
INFORMATICA, 2000, Vol. 11, No. 3, 281–296 281
 2000 Institute of Mathematics and Informatics, Vilnius

An Algorithm for Construction of Test Cases for
the Quadratic Assignment Problem

Gintaras PALUBECKIS
Department of Practical Informatics, Kaunas University of Technology
Studentu̧ 50, 3031 Kaunas, Lithuania
e-mail: gintaras@soften.ktu.lt

Received: March 2000

Abstract. In this paper we present an algorithm for generating quadratic assignment problem
(QAP) instances with known provably optimal solution. The flow matrix of such instances is con-
structed from the matrices corresponding to special graphs whose size may reach the dimension
of the problem. In this respect, the algorithm generalizes some existing algorithms based on the
iterative selection of triangles only. The set of instances which can be produced by the algorithm
is NP-hard. Using multi-start descent heuristic for the QAP, we compare experimentally such test
cases against those created by several existing generators and against Nugent-type problems from
the QAPLIB as well.

Key words: combinatorial optimization, quadratic assignment problem, test cases.

1. Introduction

The quadratic assignment problem (QAP) can be stated as follows. Given a finite set
N = {1, 2, . . . , n} and three n× n matrices W = (wij), D = (dij) and A = (aij) with
real entries, find a permutation p of the set N that minimizes

f(p) =
∑
i∈N

∑
j∈N

wijdp(i)p(j) +
∑
i∈N

aip(i). (1)

In this paper we deal with the instances of this problem in which the matrix D is com-
posed of the shortest rectilinear distances between pairs of n points in the plane. This par-
tial case and its generalizations to higher dimensions as well is called rectilinear QAP.The
QAP serves as a mathematical model for many problems coming from real-world appli-
cations. In the framework of the facility location problem, there are n facilities that have
to be assigned to n different locations. The matrix D describes the distances between
locations, the matrix W represents the flows between facilities, and the matrix A gives
the fixed costs of the assignment of facilities to locations. The flow between facility i
and facility j assigned to locations k and l, respectively, contributes a cost equal to the
product wijdkl. The fixed cost of assigning facility i to location k is given by the entry
aik of the matrixA. The objective is to find an assignment of all facilities to all locations,

282 G. Palubeckis

such that the total cost of the assignment is minimized. Other applications of the QAP are
described by Geoffrion and Graves (1976), Elshafei (1977), Krarup and Pruzan (1978),
Burkard (1984), Hubert (1987), Laporte and Mercure (1988). The most important re-
search results on the QAP are reviewed in the recent book by Çela (1998) and in the
survey papers by Pardalos, Rendl and Wolkowicz (1994), and Burkard et al. (1998).

The QAP is generally recognized as a very difficult combinatorial optimization prob-
lem. The exact algorithms (see, for example, Mautor and Roucairol, 1994; Clausen and
Perregaard, 1997) can solve in a reasonable amount of time only small instances of the
QAP – with the number of objects less than 30. So, the heuristic algorithms are widely
used, including simulated annealing (Burkard and Rendl, 1984; Wilhelm and Ward, 1987;
Connolly, 1990), tabu search (Skorin-Kapov, 1990; Taillard, 1991; Battiti and Tecchi-
olli, 1994), greedy randomized adaptive search (Li, Pardalos and Resende, 1994; Parda-
los, Resende and Li, 1996; Pardalos, Resende and Pitsoulis, 1997), genetic (Fleurent and
Ferland, 1994; Tate and Smith, 1995), scatter search (Cung et al., 1996) and ant sys-
tem (Gambardella, Taillard and Dorigo, 1997) techniques among others. Usually, these
algorithms are tested on QAP instances, including larger benchmark problems in the
QAPLIB (Burkard, Karisch and Rendl, 1997), for which the optimal solutions are not
known. The test cases of another kind are those produced by special generators that to-
gether with the matrices defining an instance of the QAP provide us with a provably op-
timal solution for this instance. For the rectilinear QAP such generators are proposed by
Palubeckis (1988, 1999), and for arbitrary (not necessarily rectilinear and even Euclidean)
QAP by Li and Pardalos (1992). The results of computational experiments (Li and Parda-
los, 1992; Palubeckis, 1999) show that the test cases constructed by these generators are
rather hard for several heuristics for the QAP, namely, simulated annealing (Burkard and
Rendl, 1984), tabu search (Skorin-Kapov, 1990), graph-partitioning (Murthy, Pardalos
and Li, 1992) and multi-start descent.

For a combinatorial optimization problem, the hardness of the set of instances can be
defined formally (see Sanchis, 1990).

DEFINITION 1. (Sanchis, 1990). Let Π be an NP-hard optimization problem. A set I
of instances of Π is hard with respect to Π if no polynomial-time approximation algorithm
for Π can give the optimal answer for all instances in I , unless P=NP.

In Palubeckis (1999) a series of QAP instance generators is described. For each of
them the set of possible outputs (matrices W,D) is hard (in a sense of the definition
given above with QAP in the role of Π). According to theorem due to Cyganski, Vaz and
Virball (1994) the optimal value for instances produced by these generators as well as by
an earlier algorithm of Palubeckis (1988) can be revealed in polynomial time. Neverthe-
less, the existence of polynomial-time algorithm for solving such instances to optimality
is impossible, unless P=NP.

