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Abstract. This paper deals with maximum likelihood and least square segmentation of autoregres-
sive random sequences with abruptly changing parameters. Conditional distribution of the obser-
vations has been derived. Objective function was modified to the form suitable to apply dynamic
programming method for its optimization. Expressions of Bellman functions for this case were
obtained. Performance of presented approach is illustrated with simulation examples and segmen-
tation of speech signals examples.
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1. Introduction

Digital signal processing theory is well developed only for linear time invariant systems
(Proakis et al., 1996). Unfortunately, in practice most signals can be regarded as output
of a linear but time variant system. Some kinds of signals, e.g., speech signals (Rabiner
et al., 1993), to some extent can be interpreted as output of a linear system with abruptly
changing parameters.

One problem arising in signals with abruptly changing parameters is change point de-
tection problem (Page, 1958). Various statistical tests were applied for solving this prob-
lem (Kander et al., 1965; Bhattacharya et al., 1968) but optimal solutions were obtained
only for sequences of independent random variables. Later sequences of dependent ran-
dom variables were investigated (Telksnys, 1972; 1973), Especially constructive results
were obtained for autoregressive (AR) and autoregressive-moving average (ARMA) ran-
dom sequences (Kligienė, 1974) and (Lipeikienė, 1973). In all these references problem
was formulated under assumption that there is one change point in observable random
sequence.

Many change point case problem was formulated by Telksnys (1969) but it was solved
only for random sequences with some simple covariance matrices. This problem for au-
toregressive random sequences was formulated by Lipeika (1975) and in Lipeika (1977)
explicit expression of the likelihood function as function of many change points was
derived. The next problem was that of optimization of a likelihood function depending
on many variables. This problem was investigated in Lipeika (1979) and the likelihood
function was replaced by another function for which a point (in multivariate space) of the
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global maximum remains the same and solution reducing amount of computations was
given. In Lipeika et al. (1987) dynamic programming approach was applied for maxi-
mization of likelihood function depending on many variables.

In this paper full constructive solution of maximum likelihood and least square error
estimation of change points problem is given and simulation examples are presented. This
solution enables reduce amount of computations from orderNM to orderN ×M , where
N is a length of observable random sequence and M – a number of change points in this
sequence. Application of this approach to estimation of change points in speech signals
is demonstrated.

2. Statement of the Problem

Let us consider random sequence x = {x(1), x(2), . . . , x(N)}, which is an output of
linear discrete time system. Input of the system v(n) is a sequence of Gaussian indepen-
dent random variables with zero mean and unit variance. The system structure satisfies
autoregressive (AR) equation of the form

x(n) = −a1(n)x(n− 1)− a2(n)x(n − 2)− . . .− ap(n)x(n− p) + b(n)v(n),(1)

where p is an order of autoregressive system; A′(n) = [a1(n), a2(n), . . . , ap(n), b(n)]

is a vector of time-varying parameters of the system at every time instant satisfying sys-
tem stability conditions. The parameters A(n) of the system are known a priori and are
changing according to the rule

A(n) =



A1, n = . . . , 1, 2, . . . , u1,

A2, n = u1 + 1, . . . , u2,

. . . . . .

Ai, n = ui−1 + 1, . . . , ui,

. . . . . .

AM , n = uM−1 + 1, . . . , uM ,

AM+1, n = uM + 1, . . . , N, . . . ,

(2)

where u = [u1, u2, . . . , uM ] are random change points of the known system parameters
A(n) with a priori distribution P (u) and satisfy the condition p < u1 < u2 . . . < uM <

N . Input of the system does not depend of change points u.
The problem is to obtain estimates û = [û1, û2, . . . , ûM ] of change points u =

[u1, u2, . . . , uM ], when the realization x = {x(1), x(2), . . . , x(N)} of the random se-
quence is available.

