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Abstract. A new concept of an exact auxiliary function 
(EAF) is introduced. A function is said to be EAF,if the set of 
global minimizers of this function coincides with the global solu­
tion set of the initial optimization problem. Sufficient conditions 
for exact equivalence of the constrained minimization problem and 
minimization of EAF are provided. The paper presents various 
classes of EAF for a non linear programming problem, which has a 
saddle point of Lagra~ge function. 
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1. I~troduction. We shall be concerned here with the 
nonlinear programming problem 

minimize f(x) subject to x E X, (1) 

where f is a continuous function from Rn into RI , X is a 
feasible set. Denote the set of global optimal solutions to the­
problem (1) by X* and the global optimal objective value to 
the prqblem (1) by f*. Then, 

X* = {x* E Xlf(x) - f(x*) ~ 0 for all x EX}, 
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Everywhere the feasible set X and the set of solutions X* are 
supposed to be nonempty. 

We deal with the problem of how to transform a con­
strained program into an equivalent unconstrained minimiza­
tion problem or a constrained problem with another feasible 
set. We shall associate with the nonlinear programming prob­
lem (1) a class of numerical functions H(x, y), where param­
eter y E Y c: R' . Let X(y) denote the set of'all points,which 
globally mininrize the function H(x, y) on a set P c: Rn : 

X(y) = {x* E Rn IH(x*, y) ~ H(x, y) for all x E P}. 

The function H(x, y) is supposed to be continuous and such 
that the solution set X* CP. In many cases P is Rn. 

Definition. The function H(x; y) is said to be an exact 
auxiliary function (EAF) on P x Y if X(y) = X* for all y E Y. 

The simplest example of EAF is a well-known exact pe­
nalty function, which was found simultaneously by Eremin 
(1967) and Zangwill (1967). Many papers were devoted to the 
investigation in this field (see e.g., Bertsecas, 1975; Han and 
M angasarian , 1979; Evtushenko, 1985, 1987; Zhadan, 1984). 
Here we will show that besides the exact penalty functions, 
there are many classes of EAF . .our approach is based on our 
previous investigations (Evtushenkb and Zhadan, 1988). We 
will be primarily interested in the case, where the set P = Rn 
and numerical solution of the constrained problem (1) can 
be replaced by unconstrained minimization of the function 
H(;r, y). Then the problem (1) could be solved in a rela­
tively easy manner. It is desirable that the set Y should be as 
"broad" as possible, so that ~e do not confront a problem of 
finding a point belonging to the set Y. Therefore, we exclude 
from consideration the case, where Y is empty or consists of 
only one point. 

Very often EAF is constructed as a difference 

M(x,y) = H(x, y) - H(x*, y), x* E X* CP. (2) 
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This function is nonnegative for all x E P, y E Y, x*E X*. 
Necessary and sufficient conditions for a function M to be 
EAF are: 

i) M(x, y) ~ 0 'Vx E P, 'Vy E Y; (3) 
ii) for any y E Y from M(x, y) = 0 follows that 

x E X(y) = X*. (4) 

For the sake of simplicity, we assume that the feasible set 
X is defined by inequality type constraints and that a saddle 
point [x*, w*] of Lagrange function exists: 

X = {x E Rnlg(x) ~ O}, L(x, w) = f(x) + (w,g(x)), 

where g( x) is a function from Rn into Rm , w E R+, R+ is a 
nonnegative orthant of Rm . We denote by <',' > the usual 
inner product. We use subscripts to denote different vectors, 
e:g. Xl and X2. Superscripts are used to denote components 
of a vector. 

Throughout the paper we assume that a saddle point 
[x*, w*] of Lagrange function exists in the problem (1). This 

. assumption will not be repeated in the statements of the the­
orems given in the paper. 