In this paper we present an algorithm for constructing test cases for the QAP, which
can be viewed as a generalization of the generators proposed by Palubeckis (1988, 1999).
The algorithm differs from those generators mainly in that it uses larger graphs in the

An Algorithm for Construction of Test Cases 283

construction of the flow matrix – of size up to the dimension of the problem. The set
of QAP instances that can be produced by this algorithm is hard. Using multi-start de-
scent heuristic for the QAP, we compare the instances of size n = 20, 22, 24 and 30

created by our algorithm with four benchmark problems procured from the QAPLIB
(Burkard, Karisch and Rendl, 1997): Nug20 and Nug30 due to Nugent, Vollmann and
Ruml (1968), and also Nug22 and Nug24 constructed out of Nug30 by deleting certain
rows and columns (Clausen et al., 1996). All these problems are instances of the rectilin-
ear version of the QAP, too. Computational results show that for multi-start descent the
test cases produced by our algorithm are harder than Nugent-type problems of the same
size. We also present the results of comparison of this algorithm with several existing
generators (Palubeckis, 1988, 1999; Li and Pardalos, 1992).

The paper is organized as follows. In Section 2 we give a description of the algo-
rithm. In Section 3 we report computational results. Finally, in Section 4 we make some
concluding remarks.

We end the introduction with some basic definitions and notations. We will write
D(B) to denote the rectilinear distance matrix defined by the set B = {b1, . . . , bn} of
points on the plane. For bi = (xi, yi), bj = (xj , yj) ∈ B the corresponding entry of
D(B) is equal to |xi − xj | + |yi − yj|. Since D in (1) is the distance matrix, we can
assume without loss of generality that the lower half of W under the main diagonal is
zero, that is, wji = 0 for all i, j such that i < j (if wji 6= 0 for some pair i, j, i < j, we
can set wij := wij + wji, wji := 0). We can also assume that the main diagonal of W is
zero because such is the main diagonal of D.

We denote a graph by G = (V,E) where V is the set of vertices and E is the set
of edges. If the edges are oriented we have a digraph. The size of the graph (digraph)
is the number of vertices in V . To any graph G = (V,E), V ⊆ N , with edge weights
cij , (i, j) ∈ E, we can associate an n× n flow matrix W (G) with the following entries:
wij = cij (if i < j) or wji = cij (if i > j) if (i, j) ∈ E, and wij = 0 otherwise. We
denote by W (G,α), α 6= 0, the flow matrix obtained from W (G) by multiplying each
entry of W (G) by α.

Given integers nx > 1, ny > 1, we define a regular nx × ny grid Q(nx, ny) as a set
{(i, j) | i = 1, . . . , nx, j = 1, . . . , ny} of points on the plane.

In this paper we restrict our attention to QAP instances without a linear part, that is,
to (1) with zero matrix A. We denote the optimal value of (1) with zero A by f0(W,D).

2. The Algorithm

Before giving a description of the algorithm, we will specify graphs which play the main
role in the construction of the flow matrix, one of two defining an instance of the QAP.
They are members of the following class of graphs introduced by Palubeckis (1997).

DEFINITION 2. A graph G = (V,E) with edge weights cij , (i, j) ∈ E, is a PB-
graph (has nonnegatively valued bisections) if the sum R(G,V ′) of the weights in the

284 G. Palubeckis

set {cij | (i, j) ∈ E, i ∈ V ′, j ∈ V \ V ′ or i ∈ V \ V ′, j ∈ V ′} is nonnegative for each
subset V ′ ⊂ V .

In Palubeckis (1997) the following fact is established.

Lemma 1. If W is such that G(W) is a PB-graph, then for any rectilinear distance
matrix D the optimal value f0(W,D) of the corresponding QAP is nonnegative.

An important type of PB-graphs, in which we are interested here, can be defined as
follows. For m > 3, the vertex set V of the graph consists of two disjoint subsets V 1

m

and V 2
m of sizes dm/2e and bm/2c, respectively. The edge set E consists of the subset

E+ = {(i, j) | i ∈ V 1
m, j ∈ V 2

m} of positive edges and the subsetE− = {(i, j) | i, j ∈ V 1
m

or i, j ∈ V 2
m} of negative edges. So, the graph is a complete signed graph. We denote this

graph by Hm = (V,E).
The algorithm we present in this paper is based on the general schema developed by

Palubeckis (1999). The distance matrix D is formed by selecting a prescribed number
of grid points and calculating shortest distances between them. The flow matrix W is
constructed by summing up some number of matrices each of which, except possibly
one, is defined by a copy of Hm,m ∈ [3, n], with edge weights multiplied by some
positive scalar. The last matrix corresponds to a complete graph. We need it to ensure the
nonnegativity of W .

Presentation of the algorithm is organized in a top-down manner. We give a chain of
three procedures where each of the last two is invoked by its predecessor. The input to the
main procedure includes the number of objects n, grid dimensions nx, ny, the number
of graphs to be selected h, lower and upper bounds on the size of graphs mlower >
3,mupper 6 n, upper bound w > 1 on the weight of edges, and an upper bound ρbound

on the number of trials in graph selection. The algorithm can be stated as follows.

Algorithm GENERATE_INSTANCE

1. Select randomly n points b1, . . . , bn on the grid Q(nx, ny). Set W equal to the
all-zeros matrix.

2. Repeat h times the following operations:

2.1. Set ρ := 0.

2.2. Choose randomly an odd numberm ∈ [mlower,mupper].
2.3. Randomly select m points in B = {bi | i ∈ N = {1, . . . , n}}. Let M ⊂

N, |M | = m, be the index set specifying these points.

2.4. Apply procedure BICOLORING. If it returns “true”, then proceed to 2.5.
Otherwise set ρ := ρ + 1, and if ρ < ρbound go to 2.3; else stop with a
failure.