3. Optimization Criterion

The problem of obtaining estimates of the change point’s u can be treated as a classi-
fication problem. We will solve it using probabilistic approach (Duda et al., 1973), the
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maximum a posteriori probability clasifier. A posteriori probability P (u|x) can be calcu-
lated from the conditional probability distribution density p(x|u) using the Bayes formula
as

P (u|x) =
p(x|u)P (u)

p(x)
, (3)

where

p(x) =
∑
u

p(x|u)P (u). (4)

Then the maximum probability estimator û of change points u is

û = arg max
u

P (u|x). (5)

For the given realization x of the random sequence denominator of (3) is constant. Instead
of maximizing (5) we can maximize p(x|u)P (u)

û = arg max
u

p(x|u)P (u). (6)

When a priori distribution P (u) is unknown (or constant), we can maximize p(x|u)

û = arg max
u

p(x|u). (7)

This estimator is called maximum likelihood estimator of change points u. We will
assume a priori distribution P (u) to be constant and solve the problem of maximum
likelihood (ML) estimation of change points u.

4. Derivation of the Conditional Distribution

Since input of the system (1) is a sequence of Gaussian independent random variables
(independent of u) with zero mean and unit variance and the system (1) is linear the
conditional distribution p(x|u) is also Gaussian.

We can also express p(x|u) in terms of conditional distributions

p(x|u) = p(x(1), x(2), . . . , x(p))
N∏

n=p+1

p(x(n)|u, x(n− 1), . . . , x(1)). (8)

As output of the system (1) at time instant n depends only of p previous outputs
x(n− 1), . . . , x(n− p), we can rewrite (8) in the form

p(x|u) = p(x(1), x(2), . . . , x(p))
N∏

n=p+1

p(x(n)|u, x(n− 1), . . . , x(n− p)). (9)
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Taking into account change points u and the condition p < u1 < u2 . . . < uM < N

we have

p(x|u) = p(x(1), x(2), . . . , x(p))

u1∏
n=p+1

p(x(n)|u, x(n − 1), . . . , x(n− p))

×
u2∏

n=u1+1

p(x(n)|u, x(n− 1), . . . , x(n− p))× . . .

×
N∏

n=uM+1

p(x(n)|u, x(n − 1), . . . , x(n− p)). (10)

Since p(x|u) is Gaussian distribution density, p(x(n)|u, x(n − 1), . . . , x(n − p)) is
also Gaussian univariate distribution density with conditional mean

m(n) = E[x(n)|u, x(n − 1), . . . , x(n− p))] (11)

and conditional variance

σ2(n) = E[(x(n) −m(n))2|u, x(n− 1), . . . , x(n− p))]. (12)

Taking into account (1) we can write (11) and (12) as

m(n) = −a1(n)x(n − 1)− . . .− ap(n)x(n− p), (13)

σ2(n) = b2(n), (14)

and

p(x(n)|u, x(n − 1), . . . , x(n− p)) =
1√

2πb2(n)
exp

{
− [x(n)−m(n)]2

2b2(n)

}
. (15)

Substituting (15) into (10) and taking into account (2) we can write (Lipeika, 1977)

p(x|u) = p(x(1), x(2), . . . , x(p)) × (2π)−(N−p)/2

× b−(u1−p)(1)× b−(u2−u1)(2)× . . .× b−(N−uM)(M + 1)

× exp

{
1

2b2(1)

u1∑
n=p+1

[ p∑
j=0

aj(1)x(n− j)
]2

− 1

2b2(2)

u2∑
n=u1+1

[ p∑
j=0

aj(1)x(n− j)
]2

− . . .

− 1

2b2(M + 1)

N∑
n=uM+1

[ p∑
j=0

aj(1)x(n− j)
]2
}
, (16)

where we assume a0(i) = 1, i = 1, 2, . . . ,M + 1.
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5. Modification of the Likelihood Function

Instead of using p(x|u) (expressions (7) and (16)) in implementation it is more convenient
to use log p(x|u). It helps us to avoid exceeding dynamic range of the computer and
reduces computation score. Taking log p(x|u) we can write (7) and (16) as

û = arg max
u

p(x|u) = arg max
u

log p(x|u), (17)

and

log p(x|u) = log p(x(1), x(2), . . . , x(p))− (N − p)/2 log(2π)

− (u1 − p) log b(1)− (u2 − u1) log b(2)− . . .

