spite of the feedback when the noise and the model of the dynamic system contain a
true description. Using the indirect approach we identify some sensitivity function of the
closed-loop system and then determine the estimates of the parameters of the open-loop
system if the controller parameters are known. Here the prediction error techniques for
the estimation of unknown parameters of the sensitivity function are usually used (Gus-
tavsson et al., 2000; Ljung, 1978; Söderström et al., 1991). On the other hand, if the
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output is corrupted by an additive noise containing outliers, then the ordinary prediction
error methods applied to identify even unknown parameters of an open-loop dynamic
system, described by the difference equation, could be of little use. Therefore, in such
a case there arise a problem of the closed-loop robust identification by processing noisy
observations. It can be solved applying respective recursive prediction error techniques,
which can be easily suited to the parameter estimation of dynamic systems in the case of
outliers in observations to be processed (Novovičova, 1987; Pupeikis, 1994).

2. The Statement of the Problem

Assume that the control system to be observed is causal, linear and time-invariant (LTI)
with one output {y(k)}, k = 1, 2, ..., and one input {u(k)}, k = 1, 2, ..., and given by
the equation

y(k) = G0(q, θ)u(k) + v(k),

v(k) = H0(q, ϕ)ξ(k),
(1)

which consists of two parts: a process model G0(q, θ) and a noise one H0(q, ϕ).
Here θ, ϕ are unknown parameter vectors, q is the time-shift operator (i.e., q−1u(k) =

u(k − 1)), the initial signal {ξ(k)}, k = 1, 2, ..., used to generate unmeasurable noise
{v(k)}, k = 1, 2, ..., is assumed to be statistically independent and stationary with

E {ξ(k)} = 0,

E {ξ(k)ξ(k + τ)} = σ2
ξδ(τ).

(2)

E{·} is a mean value, σ2
ξ is a variance, δ(τ) is the Kronecker delta function, H0(q, ϕ) is

an inversely stable, monic filter.
The input {u(k)}, k = 1, 2, ..., N , is given by

u(k) = Ψ
(
k, yk, uk−1, r(k)

)
, (3)

where yk = [y(1), . . . , y(k)], uk−1 = [u(1), . . . , u(k− 1)]. The reference signal {r(k)},
k = 1, 2, . . ., is a quasi-stationary signal, independent of the stochastic disturbance
{v(k)}, k = 1, 2, . . ., and Ψ is a given deterministic function such that the closed-loop
system (1), (2) with the controller GR(q, α) (see Fig. 1), which is designed for distur-
bance {v(k)}, k = 1, 2, . . ., by minimizing a quadratic performance function

J = lim
N→∞

E

{
1

N

N−1∑
k=0

y2(k) + ρ u2(k)

}
, (4)

is exponentially stable (Forsell and Ljung, 1999). Here α is the known parameter vector
of the controller, the factor 0 < ρ 6 1.
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Fig. 1. A closed-loop system to be observed.

The basis of identification is the data set

ZN = {r(1), . . . , r(N), y(1), . . . , y(N)} , (5)

consisting of measured observations of the reference signal {r(k)} and output {y(k)},
k = 1, 2, . . . , N , signals. The aim of the given paper is to estimate the parameter vector
θ of the system (1), (2) using the indirect approach, when assumption (2) is not satisfied
because of occasionally appearing outliers in an unmeasurable noise signal {v(k)}, k =

1, 2, . . ., acting on the output of the closed-loop system (Fig. 1).

3. The Indirect Approach for the Closed-loop System

The indirect approach consists of two steps: first the closed-loop system is identified, then
the model of the open-loop system is determined. Here we start to obtain the closed-loop
system.