In the next sections we derive our principle results which 
relate the global solution set of (1) to the global minimizer 
set X(y). Our vehicle for deriving many of results will be the 
Minkowski-Mahler inequality and a notion of polar function 
which we generalized here. The main advantage of such an 
approach is that no specific assumptions on the functions ap­
pearing in the problem, such as convexity or differentiability, 
are needed in order to prove equivalence and to find a set Y. 
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Let Q( z) be a scalar continuous function defined on a set 
Z eRa, Zo E Ra. We define a function QO(zoIZ), which we 
call a polar function to Q( z) by the following conditioI\s: 

N(zo) = {/L E RII < Z,Zo >~ /LQ(z) Vz E Z}. 

From this definition we obtain the Minkowski-Mahler inequal­
ity 

< Z,Zo >~Q(z)QO(zoIZ), Vz E Z eRa, 
Vzo E Zo eRa. 

(6) 

If a function Q( z) is strictly positive on Z or strictly negative, 
we can simplify this definition of a polar function. We have, 

. respectively: 

o < z, Zo > 
Q (zoIZ) = sup Q() , 

zEZ . z 
< Z,Zo > 

Q(z) 

Let 11 z 11 p denote a Holder vector norm: 

(7) 

The function "z" p has all properties of a· norm only if p ~ 1. 
We will use. the notation (7) also for cases where p < 1. If 
p = 2, then a Holder norm coincides with an Euclidean norm. 
We mention some· other cases: 
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If p < 0 then we assume that Ilzllp = O,if at least one compo­
nent of z is equal to zero. We give several functions Q( z) and 
their polar functions: 

Q(z) = Ilz+lIp' 
Q(z) = -llz-llp, 
Q(z) = -II?:-Io, 
Q(z) = Ilz+ll+oo' 
Q(z) = -llz-lI_oo" 

QO(zoIRS) = IIzollp*' 
QO(zoIR~) = Ilzollp*' 
QO(zoIR~) = Ilzollo, 
QO(zoIRS) = IlzolIl' 

QO(zo IR~) = Ilzo 111' 

p> 1, 

p < 1, 

where p-1 + p;l = 1, R~ is a nonpositive orthant, 

z~ = max[O, zt 
z~ = min[O, zi). 

The vector norm IIzo IIp* is called the dual norm of IIzlle' 
Define the composite 'numerical function B(g(x)). Let 

g(P) be animage of the set P in mapping g(x). Making use 
of the right-hand side inequality (5) and (6), we have 

It is easy to show that, if B(g(x)) ~ 0 for all x E Rn,then 
we get that 

By using these inequalities, we can rewrite (8) in a slightly less 
precise but more convenient form, such as 

\Ix E P. (9) 

Similarly, if B(g( x )) ~ 0 on Rn, then we have 
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and the inequality (9) also holds. 

2. Additive EAF. We start from the simplest additive 
class of EAF. Let 

H(x, y) = A(J(x), y) + B(g(x )), (10) 

where .A(J, y) is a continuous function, B(g( x)) is a strict exte­
rior penalty function. It means that B(g( x)) ~ 0 everywhere 
on Rn and B(g( x)) = 0 if and only if x E X. The most popular 
exterior penalty function and its polar function are 

We impose two additional conditions on A and B: 
a) functions A and B are such that the following inequal­

ity holds 

A(J,y)-A(J*.,y) ~ [(J - f*)/Bo(w*IRm)]_ 
Vy E Y, Vf E RI; 

(11) 

b) for any point y E Y the set X* equals to a solution set 
of the equation 

A(J(x), y) + B(g(x)) = A(J*, y), x E P. (12) 

If Y is an open set in RI , A is a differentiable function of f 
and y, then from (12) we get the system 

Very often it is much easier to solve this system instead of 
(12). 

Theorem 1. Assume that B(g( x)) is a strict exterior 
penalty function, 0 < BO(w*IRm) < +00 and functions A, 
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B satisfy conditions a) and b). Then the additive function 
H(x, y) defined by (10) is EAF on P * Y. 