2.5. Randomly choose an integer α ∈ [1, w]. Set W := W +W (G,α), where G
is a copy of Hm with V 1

m (respectively, V 2
m) consisting of those elements of

the set M which received red (respectively, blue) color in BICOLORING.

An Algorithm for Construction of Test Cases 285

3. Sort the points bi, i ∈ N , in the order of appearance while scanning the rows of
the gridQ(nx, ny) sequentially. Construct the distance matrixD(B) in such a way
that for any i ∈ N the ith row and column of D(B) would correspond to the ith
point in the order obtained.

4. If wmin := min{wij | i, j ∈ N, i < j} < 0, then add −wmin to each entry
of W above the main diagonal. Stop with the matrices W,D = D(B), optimal
valuewmin

∑n
i=1

∑n
j=1 dij/2 and the optimal permutation p = (l1, . . . , ln), where

li, i ∈ N , is the rank of the point bi in the sequence obtained in 3.

The goal of the procedure BICOLORING is to construct special bipartite digraph and
to obtain some feasible coloring of its arcs with two colors, red and blue. The vertices
of the digraph correspond to grid lines, vertical and horizontal, containing at least one
point selected in Step 2.3. The arcs are in one-to-one correspondence with the elements
of the set {bi | i ∈M}. Each bicoloring, in which red color is used dm/2e times, defines
a copy of Hm with the division of its vertex set V = M into two parts V 1

m, V
2
m. Only

some bicolorings are feasible for our purposes, namely those for which a QAP defined
by W (Hm) and by D(B) with ith row and ith column, i = 1, . . . , n, corresponding to
bi has the following property: f0(W (Hm), D(B)) = 0 = f(p∗), where p∗ is the identity
permutation (1, 2, . . . , n). For some arrangements of points bi, i ∈ M , feasible bicolor-
ings do not exist at all. In this case the procedure returns “false”. To check feasibility of
a bicoloring we use special function β defined on the vertex set of one of the parts. The
outlined procedure is now stated formally.

Procedure BICOLORING

1. Form the following sets: set of vertices of the first part V1 = {v(zi), i = 1, . . . , q |
for each i ∈ {1, . . . , q} zi = xk for some point bk = (xk, yk), k ∈ M , and for
each k ∈ M xk = zi for some i ∈ {1, . . . , q}}, set of vertices of the second part
V2 = {u(zj), j = 1, . . . , r | for each j ∈ {1, . . . , r} zj = yk for some point
bk = (xk, yk), k ∈M , and for each k ∈M yk = zj for some j ∈ {1, . . . , r}}, set
of edges E = {(v(zi), u(zj)) | bk = (xk = zi, yk = zj), k ∈M}.

2. Set flag := 0. For j = 1, . . . , r do:

2.1. If the degree δ(u(zj)) of the vertex u(zj) is even, then take µ = 0. Otherwise
if flag = 1, take µ = 1; else take µ = −1. Set s := (δ(u(zj)) + µ)/2. In
addition, if δ(u(zj)) is odd, then set flag := 1− flag.

2.2. Orient randomly selected s edges incident with u(zj) from a vertex in V1

to u(zj), whereas for the rest edges incident with u(zj) choose the opposite
direction.

3. Set flag := 1. For i = 1, . . . , q do:

3.1. Calculate the number δin(v(zi)) of incoming and the number δout(v(zi)) of
outcoming arcs incident with v(zi). Set ∆x(i) := δin(v(zi))− δout(v(zi)).

286 G. Palubeckis

3.2. If δ(v(zi)) := δin(v(zi)) + δout(v(zi)) is even, then take µ = 0. Otherwise if
flag = 1, take µ = 1; else take µ = −1. Set β(i) := ∆x(i)− µ. In addition,
if δ(v(zi)) is odd, then set flag := 1− flag.

4. Apply procedure BALANCE. If it returns “true”, then assign red color to elements
ofM corresponding to arcs oriented from V2 to V1 and assign blue to the remaining
elements of M (a correspondence between arcs and elements of M is given by the
set E constructed in 1). Return the same value as that returned by BALANCE.

To obtain a feasible copy of Hm that can be used in the flow matrix formation, we
need to change orientation of some of arcs to make all values of the function β equal to
zero. For this, paths from vertices with negative value of β to those with positive value of
β are searched. This job is done by the following loop of three steps.

Procedure BALANCE

1. Check whether the set {v(zi) | v(zi) ∈ V1 and β(i) < 0} is nonempty. If so, take
any vertex v(zl) from this set and go to 2. Otherwise return “true”.

2. Try to find a path in the digraph constructed in the invoking procedure between
v(zl) and any vertex in V1 with positive value of β. If failure, then return “false”.
Otherwise proceed to 3.

3. Change an orientation of each arc on the path found to the opposite. Correct the
values of the function β appropriately. Go to 1.

The optimal value for the QAP defined by the matrices D(B) and W (Hm, α),m

odd, is equal to zero if and only if procedure BALANCE returns “true”, or equiva-
lently, β(i) = 0 for all i ∈ {1, . . . , q} is achieved. This fact is a part of Theorem 1 of
Palubeckis (1999), which we reformulate here using our current definitions and notations.
We assume everywhere below that the flow matrix W (Hm) is of the same dimensions as
the corresponding distance matrix.

Theorem 1. Let S be a set of m > 3 points on the plane and X (respectively, Y)
be the set of vertical (respectively, horizontal) lines passing through the points in S.
f0(W (Hm), D(S)) = 0 if and only if:

for m even, each line in X ∪ Y contains an even number of points of S;

for m odd, the algorithm BALANCE called in Step 4 of BICOLORING returns
“true”.