− (N − uM) log b(M + 1)− 1

2b2(1)

u1∑
n=p+1

[ p∑
j=0

aj(1)x(n− j)
]2

− 1

2b2(2)

u2∑
n=u1+1

[ p∑
j=0

aj(2)x(n − j)
]2

− . . .− 1

2b2(M + 1)

N∑
n=uM+1

[ p∑
j=0

aj(M + 1)x(n− j)
]2

. (18)

For the given realization of the random sequence instead of maximizing (18) we can
maximize objective function Θ(u|x) (Lipeika, 1979), which differs from (18) by an ad-
ditive constant not depending on u, i.e.,

û = arg max
u

log p(x|u) = arg max
u

Θ(u|x), (19)

where

Θ(u|x) = L1(u1|x) + L2(u2|x) + . . .+ LM(uM |x). (20)

Each of functionsLi(ui|x), i = 1, 2, . . . ,M depends only on one unknown change point
ui and can be expressed as

Li(k|x) = − (k − p) log b(i)− (N − k) log b(i+ 1)

− 1

2b2(i)

k∑
n=p+1

[ p∑
j=0

aj(i)x(n− j)
]2

− 1

2b2(i+ 1)

N∑
n=k+1

[ p∑
j=0

aj(i+ 1)x(n− j)
]2

,

i = 1, 2, . . . ,M ; k = p+ 1, 2, . . . , N, (21)
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or can be calculated recursively

Li(k|x) = Li(k − 1|x)− log b(i) + log b(i+ 1)

− 1

2b2(i)

[ p∑
j=0

aj(i)x(n− j)
]2

+
1

2b2(i+ 1)

[ p∑
j=0

aj(i+ 1)x(n− j)
]2

i = 1, 2, . . . ,M ; k = p+ 1, 2, . . . , N, (22)

with the initial conditions

Li(p|x) = 0, i = 1, 2, . . . ,M.

6. Maximization of the Objective Function Using Dynamic Programming Method

Since the function Θ(u|x) consists of the sum of partial functions Li(ui|x), i =

1, 2, . . . ,M and each of these partial functions depends only on one variable, we can use
the dynamic programming method to determine place of the global maximum (Lipeika
et al., 1987) of this function.

According to the dynamic programming method let us define the Bellman functions
(Cooper et al., 1981). Procedure fully depends on restrictions in the range of the maxi-
mization variables. In our case the restrictions are

p < u1 < u2 < . . . < uM < N. (23)

Let us begin from maximization of L1(u1|x), p < u1 < u2. We can see that max-
imum of L1(u1|x) depends only on u2. So we can define the function g1(u2|x) such
that

g1(u2|x) = max
u1

p<u1<u2

L1(u1|x), u2 = p+ 2, . . . , N. (24)

We can see that the global maximum of the of the function g1(u2|x) (and also of
the function L1(u1|x)) depends only on u2 (one variable) for all possible values of
u3, u4, . . . , uM , satisfying the condition u2 < u3 < u4 < . . . < uM < N .

Now let us maximize L1(u1|x) + L2(u2|x), p < u1 < u2 < u3. We can see that
maximum of L1(u1|x) + L2(u2|x) depends only on u3. So we can define the function
g2(u3|x) such that

g2(u3|x) = max
u2

p+1<u2<u3

[
L2(u2|x) + g1(u2|x)

]
, u3 = p+ 3, . . . , N. (25)
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The global maximum of the of the function g2(u3|x) (and also of the function
L1(u1|x) + L2(u2|x)) depends only on u3 (one variable) for all possible values of
u4, u5, . . . , uM , satisfying the condition u3 < u4 < u5 < . . . < uM < N .

Similarly we can maximize the function

L1(u1|x) + L2(u2|x) + . . .+ Li(ui|x),

p < u1 < u2 < u3 < . . . < ui < ui+1, (26)

as the maximum of L1(u1|x) +L2(u2|x) + . . .+Li(ui|x) depends only on ui+1. So we
can define the function gi(ui+1|x) such that

gi(ui+1|x) = max
ui

p+i−1<ui<ui+1

[
Li(ui|x) + gi−1(ui|x)

]
,

ui+1 = p+ i+ 1, . . . , N. (27)

The global maximum of the of the function gi(ui+1|x) (and also of the function
L1(u1|x) + L2(u2|x) + . . . + Li(ui|x)) depends only on ui+1 (one variable) for all
possible values of ui+2, ui+3, . . . , uM , satisfying the condition ui+1 < ui+2 < ui+3 <

. . . < uM < N .
And for maximization of

Θ(u|x) = L1(u1|x) + L2(u2|x) + . . .+ LM(uM |x)

we have

gM(uM+1|x) = max
uM

p+M−1<uM<uM+1

[
LM(uM |x) + gM−1(uM |x)

]
,

uM+1 = p+M + 1, . . . , N, (28)

where uM+1 is additional variable, which means the possible length of the available
realization of the random sequence. Since the length of the realization is N , the value
gM (N |x) is the global maximum of the Θ(u|x). The functions gi(n|x) are not decreasing
functions with respect to n = p+ 1, . . . , N .