Proof. Taking into account that the function B(g( x)) is 
equal to zero on X, we get 

M(x,y) = A(f(x),y) - A(f*,y) + B(g(x)). (13) 

The condition (3) can be rewritten in the form 

A(f(x)) + B(g(x)) ~ A(f*,y) Vx E P, Vy E Y. 

Noting that BO(w*IRm) > 0, we find from (9) the fol­
lowing inequality 

B(g(x)) ~ (i* - i(x))/Bo(w*IRIn ) Vx E P. 

The function B is always nonnegative, therefore we can correct 
the previous inequality 

Applying this inequality and (11) for estimation of the right­
hand side of (13), we get (3). From the condition b) it follows 
that (4) holds. This ensures that M(x, y) is EAF on P * Y, 
and the proof is now complete. 

A lot of functions satisfy this theorem. We suppose that 
i* is unknown, hence A must be constructed in such a way, 
that conditions a) and b) are satisfied for any value of i*. It 
follows from (11), that the function A(f, y) must be at least 
a non decreasing function of i. Let us restrict the class of 
EAF under consideration by requiring that A(f, y) is a convex 
function of i for any y E Y. Then we have 

A(f, y) - A(f*, y) ~ ~(f - i*) 

Vy E Y, Vi E RI, Ve E 8f A(f*, y), 
(15) 
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where ofA(f., y) is a sub differential of o4.(f, y) at a point i •. 
The condition (11) holds if 

e(f - i.) ~ [(f - i.)/ BO( 1o. \Rm)]_ 

Vy E Y, Vi E RI, Ve E OfAU., y). 

This inequality and nondecreasing condition are equivalent to 
the following inequalities 

Here we show some examples of EAF that satisfy Theorem 1 
and conditions (15), (16) 

HI(x, y) = y-1 i(x) + B(g(x)), 
Y1 = {y\y > BO(w.\Rm)}, 
H 2 (x, y) = y-1 ef (x) + B(g(x)), 
Y2 = {y\y > BO(1O.\Rm)ef*}, 
H 3 (x, y) = (y - i(x»)~ + B(g(x), 
Y3 = {y\y > i. + (-aBO(w.\Rm)I/(1-a)}, 
H4 (x, y) = (f(x) - y)! + B(g(x), 
Y4 = {yli. ~ y > i. - (j1Bo(w.IRm)1/(I-P)}, 

where a < 0, j1 > 1. Parameters a or j1 can be considered 
also as a second component of the vector y. 

The function HI is a well-known exact penalty func­
tion (see e.g., Bertsecas, 1975; Han and Mangasarian, 1979). 
The function H4 was considered by Morrison (1966), Lootsma 
(1974) and many other authors. In these papers a sequence of 
minimization problems was used with the parameter y ~ i •. 
This parameter was adjusted from one minimization of H 4 to 
another so that the sequence of Yi converges to the optimal 
objective value f •. . From .Theorem 1 we come to a conclusion, 
that any single minimization of H 4 ( X 1 y) yields an optimal so­
lution of (1) if y E 1'4. If a function i(;,) > 0 for all ;T ERn, 
then we can use the following EAF 
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H5(X, y) ::::: y-l shf(x) + B(g(x)), 
Ys ::::: {yly > BO(w*IRm)chf*}, 
H6(X, y) = y-l(f(X))'Y + B(g(x)), 'Y ~ 1, 
Y6 = {Yly > ,1';-1 BO(w*IRm)}. 

If the function f( x) is nonpositive on Rn , then we can intro­
duce another EAF 

H7(X, y) = y-l arctanf(x) + B(g(x)), 
17 = {yly > BO(w*IRm)/(l + f;)}. 
Denote XO = {x E Rnlg(x) < O}. Assume that B(g(x)) . 

is an interior penalty function. It means that B(g) is con­
tinuous and nonpositive on Rn and B(g( x)) < 0 if x E Xo. 
Suppose moreover that B(g( x)) < 0 if and only if g( x) < 0, 
then the function B(g( x)) is called a strict interior penalty 
function. For example, 

B(g(x)) = -lIg-(x )lI p ' -00 ~ p < 1 (17) 

is an interior penalty function. If p ~ 0, then this function is 
a strict interior penalty function. 