We apply this theorem for the point set S = {bi | i ∈ M}, where M is defined in
Step 2.3 of GENERATE_INSTANCE. A necessary and sufficient condition for a permu-
tation p to be optimal and satisfy f(p) = 0 for a QAP defined by the pair W (Hm), D(S)

is given by Lemma 3 of Palubeckis (1999). Lemma 2 below is a restriction of this lemma
to odd m – only such values of m are used in the algorithm described above. Assume

An Algorithm for Construction of Test Cases 287

for simplicity that M = {1, . . . ,m}. Given a permutation p which assigns vertices of
M = V 1

m ∪ V 2
m to points in S = {bi | i ∈ M}, we can construct a digraph G(p) by

taking the graph (V1 ∪V2, E) defined in Step 1 of BICOLORING and orienting its edges
according to the following rule: from v(zi) to u(zj) for bk = (xk = zi, yk = zj) if
vertex v satisfying p(v) = k belongs to V 2

m, and from u(zj) to v(zi) for the same bk if
such a vertex v belongs to V 1

m. Let J(X) be the set of indices i ∈ {1, . . . , q} for which
δ(v(zi)) (see Step 3.2 of BICOLORING) is odd. Assuming J(X) = {i1, . . . , iγ}, define
J1(X) = {ij | ij ∈ J(X), j is odd}, J2(X) = J(X) \ J1(X). Suppose that ∆x(i) is
the difference between δin(v(zi)) and δout(v(zi)) as before. Let J(Y), J1(Y), J2(Y) and
∆y(j) be the analogous sets and difference with respect to the y-coordinate.

Lemma 2. Let S be a set of an odd numberm > 3 points on the plane. A permutation
p described by the digraphG(p) is optimal and f0(W (Hm), D(S)) = 0 if and only if:

∆x(i) =

1, if i ∈ J1(X),

−1, if i ∈ J2(X),

0, if i ∈ {1, . . . , q} \ J(X),

(2)

∆y(j) =

−1, if j ∈ J1(Y),

1, if j ∈ J2(Y),

0, if j ∈ {1, . . . , r} \ J(Y).

(3)

Suppose the matrix D(B) is constructed in such a way that for each i = 1, . . . , n

point bi is represented by the ith row (and column) of it. Consider the QAP defined by
D(B) and W (Hm). If BALANCE returns “true”, then any permutation p satisfying the
following condition is optimal: p(i) ∈ V 1

m if i ∈ V 1
m, and p(i) ∈ V 2

m if i ∈ V 2
m, where

V 1
m, V

2
m are subsets of M delivered by BICOLORING. This condition assures that G(p′)

for p′ being a restriction of p to elements of the set M coincides with the digraph at
the end of BICOLORING, and thus (2) and (3) in Lemma 2 for p′ hold establishing the
optimality of p′ for the restricted (to points in S) QAP, what is tantamount to the opti-
mality of p for the full QAP. Particularly, the above condition is satisfied by the identity
permutation p∗ = (1, 2, . . . , n). This permutation remains optimal (with f(p∗) = 0, of
course) also for the same matrix D(B) and for W obtained by summing up all h matri-
ces W (Hm, α), that is, at the beginning of Step 3 of GENERATE_INSTANCE. In the
case of an arbitrary mapping of points in B = {b1, . . . , bn} to rows (columns) of D(B)

the rule “ith object goes to point bi” is apt. Application of this rule gives the optimal
permutation p = (p(1), . . . , p(n)), where p(i), i ∈ {1, . . . , n}, is the index of the row
(also, column) representing the point bi. For D(B) constructed in Step 3 of GENER-
ATE_INSTANCE p(i) is equal to li defined in Step 4 of the same algorithm. Because
points bi, i = 1, . . . , n, in Step 1 of the algorithm are selected randomly, permutation
(l1, . . . , ln) can be considered as being random.

The algorithm just described uses graphs of only odd size. The reason behind such a
choice is too small probability of selecting m points bi, i = 1, . . . ,m,m even, for which

288 G. Palubeckis

the equality f0(W (Hm), D(B)) = 0 would be true. In fact, for m even a condition for
the optimal value to be zero is simpler than for odd m (see Theorem 1), but, as our ex-
periments show, rarely satisfied by a point set selected randomly. So, the requirement for
m to be odd in Step 2.2 of GENERATE_INSTANCE significantly reduces the time taken
by instance construction. Moreover, for larger mupper and smaller ρbound this restriction
allows to avoid terminating of the algorithm with a failure at Step 2.4. On the other hand,
we believe that using only odd size graphs does not detract from algorithm’s ability to
produce test cases which are hard for quadratic assignment heuristics.