Now the maximum likelihood estimator û = [û1, û2, . . . , ûM ] of the change points u
is obtained in the following way

ûk = min
[

arg max
n

p+k6n6ûk+1

gk(n|x)
]
, k = M,M − 1, . . . , 2, 1, (29)

where, for convenience, we made a notation ûM+1 = N .
For further reduction of computation amount, we can compute the functions

gi(ui+1|x), i = 1, . . . ,M recursively (Lipeika et al., 1992)

g1(u2|x) = max
[
g1(u2 − 1|x), L1(u2 − 1|x)

]
, u2 = p+ 3, . . . , N, (30)
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with the initial condition g1(p+ 2|x) = L1(p+ 1|x) and for i = 2, . . . ,M

gi(ui+1|x) = max
{
gi(ui+1 − 1|x),

[
gi−1(ui+1 − 1|x) + Li(ui+1 − 1|x)

]}
,

ui+1 = p+ i+ 2, . . . , N, (31)

with the initial conditions

gi(p+ i+ 1|x) = Li(p+ i|x) + gi−1(p+ i|x), i = 2, . . . ,M. (32)

Finally we obtained maximum likelihood estimator of change points û = [û1, û2, . . . ,

ûM ]. By the way, it is interesting to note, that by assuming b(i) = 1, i = 1, 2, . . . ,M +1

and using the same optimization method we obtain least square (LS) estimates of change
points u = [u1, u2, . . . , uM ]. According to needs of implementation there are several
possible modifications of the optimization algorithm (this problem is not discussed in
this paper).

This solution enables to reduce amount of computations from the order NM (full
search) to the orderN×M (dynamic programming), whereN is a length of an observable
random sequence and M is the number of change points in this sequence. E.g., if N =

10000, M = 5, we have NM = 1015 for full search and N ×M = 50000 for dynamic
programming approach. This result is very important for “real world” applications, e.g.,
speech signal segmentation into phonemes, EEG (electroencephalogram) analysis, etc.

7. Simulation Examples

We solved the following simulation problem. We generate a realization of the random
tenth order autoregressive sequence with parameters corresponding to the Lithuanian
word “namas” as listed in Table 1.

Change points were selected as u = [100, 200, 300, 400, 500], length of the real-
ization N = 600. The maximum likelihood (ML) estimate of the change points was
obtained ûML = [101, 200, 300, 400, 499], the least square (LS) estimate was ûLS =

Table 1

Parameters of the autoregressive model and their meaning

Parameters of the AR model Meaning

A1 Background noise

A2 Sound ‘n’

A3 Sound ‘a’

A4 Sound ‘m’

A5 Sound ‘a’

A6 Sound ‘s’
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Fig. 1. Generated realization and the Bellman functions. Estimated change points are ûML = [101, 200, 300,
400, 499], the maximum likelihood estimate. The true change points are u = [100, 200, 300, 400, 500].

Fig. 2. Generated realization and the Bellman functions. Estimated change points are ûLS = [206, 207, 299,
409, 499], the least square estimate. The true change points are u = [100, 200, 300, 400, 500].

[206, 207, 299, 409, 499]. In Fig. 1 the realization of generated random sequence and the
Bellman functions are shown for the maximum likelihood estimate. Vertical lines indicate
estimated change points.

Results of the least square estimation for the same realization are displayed in Fig. 2.
From these figure we can see that the algorithm was not able to catch transition from
background noise parameters to the sound ‘n’ parameters.