The input signal {u(k)} and the output signal {y(k)}, k = 1, 2, . . ., are determined
according to

u(k) = [r(k)− y(k)]GR(q, α), (6)

y(k) = G0(q, θ)u(k) +H0(q, ϕ)ξ(k), (7)

respectively. By combining (6) and (7) we obtain the closed-loop relations

y(k) = Φ0(q, β)G0(q, θ)GR(q, α)r(k) + Φ0(q, β)H0(q, ϕ)ξ(k), (8)

u(k) = W0(q, β)GR(q, α)r(k) −W0(q, β)GR(q, α)H0(q, ϕ)ξ(k), (9)

with the output and the input sensitivity functions

Φ0(q, β) = [1 +G0(q, θ)GR(q, α)]
−1
, (10)

W0(q, β) = [1 +GR(q, α)G0(q, θ)]
−1
, (11)

correspondingly. Now alike to (Forsell and Ljung, 1999) we also introduce

Gc0(q, ω) = Φ0(q, β)G0(q, θ)GR(q, α) and Hc
0(q, ϕ) = Φ0(q, β)H0(q, ϕ). (12)
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So we can rewrite the relation (8) of the closed-loop system as

y(k) = Gc0(q, ω)r(k) +Hc
0(q, ϕ)ξ(k). (13)

It follows from (13) that the function Gc0(q, ω) could be determined in an open-loop
way, because {y(k)}, k = 1, 2, . . . and {r(k)}, k = 1, 2, . . . are observed and moreover
{r(k)} and {ξ(k)}, k = 1, 2, . . ., are mutually independent. If the controller GR(q, α)

is known and {r(k)}, k = 1, 2, . . ., is measurable, we can identify the transfer function
Gc0(q, ω) of the closed-loop system (13) using the prediction error method with a model

y(k) = Gc(q, ω)r(k) +H∗(q, ϕ) e(k) (14)

according to (Forsell and Ljung, 1999), where Gc(q, ω) corresponds to Gc0(q, ω) and
Hc

0(q, ϕ) to H∗(q, ϕ). Then we compute an estimate ĜN (q, θ) of the open-loop system
G0(q, θ) by solving the equation

ĜcN (q, ω) =
[
1 + ĜN (q, θ)GR(q, α)

]−1

ĜN (q, θ)GR(q, α). (15)

Here Gc(q, ω) is a parametrized model of the closed-loop system, ĜcN (q, ω), ĜN (q, θ)

are the estimates of the closed-loop and open-loop systems, respectively.
The exact solution is:

ĜN (q, θ) =
[
1− ĜcN (q, ω)

]−1

[GR(q, α)]
−1
ĜcN (q, ω). (16)

The order of ĜN (q, θ) is equal to the sum of the orders of ĜcN (q, ω) and GR(q, α). The
estimate of θ could be found by solving some overdetermined system of equations in
many ways. As is noted in (Forsell and Ljung, 1999), a particularly simple and attractive
approach is to let the parameters θ relate to properties of the open-loop system G0(q, θ)

so that in the first step we should parametrize Gc0(q, ω) as

Gc0(q, ω) = [1 +G0(q, θ)GR(q, α)]−1G0(q, θ)GR(q, α). (17)

The parametrization of Gc0(q, ω) is important for numeric and algebraic reasons, but
it does not affect the asymptotic statistical properties of ĜcN (q, ω) (Forsell and Ljung,
1999).

To obtain ĜcN (q, θ) we use a model (14) and the prediction error method, which min-
imize some prediction error criterion in order to get the parameter estimates. The predic-
tion error is

e(k/θ, ω, ϕ) = y(k)− ŷ(k/ω, ϕ) = H−1
∗ (q, ϕ) (y(k)−Gc(q, ω)r(k)) , (18)

where the one-step-ahead predictor for the model structure (13) is

ŷ(k/ω, ϕ) = H−1
∗ (q, ϕ)Gc(q, ω)r(k) +

(
1−H−1

∗ (q, ϕ)
)
y(k). (19)
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Given the model (14) and measured data {y(k)}, k = 1, 2, . . ., and {r(k)}, k =

1, 2, . . ., we determine the prediction error estimate using formulas:

ω̂N = arg min
ω∈DM

VN (θ, ω, ϕ, η, ZN ),

VN (θ, ω, ϕ, η, ZN ) =
1

N

N∑
t=1

eTp (k/θ, ω, ϕ, η)Λ−1ep(k/θ, ω, ϕ, η), (20)

ep(k/θ, ω, ϕ, η) = L(q, η)e(k/θ, ω, ϕ, η)

= L(q, η)H−1
∗ (q, ϕ) [y(k)−Gc(q, ω)r(k)] .