EXAMPLE 1. We will illustrate application of the procedures BICOLORING and
BALANCE for the set B of the following 11 points on an 8 × 8 grid (see Fig. 1a):
(1,1), (1,3), (1,6), (2,8), (4,4), (5,6), (6,4), (6,5), (6,7), (8,1) and (8,2) (in Fig. 1a
each point is marked by an index giving its position in the set B). We have vertices
v(1), v(2), v(4), v(5), v(6), v(8), u(1), u(2), . . . , u(8) and arcs e1 = (v(1), u(1)), e2 =

(u(1), v(8)), e3 = (u(2), v(8)), e4 = (v(1), u(3)), e5 = (v(4), u(4)), e6 = (u(4), v(6)),

e7 = (u(5), v(6)), e8 = (v(1), u(6)), e9 = (u(6), v(5)), e10 = (v(6), u(7)), e11 =

(u(8), v(2)) (their orientation is chosen in Step 2 of BICOLORING). The digraph is
shown in Fig. 1b. The initial function β has the following values:−4, 2,−2, 2, 0, 2. Since
this function is not everywhere zero, the procedure BALANCE is invoked. Starting from
v(1) it finds the following two paths: v(1), u(1), v(8) and v(1), u(6), v(5). After replac-
ing arcs e1, e2, e8 and e9 by (u(1), v(1)), (v(8), u(1)), (u(6), v(1)) and (v(5), u(6)), re-
spectively, we have β = (0, 2,−2, 0, 0, 0). However, no path between v(4) and v(2) ex-
ists, so the procedure BICOLORING returns “false”. If we modify the given set of points
slightly by substituting the point (6,7) with the point (6,8), then the return value would
be “true”. Indeed, in this case BALANCE finds the path v(4), u(4), v(6), u(8), v(2),
and BICOLORING constructs a copy of H11 with V 1

11 = {1, 3, 5, 8, 9, 11} and V 2
11 =

{2, 4, 6, 7, 10}.

Let I(n, nx, ny, h, w) denote the set of QAP instances, that is, pairsW,D, which can
be produced by GENERATE_INSTANCE applied with mlower = 3.

The following result is implied by Theorem 3 of Palubeckis (1999) (since the set
considered in its formulation is only a subset of the set I(n, nx, ny, h, w) defined above).

Theorem 2. Let ε be any positive number. Then for sufficiently large n there exists
a grid Q(nx, ny) of size nxny < (1 + ε)n such that for any h > 2n and w > 1 both
bounded from above by some polynomial of n the set I(n, nx, ny, h, w) is hard.

3. Computational Experiments

In this section we present the main results of experimentation with the well-known multi-
start descent heuristic for the QAP on the test cases produced by the algorithm we have
described here and also by some of the existing generators. Using multi-start descent we

An Algorithm for Construction of Test Cases 289

Fig. 1. Example of the directed graph: a – set of points; b – digraph constructed in Steps 1 and 2 of BICOLOR-
ING.

tried to evaluate experimentally the hardness of instances constructed by different algo-
rithms. For comparison, we also run this heuristic on two largest quadratic assignment
problems due to Nugent, Vollmann and Ruml (1968), named Nug20 and Nug30, and two
problems, Nug22 and Nug24, constructed out of Nug30 by deleting certain rows and
columns. We have selected these problems from the QAPLIB for several reasons. Firstly,
they, especially Nug20 and Nug30, are well known and widely used in experimental eval-
uation of different algorithms for the QAP. Secondly, all of them except the largest one
are solved to optimality, and for the largest problem it is believed that the best known
value is optimal. Thirdly, these benchmark problems are instances of the rectilinear QAP,
exactly as instances generated by our algorithm, what is desirable to make a comparison
more fair.

The multi-start descent heuristic consists of the following two steps executed inter-
mittently.

1. Randomly generate some permutation p ∈ P , whereP is the set of all permutations
of N .

2. Apply procedure DESCENT(p). If permutation returned by this procedure is better
than the best one found so far, then store it as pbest. Depending on some termination
criterion, either stop with pbest, or go to 1.

In our experiments we adopted the simplest termination criterion – an upper bound on
the number of starts of descent.

Finding a locally optimal solution used in Step 2 of the above heuristic takes the
following steps.

290 G. Palubeckis

Procedure DESCENT(pinit)

1. Set p := pinit.

2. Search the neighborhood of p defined asL(p) = {p′ ∈ P | there exist j, k ∈ N, j 6=
k, such that p′(j) = p(k), p′(k) = p(j), and p′(i) = p(i) for all i ∈ N \ {j, k}}.
If p′ ∈ L(p) is found for which f(p′) < f(p), then set p := p′ and repeat 2.
Otherwise, return p.

The multi-start descent is a simple iterative heuristic for the QAP, which, as remarked,
for example, by Taillard (1995), produces rather good solutions in a short amount of
time, not much worse than solutions yielded by more sophisticated and time-consuming
algorithms, like genetic or tabu search.

Besides the algorithm presented in the prior section, in the experiments we also used
the following generators:

1. A generator proposed by Palubeckis (1988) (its description can also be found in Li
and Pardalos (1992), Pardalos, Rendl and Wolkowicz (1994), and Çela (1998)). We will
use acronym GEN0 for it in Tables 3 and 4 below and in the rest of this section.

2. The second generator presented by Li and Pardalos (1992), which we adopt for
generating QAP instances with the rectilinear distance matrix. This generator (referred
to as GENLP below) is different from the first one of the same authors and from GEN0,
since it does not use triangles (graphsH3) in the construction of the flow matrix.

3. GEN2M from Palubeckis (1999). This generator is kindred to GEN0 – exploits only
triangles. Nevertheless, as it is proved by Palubeckis (1999) the set of instances produced
by GEN2M is hard. In the current paper this generator will be denoted as GEN1.

4. GEN5 from Palubeckis (1999) – a generator which together with H3 uses also H5

and H7. While constructing the flow matrix W the positive edge weights of the graphs
are added only to nonnegative entries of W , and negative only to nonpositive entries of
W . The output set is hard, too. Here we refer to this generator as GEN2.