We consider EAF (10) with P = X, the condition (11) is 
replaced by the following 

A(f,y)-."4.(f*,y) ~ (f - f*))/Bo(w*IRr:::) 

Vy E Y, Vf ~ f*· 
(18) 

Theorenl 2. Let the set XO be nonempty and its closure 
coincide with X, let B(g(x)) be an interior penalty function 
and 0 < BO(w*IR~) < 00. Assume that inequality (18) holds 
and any solution ;r of the system (12) is such that ;r E X*. 
Then the function H(x, y) defined by (10) is EAF on X X Y. 

The proof is almost identical to that of the previous the­
orem. 

Suppose that A(f, y) is a convex function of f. Then 
inequality (18) hblds,if 

e ~ l/Bo(w*IR~) Ve E 0fA(.f*,y), Vy E Y. 
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All functions HI - H4 satisfy Theorem 2, but instead 
of a strict exterior penalty function we must use an interior 
penalty function (for example (17)) and replace sets Yi by the 
following sets 

YI = {ylO < y < BO(w*IR~)}, 
Y2 = {YIO < y < ef. BO(w*IR~)}, 
Y'3 = {ylf* < y < 1* + (-aBo~w*IR~))I/(1-a)}, a < 0, 
Y4 = {YIY < f*- (,BBO(w*IR~))I/(1-,B)}, ,B> 1. 
A continuous function B(g( x)) is called a strict mixed 

penalty function if B(g( x)) > 0 for x (j. X and B(g( ~)) < 0 
for x E XO. As examples of strict mixed penalty functions we 
mention the following two functions: 

B(g(x)) = Ilg+(x)llp -llg-(x)ll_p ' 1 < p < +00, (19) 

B(g(x)) = m,ax gi(x). (20) 
l~z~m 

The function (19) was used earlier by Charalambos (1976). 
Instead of (11) and (18), we introduce the following con­

dition: 

Theorem 3. Assume that B(g( x)) is a strict mixed 
penalty function, 0 < BO(w*IRm) < BO(w*IR~) < +00, con­
ditions b) and (21) hold. Then the function HCr, y) defined 
by (10) is EAF. ' 

If we use the function HI (x, y) with a strict mixed penalty 
function B(g(x) ),then 

YI = {yIBO(w*IRm ) < y < BO(w*IR~)}. 

If B(g(x)) is defined by (19),then we have 

YI = {ylllw*ll p * < y < Ilw*llr.}' 
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where p-I + p;1 = 1, _p-I + r;1 = 1. Taking into account 

that P* > 1,1 > T* > 1/2, we obtain that Ilw*llr. > Ilw*llp •· 

For function (20) the set Yl is empty. 

3. Nonlinear EAF. We introduce a nonadditive EAF 

H(x, y) = G(A(f(x), y), B(g(;t ))), (22) 

where B(g(x)) is a strict exterior penalty function, G(t, T) 
is a nondecreasing function of two variables, it means that 
G(tl' Tl) ~ G(t, T) for any tl ~ t, Tl ~ T. We assume that 
A(j, y) is a convex function of f and a scalar D exists such 
that 

o < sup sup e ~ D < +00. (23) 
yEY eE8AJ (f. ,y) 

Denote NI = DBO(w*IRffl). 

Theorem 4. Let B(g(x)) be a strict exterior penalty 
function and 0 < NI < +00. Assume that A(j, y) is a non­
decreasing convex function of f and the inequality (23) holds. 
Assume that there exists a set T E RI such that A(f*, y) E T 
for all y E Y and 

then (22) is EAF on P X Y. 
Proof. Let x E P. Using a nondecreasing property of 

G(t, T),we obtain from (14) 

Taking into account the convexity of A(f, y) with respect to 
f, we have 
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Because of the monotonicity of A 

We substitute this inequality in (25) and use (24). If 
A(f(x),y) =F A(f*, Y)tthen.we have 

H(x,y) ~ G(A(f(x),y),(A(f*,y) - A(f(x),y))+/N1 ) > 
> G(A(f*, y), 0) = H(x*, y). 