The same experiment was performed with longer realization, N = 6000. Change
points were selected u = [1000, 2000, 3000, 4000, 5000]. The maximum likelihood es-



252 A. Lipeika

timate of the change points was ûML = [1002, 2001, 3000, 4001, 4997] and the least
square estimate was ûLS = [1002, 2009, 3000, 3996, 4997]. In this case change from
background noise to the sound ‘n’ was caught immediately even by the least square algo-
rithm (u1 = 1000, û1LS = 1002). In Fig. 3 a realization of generated random sequence
and the Bellman functions are shown for the maximum likelihood estimate.

To get insight about a behavior of partial likelihood functions Li(n|x) we provided
the following experiment. We generated random sequence with parameters

A(n) =


A1 − noise, n = 1, 2, . . . , 1000,

A2 − ′n′, n = 1001, . . . , 2000,

A5 − ′a′, n = 2001, . . . , 3000,

A6 − ′s′, n = 3001, . . . , 4000,

(used in previous examples) but gain parameter b(n) was made equal to 1, i.e., b(n) = 1.
In this case maximum likelihood estimate coincides with least square estimate ûML =

ûLS = [1002, 1993, 2997]. Partial likelihood functions Li(n|x) for this experiment are
displayed in Fig. 4. From this figure we can see that ensemble mean of partial likelihood
function, corresponding to particular change point, increases as n approaches to change
point and decreases as n moves away from the change point (Lipeika, 1973). When n
is more than second change point and is increasing, ensemble mean of partial likelihood
function can increase or decrease, it depends on particular system parameters correspond-
ing to this time segment.

Fig. 3. Generated realization and the Bellman functions. Estimated change points are
ûML = [1002, 2001, 3000, 4001, 4997], the maximum likelihood estimate. True change points are
u = [1000, 2000, 3000, 4000, 5000].
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Fig. 4. Generated realization and the partial likelihood functions Li(n|x). Estimated change points are
ûML = ûLS = [1002, 1993, 2997]. True change points are u = [1000, 2000, 3000].

8. Estimation of Change Points in Speech Signals

Now will demonstrate a few examples with change points estimation in speech signals.
In Fig. 5 utterance of the Lithuanian word “namas” and the Bellman functions are shown.
Similarly in Fig. 6 utterance of the Lithuanian word “mama” and the Bellman functions
are shown.

In Fig. 7 utterance of the Lithuanian word “saulė” pronounced by female speaker and
the Bellman functions are shown. In this case the maximum likelihood estimate was not
able to “catch” transition from sound ‘u’ to ‘l’ but the least square estimate solved the

Fig. 5. Segmentation of the Lithuanian word “namas”, the maximum likelihood estimate.
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Fig. 6. Segmentation of the Lithuanian word “mama”, the maximum likelihood estimate.

Fig. 7. Segmentation of the Lithuanian word “saulė”, the least square estimate.

problem. The main reason of mistakes in change points determination in speech signals
is parameter variability in different utterances of the same word even pronounced by the
same speaker and time varying nature of the phonemes itself. These problems we leave
for further investigation.

9. Concluding Remarks

The problem of maximum likelihood and least square segmentation of autoregressive
random sequences with abruptly changing parameters was investigated. Dynamic pro-
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gramming method was applied for maximization of objective functions. Simulation ex-
amples and speech signal segmentation examples illustrate performance of the proposed
approach.

Future research should be concentrated on application of this approach to “real world”
signal segmentation, adaptation to intra-speaker variability in speech and text-dependent
speaker recognition.
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Atsitiktini ↪u sek ↪u optimali segmentacija

Antanas LIPEIKA

Darbe yra nagrinėjama autoregresini ↪u atsitiktini ↪u sek ↪u su šuoliais besikeičiančiais parametrais seg-
mentacija naudojant maksimalaus tikėtinumo ir vidutinės kvadratinės klaidos kriterijus. Gauta
stebėjim ↪u s ↪alyginio pasiskirstymo išraiška. Tikslo funkcija yra modifikuota taip, kad optimizaci-
jai galima būt ↪u panaudoti dinaminio programavimo metod ↪a. Šiai tikslo funkcijai gautos patogios
taikymui Belmano funkcij ↪u išraiškos. Metodo darbingumas yra iliustruojamas modeliavimo ir rea-
li ↪u kalbos signal ↪u segmentavimo pavyzdžiais.