To evaluate the quality of solutions we use the following measure

K(fh) = 100(fh − f0)/(fa − f0),

where fh is a heuristic solution value, and fa is the average value of f taken over the
set P

fa = (
n−1∑
i=1

n∑
j=i+1

wij)(
n−1∑
i=1

n∑
j=i+1

dij)/(n(n− 1)/2).

Our choice in favor of this measure against the simpler oneK ′(fh) = 100(fh−f0)/f0 is
motivated by the fact that the latter is sensitive to transformations of any of two matrices
when an arbitrary constant is added to each entry of the matrix W (or D). Clearly, such
transformations do not affect the value of K(fh).

All the programs implementing algorithms described or mentioned in this paper were
written in the C language. The experiments were conducted on an IBM PC.

An Algorithm for Construction of Test Cases 291

Table 1

Effect of changing the number of graphs used (for n = 20)

h #solved #starts K

5 7 676 0.3

10 0 2000 4.3

15 2 1804 5.4

20 0 2000 6.1

30 7 1150 1.8

40 10 444 0

60 10 447 0

80 10 539 0

100 10 221 0

200 10 248 0

Table 2

Effect of changing upper bound on the size of graphs (for n = 20)

mupper h #solved #starts K

3 30 9 478 0.1

5 20 6 1335 0.3

7 20 2 1694 2.0

9 20 2 1768 3.4

11 15 1 1908 3.0

13 15 3 1749 2.7

15 15 0 2000 6.8

17 15 1 1889 5.0

19 10 0 2000 4.3

The goal of the first two experiments was to evaluate the difficulty (for multi-start
descent, of course) of test instances produced by GENERATE_INSTANCE by changing,
in one case, the number h of graphs selected and, in another, the upper boundmupper on
the size of graphs. The results for n = 20 are summarized in Tables 1 and 2. The second
column of Table 1 gives the number of instances of the QAP solved to optimality (for
each row 10 instances were tried). For each instance, the multi-start descent procedure
was run until either 2000 starts were performed or until an optimal solution was found.
The actual number of starts of descent averaged over 10 instances is given in the column
under heading “#starts”. The last column displays the average value of K. The same
columns are also present in Table 2. The values of other parameters to the generator are
as follows: nx = ny = 7, w = 10, ρbound = 50,mlower = 3, and, for the first table,
mupper = 19.

292 G. Palubeckis

Table 3

Input data

grid dimensions

n tGEN2 trest h5 h7 h GEN0 other generators

20 50 80 10 5 10 5× 4 7× 7

30 100 200 20 10 20 6× 5 8× 8

40 200 350 30 15 20 8× 5 9× 9

50 300 600 50 20 30 10× 5 10× 10

60 450 900 80 30 30 10× 6 11× 11

70 600 1200 120 40 50 10× 7 12× 12

Table 4

Number of instances solved optimally (25 instances tried for each entry of the table)

Problem size; number of starts of descent

Generator 20; 5000 30; 2000 40; 1000 50; 500 60; 200 70; 100

GEN0 25 25 25 24 25 20

GENLP 25 25 25 25 14 8

GEN1 25 25 22 20 11 3

GEN2 25 19 20 11 8 4

GEN 2 0 0 0 0 0

The results in Table 1 indicate that the most difficult instances are obtained for rather
(but not too) small number of graphs. As this number increases the instances become
easier. Table 2 shows that it is reasonable to use larger values of mupper, for example,
mupper = n – such a choice, in general, leads to harder QAP instances.

In the third experiment we tried to compare, using multi-start descent, the hardness
of QAP test cases produced by different generators – those listed above in this section
and GENERATE_INSTANCE. The input data used are given in Table 3. In this table,
tGEN2 is the number of triangles to be selected in GEN2, trest is the same characteristic
for GEN0 and GEN1, h5 (respectively, h7) is the number of graphs isomorphic to H5

(respectively, H7) – this pair of numbers is for GEN2, and h is the number of graphs
for GENERATE_INSTANCE. The last columns give grid dimensions for GEN0 and, re-
spectively, for the rest of generators. The values of some less important parameters for
GEN0-GEN2 and GENLP are the same as in the experiments whose results are summa-
rized in Palubeckis (1999). For the algorithm described here,mlower = 3,mupper = n−1

and w = 10. The results obtained are reported in Table 4. The name GEN (see the last
row) is used to denote GENERATE_INSTANCE. For each value of n and corresponding
number of starts of descent 25 test cases were created by each generator. The table shows
how many of them were solved to optimality. It provides an ample evidence that instances

An Algorithm for Construction of Test Cases 293

produced by GENERATE_INSTANCE are much harder than those constructed by other
generators.

Table 5 contains the results of longer runs of multi-start descent on 12 test cases
Inst20, Inst22,. . . , Inst200 created by GENERATE_INSTANCE and, for comparison,
four Nugent-type problems from the QAPLIB: Nug20, Nug22, Nug24 and Nug30. The
dimension of each problem is equal to the number appearing in its name. As before, the
multi-start descent procedure was run until either a specified number of starts was per-
formed or until an optimal solution was found (for Nug20, Nug22, Nug24 and twice for
Inst20). The actual number of starts is given in the second column of the table. The third
column reports the solution time in the form hours:minutes:seconds or minutes:seconds
or just seconds. Next two columns display the optimal value and, respectively, the value
for solution obtained by multi-start descent. In the case of Inst20,. . . , Inst200 the values
are computed assuming that the flow matrix W is made symmetric by assigning wij to
wji for each pair i, j, i < j. The last column gives the value of the optimality measureK.
For each of Inst20-Inst30 and Nug20-Nug30 multi-start descent was applied three times,
so these problems are represented in the table by three consecutive rows. In this experi-
ment we run our generator with values of some parameters different than in the previous
one: we took mlower = n− 1 = mupper, h = n/2, and for Inst200 w = 5. It seems that
by taking largermlower we have increased the difficulty of instances generated.