Here Λ is a symmetric, positive definite weighting matrix and L(q, η) is a monic prefilter
that can be used to enhance certain frequency regions, ZN is of the form (5).

The indirect approach allows us to apply the well known prediction error techniques
directly to input {r(k)}, k = 1, 2, . . . and output {y(k)}, k = 1, 2, . . ., observations,
used for determination of the parameters of closed-loop system. The block scheme of
such procedure is shown in Fig. 2. The parameter vector ωcan be determined by the
ordinary least squares method (LS) by minimizing the sum of the form

N∑
t=1

[
y(t)− zT (t)ω

]2
= min! (21)

where zT (·) is a vector of observations of the reference signal {r(k)}, k = 1, 2, . . . and
noisy output {y(k)}, k = 1, 2, . . . , N .

Thus, the ordinary open-loop prediction error method is based on the RLS of the form

ω(k) = ω(k − 1) +
P (k − 1)z(k − 1)

1 + zT (k)P (k − 1)z(k)

[
y(k)− zT (k)ω(k − 1)

]
, (22)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

1 + zT (k)P (k − 1)z(k)
, (23)

Fig. 2. A closed-loop system with an estimation procedure.
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with the vector of observations

zT (k) = (r(k − 1), . . . , r(k −m), y(k − 1), . . . , y(k −m)) , (24)

and some initial values of the vector ω(0) and of the matrixP (0), when Gc(q, ω) is the
system transfer function of the form

Gc(q, ω) =
C(q, b)

D(q, a)
=
c1q
−1 + c2q

−2 + . . .+ cmq
−m

1 + d1q−1 + . . .+ dmq−m
. (25)

Here

ωT (k) = (c1(k), c2(k), . . . , cm(k), d1(k), d2(k), . . . , dm(k)) (26)

is an estimate of the parameter vector

ωT = (c1, c2, . . . , cm, d1, d2, . . . , dm). (27)

So, by the determining the closed-loop system we have transformed the closed-loop iden-
tification problem into an “open-loop” one, since {r(k)} and {ξ(k)}, k = 1, 2, . . . are
mutually independent. In such a case any technique, that acts in open-loop could be used
in order to obtain the estimates of the parameters (27) of the closed-loop system (Fig. 1).

4. The Indirect Approach in a Presence of Outliers in Observations

Assume now that the white noise {ξ(k)}, k = 1, 2, . . ., really is a sequence of indepen-
dent identically distributed variables with an ε-contaminated distribution of the form

p (ξ(k)) = (1− ε)N(0, σ2
µ) + εN(0, σ2

ς ) (28)

and the variance

σ2
ξ = (1− ε)σ2

µ + εσ2
ς ; (29)

p(ξ(k)) is the probability density distribution of the sequence {ξ(k)}, k = 1, 2, . . .;

ξ(k) = (1− γk)µk + γkςk (30)

is the value of the sequence {ξ(k)}, k = 1, 2, . . . at a time momentk; γ is a random
variable, taking values 0 or 1 with probabilitiesp(γk = 0) = 1−ε, p(γk = 1) = ε; µk , ςk
are sequences of independent Gaussian variables with zero means and variances σ2

µ, σ2
ς ,

respectively; besides, σµ < σς ; 0 6 ε 6 1 is the unknown fraction of contamination.
Given the model (14) and measured data ZN = {r(1), . . . , r(N), y(1), . . . , y(N)}

and assuming that {ξ(k)} is a process of the form (17)–(19), we determine the prediction
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error estimate of the parameter vector ωT = (c1, c2, . . . , cm, d1, d2, . . . , dm) by mini-
mizing