Comparing Inst20-Inst30 and Nug20-Nug30 we can conclude that test cases produced
by the algorithm presented in this paper are more difficult than the well-known Nugent-
type benchmark problems from the QAPLIB. For example, Nug22 already succumb to
1000 iterations, whereas for Inst22, the QAP instance with the same number of objects,
even 250000 of starts are insufficient. In fact, Nug20, Nug22 and Nug24 were solved quite
easily. However, multi-start descent heuristic applied with the upper bound of 100000

on the number of starts failed to find an optimal solution for both Nug30 and Inst30.
Nevertheless, the solutions obtained for Nug30 are much closer (in the sense ofK) to the
optimum than those for Inst30.

The distance and flow matrices defining Inst20, Inst30,. . . , Inst200 used in this last ex-
periment are publically available at http://www.soften.ktu.lt/˜gintaras/
qproblem.html.

4. Conclusions

In this paper we described an algorithm for generation of test cases for the QAP. The
algorithm uses special signed graphs having nonnegatively valued bisections. It differs
from similar existing generators in that the sizes of such graphs are larger – up to the
dimension of the problem. The set of possible outputs of this algorithm is hard, that is, no
polynomial-time approximation algorithm for the QAP exists, unless P=NP, which can
solve each instance in this set.

As it follows from experimentation with the multi-start descent heuristic, the test cases
generated are hard not only theoretically but also in practice. Quite believable that they re-
main hard for other more sophisticated iterative techniques for solving the QAP. It would

294 G. Palubeckis

Table 5

Results of longer runs of multi-start descent

optimal value

problem #starts time value obtained K

Inst20 79493 26:23 81536 81536 0.0

148804 49:27 81536 81536 0.0

300000 1:39:30 81536 81548 0.3

Nug20 286 6 2570 2570 0.0

152 3 2570 2570 0.0

219 5 2570 2570 0.0

Inst22 250000 1:43:42 107016 107184 3.6

250000 1:43:38 107016 107084 1.5

250000 1:43:35 107016 107268 5.4

Nug22 782 30 3596 3596 0.0

462 18 3596 3596 0.0

77 3 3596 3596 0.0

Inst24 200000 1:58:12 153144 153464 4.6

200000 1:58:11 153144 153436 4.2

200000 1:58:12 153144 153216 1.0

Nug24 2212 1:40 3488 3488 0.0

2454 1:50 3488 3488 0.0

1950 1:27 3488 3488 0.0

Inst30 100000 2:08:37 271092 272080 8.0

100000 2:08:36 271092 272128 8.4

100000 2:08:44 271092 272300 9.8

Nug30 100000 2:58:15 6124∗ 6128 0.2

100000 2:58:15 6124∗ 6130 0.3

100000 3:00:40 6124∗ 6128 0.2

Inst40 50000 2:58:39 837900 840308 10.0

Inst50 20000 2:41:28 1840356 1846876 13.2

Inst60 10000 2:35:51 2967464 2978216 14.2

Inst70 5000 2:12:19 5815290 5831954 14.9

Inst80 3000 2:08:30 6597966 6618290 14.8

Inst100 1500 2:16:53 15008994 15047406 14.4

Inst150 500 3:13:22 58352664 58468204 15.6

Inst200 200 3:45:13 75405684 75543960 16.0

∗ best known value

An Algorithm for Construction of Test Cases 295

be interesting to test algorithms based on these techniques on the instances generated by
our algorithm, particularly on those of type used in the last experiment of the previous
section.

References

Battiti, R., and G. Tecchiolli (1994). The reactive tabu search. ORSA Journal on Computing, 6, 126–140.
Burkard, R.E. (1984). Quadratic assignment problems. European Journal of Operational Research, 15, 283–

289.
Burkard, R.E., E. Çela, P.M. Pardalos and L.S. Pitsoulis (1998). The quadratic assignment problem. SFB Report

126, Institute of Mathematics, Technical University Graz, Austria, to appear in P.M. Pardalos and D.-Z. Du
(Eds.), Handbook of combinatorial optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Burkard, R.E., S.E. Karisch and F. Rendl (1997). QAPLIB – a quadratic assignment problem library. Journal
of Global Optimization, 10, 391–403.

Burkard, R.E., and F. Rendl (1984). A thermodynamically motivated simulation procedure for combinatorial
optimization problems. European Journal of Operational Research, 17, 169–174.

Çela, E. (1998). The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Clausen, J., S.E. Karisch, M. Perregaard and F. Rendl (1996). On the applicability of lower bounds for solv-
ing rectilinear quadratic assignment problems in parallel. Technical Report DIKU-TR-96/24, Department
of Computer Science, University of Copenhagen, Denmark, to appear in Computational Optimization and
Applications.

Clausen, J., and M. Perregaard (1997). Solving large quadratic assignment problems in parallel. Computational
Optimization and Applications, 8, 111–127.

Connolly, D.T. (1990). An improved annealing scheme for the QAP. European Journal of Operational Re-
search, 46, 93–100.

Cung, V-D., T. Mautor, P. Michelon and A. Tavares (1996). A scatter search based approach for the quadratic
assignment problem. Technical Report No.96/037, Université de Versailles, France.