ω̃N = arg min
ω∈DM

ṼN (θ, ω, ϕ, η, ZN ),

ṼN (θ, ω, ϕ, η, ZN ) =
N∑
k=1

ρ (ep(k/θ, ω, ϕ, η)/σ) ,
(31)

or by solving the equation

N∑
t=1

z(t)
{
ψ
[
y(t)− zT (t)ω

]}
= 0 (32)

in the vector form. Here ω̃N is the estimate of the parameter vector ω, determined by
processing N pairs of the reference signal and output samples, σ is the scale of residual
(examples of the scale are the standard deviation, the median absolute deviation from the
median, etc.,), ρ(· ) is a real-valued function that is even and nondecreasing for positive
residuals, and ρ(0) = 0, ψ = ρ′.

For the Huber M-estimator, the ρ-function is given by

ρ(e) =

{
λ2/2, |e| 6 κ,
b |λ| − b2/2, |e| > κ,

(33)

where e ≡ ep(k/θ, ω, ϕ, η), κ is the cutoff value.
It is known (Huber, 1981) that the ρ-function is not strictly convex. Therefore, by

minimizing this objective function, multiple solutions can be obtained which are close to
one another. The score function

ψ
(
ep(k/θ, ω, ϕ, η, Z

N )
)

= ∂ρ
(
ep(k/θ, ω, ϕ, η, Z

N )
)
/∂r (34)

is an odd one. The various ψ functions give us various M estimates. Therefore, there
always arises a question how to choose the proper ψ-function. The mostly used function
ψ is (Huber, 1964):

ψ(x) =

{
x if |x| 6 cH ,
cHsignx if |x| > cH ,

(35)

with given cH > 0. To get a better performance of ω̃N in a case of very long-tailed
distributions, a function (35) satisfying

ψ(x) = 0 if |x| > cH (36)

for some cH > 0 could be selected. M -estimates are generally not scale equivariant. It
means that instead of solving (32) we solve

N∑
t=1

z(t)ψ

{
y(t)− zT (t)ω

s

}
= 0, (37)
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where s is the robust estimate of the residuals scale, which according to Huber (1972)
could be determined simultaneously with ω̃N .

5. Recursive Calculation of M-estimates

It is known (Novovičova, 1987) that in both such cases, i.e., ε 6= 0 and

H0(q, a) =
1

A(q, a)
=

1

1 + a1q−1 + · · ·+ amq−m
, (38)

currentM -estimates of unknown parameters of linear dynamic systems can be calculated
using even three techniques:

1) the S-algorithm

ω(k) = ω(k − 1)

+
P (k − 1)z(k − 1)

{ψ′ ([y(k)− zT (k)ω(k − 1)] /s)}−1
+ zT (k)P (k − 1)z(k)

×sψ
{[
y(k)− zT (k)ω(k − 1)

]
/s
}
, (39)

P (k) = P (k − 1)

− P (k − 1)z(k)zT (k)P (k − 1)

{ψ′ ([y(k)− zT (k)ω(k − 1)] /s)}−1
+ zT (k)P (k − 1)z(k)

, (40)

2) the H-algorithm

ω(k) = ω(k − 1)

+
P (k − 1)z(k − 1)

1 + zT (k)P (k − 1)z(k)
sψ
{[
y(k)− zT (k)ω(k − 1)

]
/s
}
, (41)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

1 + zT (k)P (k − 1)z(k)
, (42)

3) and the W-algorithm

ω(k) = ω(k − 1)

+
P (k − 1)z(k − 1)

[w(k)]−1 + zT (k)P (k − 1)z(k)
sψ
{[
y(k)− zT (k)ω(k − 1)

]
/s
}
,(43)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

[w(k)]
−1

+ zT (k)P (k − 1)z(k)
, (44)
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w(k) =

{
sψ {µ(k)/s}µ(k) for µ(k) 6= 0,

ρ′′0 for µ(k) = 0,
(45)

µ(k) = y(k)− zT (k)ω(k − 1). (46)

The S-algorithm represents a version of the algorithm proposed by Polyak and Cyp-
kin (1980) for an on-line robust identification of parameters of the linear dynamic model.
The robusting of the ordinary RLS (22)–(24) follows by substituting the “winsorization”
step of the residuals in equation (22) and by modifying equation (23). The recursive H-
algorithm is obtained only by inserting the “winsorization” step into equation (22). By
comparing (43)–(44) to (22), (23) one can see, that the W-algorithm is obtained by insert-
ing different weights in respect to the function ψ {·} into the already existing ordinary
RLS.

The various robust recursive techniques used for the parameter estimation of open-
loop dynamic systems when the additive noise filterH(q, ϕ) is of different form than that
of (38), are proposed in (Pupeikis, 1994).

6. Numerical Simulation

The closed-loop system to be simulated is shown in Fig. 3 and is described by the linear
difference equation of the form (Åstrőm, 1987)

(1 + aq−1)y(k) = (1 + bq−1)u(k) + (1 + cq−1)ξ(k), k = 1, 2, . . . , 100, (47)

where a = −0.985; b = 0.75; c = −0.7.
The feedback is simplified to

u(k) = g(k)e(k), (48)

Fig. 3. Simulated closed-loop system with an additive correlated noise and the reference signal r.
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with

e(k) = r(k) − y(k). (49)

Here g(k) = 0.25 for k < 40 and g(k) = 0.75 for k > 40, the output y(k),
k = 0, 1, 2, . . . , 100 of the closed-loop system is observed under the additive noise ξ(k),
k = 0, 1, 2, . . . , 100 containing outliers. The reference signal r(k) and the noise ξ(k)

are generated by means of the Matlab functions randn and rand, respectively (Pupeikis,
2000).

From (47) it follows that G0(q, θ) has the form

G0(q, θ) =
1 + bq−1

1 + aq−1
. (50)

Then substituting (50) and GR(q, α) = g(k) into the equality (10) we obtain the output
sensitivity function of the form

Φ0(q, β) =
1 + aq−1

1 + g(k) + [a+ g(k)b] q−1
. (51)

Moreover, we can rewrite the relation (13) of the closed-loop system (Fig. 3) as

y(k) = Φ0(q, β)r∗(k) + ξ∗(k), (52)

where

r∗(k) = G0(q, θ)GR(q, α)r(k),

ξ∗(k) = Hc
0(q, ϕ)ξ(k).

(53)

For the LTI system (36) the relation (53) has the form

y(k) = β0r
∗(k) + β1r

∗(k − 1) + β2y(k − 1) + ξ∗(k), (54)

where

β0 = [1 + g(k)]−1 ,

β1 = aβ0,

β2 = − [a+ g(k)b]β0,

(55)

r∗(k) = g(k)
[
1 + bq−1

] [
1 + aq−1

]−1
r(k), (56)

here the parameter β0 is known beforehand.
We simplify the problem determining the estimates of parameters β1, β2 of the equa-

tion (54). The technique for the determination of current estimates consist of such steps:
1. New observations y(k) and r(k) are made at time k.
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2. Filtered current observation of the reference signal is determined

r∗(k) = g(k)
1 + b(k − 1)q−1

1 + a(k − 1)q−1
r(k). (57)

3. The estimates of parameters β1, β2 by processing the pair of observations y(k)

and r(k) using the ordinary RLS (22), (24) and the H-technique (41)–(42) are
obtained.

4. Assuming that g(k) is known and the relations

a = β1 (1 + g(k)) , b = −β2 + β0a

g(k)β0
(58)

are valid the current estimates of a = −0.985; b = 0.75 substituting in (58) the
estimates of β1, β2 are determined.