Cyganski, D., R.F. Vaz and V.G. Virball (1994). Quadratic assignment problems generated with the Palubetskis
algorithm are degenerate. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica-
tions, 41, 481–484.

Elshafei, A.E. (1977). Hospital layout as a quadratic assignment problem. Operations Research Quarterly,
28, 167–179.

Fleurent, C., and J.A. Ferland (1994). Genetic hybrids for the quadratic assignment problem. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 16, 173–187.

Gambardella, L.M., E.D. Taillard and M. Dorigo (1997). Ant colonies for the QAP. Technical Report IDSIA-4-
97, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano, Switzerland.

Geoffrion, A., and G. Graves (1976). Scheduling parallel production lines with changeover costs: practical
application of a quadratic assignment/LP approach. Operations Research, 24, 595–610.

Hubert, L. (1987). Assignment Methods in Combinatorial Data Analysis. Marcel Dekker, Inc., New York.
Krarup, J., and P. Pruzan (1978). Computer-aided layout design. Mathematical Programming Study, 9, 75–94.
Laporte, G., and H. Mercure (1988). Balancing hydraulic turbine runners: a quadratic assignment problem.

European Journal of Operational Research, 35, 378–381.
Li, Y., and P.M. Pardalos (1992). Generating quadratic assignment test problems with known optimal permuta-

tions. Computational Optimization and Applications, 1, 163–184.
Li, Y., P.M. Pardalos and M.G.C. Resende (1994). A greedy randomized adaptive search procedure for the

quadratic assignment problem. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
16, 237–261.

Mautor, T., and C. Roucairol (1994). A new exact algorithm for the solution of quadratic assignment problems.
Discrete Applied Mathematics, 55, 281–293.

Murthy, K.A., P.M. Pardalos and Y. Li (1992). A local search algorithm for the quadratic assignment problem.
Informatica, 3, 524–538.

296 G. Palubeckis

Nugent, C.E., T.E. Vollmann and J. Ruml (1968). An experimental comparison of techniques for the assignment
of facilities to locations. Operations Research, 16, 150–173.

Palubeckis, G.S. (1988). A generator of quadratic assignment test problems with known optimal solution.
U.S.S.R. Computational Mathematics and Mathematical Physics, 28, 97–98.[Translated from Zh. Vychisl.
Mat. Mat. Fiz., 28, 1740–1743.]

Palubeckis, G. (1997). The use of special graphs for obtaining lower bounds in the geometric quadratic assign-
ment problem. Informatica, 8, 377–400.

Palubeckis, G. (1999). Generating hard test instances with known optimal solution for the rectilinear quadratic
assignment problem. Journal of Global Optimization, 15, 127–156.

Pardalos, P.M., F. Rendl and H. Wolkowicz (1994). The quadratic assignment problem: a survey and recent
developments. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 16, 1–42.

Pardalos, P.M., M.G.C. Resende and Y. Li (1996). FORTRAN subroutines for approximate solution of dense
quadratic assignment problems using GRASP. ACM Transactions on Mathematical Software, 22, 104–118.

Pardalos, P.M., M.G.C. Resende and L.S. Pitsoulis (1997). Algorithm 769: FORTRAN subroutines for approx-
imate solution of sparse quadratic assignment problems using GRASP. ACM Transactions on Mathematical
Software, 23, 196–208.

Sanchis, L.A. (1990). On the complexity of test case generation for NP-hard problems. Information Processing
Letters, 36, 135–140.

Skorin-Kapov, J. (1990). Tabu search applied to the quadratic assignment problem. ORSA Journal on Comput-
ing, 2, 33–45.

Taillard, E. (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing, 17, 443–
455.

Taillard, E.D. (1995). Comparison of iterative searches for the quadratic assignment problem. Location Science,
3, 87–105.

Tate, D.M., and A.E. Smith (1995). A genetic approach to the quadratic assignment problem. Computers and
Operations Research, 22, 73–83.

Wilhelm, M.R., and T.L. Ward (1987). Solving quadratic assignment problems by simulated annealing. IEEE
Transactions, 19, 107–119.

G. Palubeckis received the degree of Doctor of Sciences from the Kaunas Polytechnic In-
stitute, Kaunas, Lithuania, in 1987. Currently, he is an Associate Professor at the Kaunas
University of Technology. His major research interests are in graph theory, combinatorial
optimization, and computational geometry.

Testini ↪u pavyzdži ↪u kvadratinio paskirstymo uždaviniui konstravimo
algoritmas

Gintaras PALUBECKIS

Straipsnyje pateikiamas algoritmas kvadratinio paskirstymo (KP) uždavinio pavyzdži ↪u su žinomu
optimaliu sprendiniu generavimui. Toki ↪u pavyzdži ↪u sraut ↪u matrica yra konstruojama imant mat-
ricas atitinkančias specialiems grafams, kuri ↪u dydis gali pasiekti uždavinio apimt ↪i. Šiuo atžvil-
giu algoritmas apibendrina kai kuriuos egzistuojančius algoritmus, paremtus tiktai daugkartiniu
trikampi ↪u išrinkimu. Aibė pavyzdži ↪u, kurie gali būti suformuoti algoritmo pagalba, yra NP-sunki.
Naudojant daugelio start ↪u nusileidimo euristik ↪a KP uždaviniui, šie testiniai pavyzdžiai yra eksperi-
mentiškai palyginami su pavyzdžiais, formuojamais keli ↪u egzistuojanči ↪u generatori ↪u, o taip pat su
Nugento-tipo uždaviniais, paimtais iš KP uždavinio bibliotekos QAPLIB.