5. Replace (k + 1) by k and start again with Step 1.
In Figs. 4–6 simulated input u(k) (a), noisy output y(k) and reference signal r(k)

for k = 1, 2, . . . , 100 (b) of the closed-loop system (Fig. 3), are shown. The parts (c),
(d) of above mentioned figures correspond to the estimates of a = −0.985, b = 0.75

obtained by means of the ordinary RLS. Fig. 4 corresponds to the case when there are no
outliers in the correlated noise v(k), k = 0, 1, 2, . . ., at all. On the other hand, the curves
in Fig. 5c, d and 6c, d are determined when respective inputs (5a, 6a) and outputs (5b,
6b) in the presence of outliers in observations used for the current estimation of β1, β2

are measured. It follows that the accuracy of estimates is lower, when there appears an
additive noise even with one isolated outlier (Fig. 5c, d) as compared to the case where
there is no outlier in observations (Fig. 4c, d). The estimation results for the case of five
outliers (Fig. 6c, d) in observations to be processed are also shown in Fig. 7. Here we
use the ordinary RLS (7a) and the H-technique (7b). It should be noted that the accuracy
of estimates (solid and dashed lines) obtained by the H-technique (Fig. 7b) is higher
than that of estimates calculated by the ordinary RLS (Fig. 7a). Such an accuracy can be
increased if the procedure decorrelating the additive noise could be used.

7. Conclusions

Outliers in observations to be processed strongly influence the quality of the performance
of a closed-loop system. For the estimation of parameters of such a system, the indirect
approach that identifyies the sensitivity function of the closed-loop system using obser-
vations of the reference signal and noisy output, and the robust H-technique calculating
M-estimates applying Huber’s ψ {·} function could be used. Moreover, it is assumed that
the parameters of the controller are known, because only in such a case we have the possi-
bility to determine the parameters of the transfer function of an open-loop system. In such
a case the accuracy of estimates is increased in comparison with the estimates obtained
by the ordinary RLS (Fig. 7).
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Fig. 4. Signals of the closed-loop system (47) (a, b) and the estimates of parameters (c, d), obtained by the
ordinary RLS, in the presence of an additive correlated noise on the output: x-axis – numbers of observations,
y-axis – amplitudes (a, b), values of the parameters (c, d), input u – (a), output y, and the reference signal r
(dotted line) – (b), the current estimate of parameters a, b – (c, d), respectively. Dotted lines in c, d correspond
to the true values of a, b.

Fig. 5. Signals of the closed-loop system (47) (a, b) and the estimates of parameters (c, d) obtained using the
ordinary RLS in the presence of an additive correlated noise on the output with the one outlier in it. Other values
and markings are the same as in Fig. 4.
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Fig. 6. Signals of the closed-loop system (47) (a, b) and the estimates of parameters (c, d) in the presence of
an additive correlated noise on the output with five outliers in it. Other values and markings are the same as in
Fig. 4.

Fig. 7. Dependence of current estimates (solid and dashed lines) of the parameters a, b on the number of
recursive iterations. Estimates are calculated using observations of the reference signal and the noisy output
with five outliers in an additive correlated noise. Recursive technique: a – the ordinary RLS, b – the robust
M -algorithm with Huber’s ψ-function (35).
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Uždaro ciklo sistem ↪u patvarusis identifikavimas, taikant netiesiogin ↪i
metod ↪a

Rimantas PUPEIKIS

Straipsnyje adityviojo triukšmo su dideliais retais nuokrypiais atveju plėtojamas netiesioginis meto-
das, kuris taikomas uždaro ciklo diskretinio laiko dinamini ↪u sistem ↪u identifikavimui. Nežinom ↪u
parametr ↪u M - ↪iverčiams gauti, apdorojant bazinio signalo ir užtriukšminto išėjimo stebėjimus
pasiūlytas ir modeliuojant kompiuteriu ištirtas patvarusis H-algoritmas. Gauti dinaminės sistemos
parametr ↪u skaičiavim ↪u rezultatai, taikant du rekurentinius algoritmus: mažiausi ↪uj ↪u kvadrat ↪u ir H-
algoritm ↪a su netiesine Huberio funkcija.