Consider the case where A(f(x), y) = A(f*,y). Ifx tt X*, 
then x tt X, B(g(x)) > O. Using the monotonocity of G(t, r) 
with t and (24), we get 

H(x, y) = G(A(f*, y), B(g(x))) ~ G(A(f*' y)­

-N1B(g(x)), B(g(x))) > G(A(f*, y), 0) = H(x*, y). 

WeconcludethatH(x,y) > H(x*,y),ifx tt X* and,there­
fore, H is EAF on P x Y. The theorem is proved. 

The following function satisfies conditions of Theorem 4 

G(t r) = {L/(1 - t_r), if 1 - ~_r ~ 0, 
, -00, otherwIse. ' 

This function is quasi convex on R2. We have Ht(t,O) = 1, 
Hr(t, O) = t=-, where t < O. Hence the condition (24) holds, if 

t < -vBo(w*IRm) and :Q = 1. Thus, 

and the function 

Hs(x,y) = (f(x) - y)_/[1- (f(x) - y).:.B(g(x))] 
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is EAF on the set Rn X Ys , where Ys = {y E EllY > f* + 
y'Bo(w*IRm)}. 

We consider the case where B(g(x)) is an interior penalty 
function. As before, we suppose that G(t, T) is a nondecreas­
ing function on Rn and A(f, y) is a monotonically increasing 
function of f. We assume that instead of (23) there exists such 
a constant C that 

° < C ~ inf inf e < +00. (26) 
yEY ~EaA! (/. ,y) 

The condition (24) is replaced by 

G(t, (t* -,t)/N2) > G(t*,O) Vt* E T, Vt > t*, (27) 

where N2 = CBO(w*IR~). Theorem 4 for such a case can be 
reformulated in the following way: 

Theorem 5. Suppose that B(g(x)) is an interior penalty 
function and ° < N2 < +00. If there exists a set T ~ RI such 
that (27) holds, then (22) is EAF for the problem (1) on the 
set X x Y. 

Proof. Let us take an arbitrary point x E X. In the case, 
where x ~ X*, using inequalities (15), (26) and (27), we have 

H(x,y) = G(A(f(x),y),B(g(x))) ~ 

~ G(A(f(x),y),(f* - f(x))/Bo(w*IR~)) ~ 

~ G(A(f(x), y), (A(f*, y) - A(f(x), y))/N2 ) > 
> G(A(f*,y),O) = H(x*,y). 

According to (8) B(g(x)) = ° for x E X*. Hence,H(x, y) = 
= G(A(f(x),y),O) = H(x*,y) if x E X*. Thus,H(x,y) is EAF 
on X x Y. The theorem is proved. 

The function H s ( x, y) satisfies conditions of this theorem, 
if B(g( x)) is an interior penalty function and 
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The function Hs(x, y) with the strict mixed penalty func­
tion B(g(x)) is EAF on the set Rn X t'8, where 

In particular, if the function B(g( x)) has the form (19), we 
have 

where p-l + p;1 = 1, _p-l + r;1 = 1. This set is not empty 

because of Ilw* Ilr. > IIw* lip.· 
4. Exact modified Lagrange functions. We shall 

rewrite the right-hand side inequality (5) in the form 

From this inequality and (6),we obtain 

This inequality permits us to construct. a new class of EAF 
based on the Lagrange function L(x, V). 'We introduce the 
fUIlction 

H(;r~y) = A.(L(x,w),v) + B(g(;r)), (29) 

\\'hf'l't' Y = [u,,1'] E Y ~ R+ X RI. The function (29) was 
considered earlier by Skarin ( 1973) in the case where A.( L, 'V) = 
= t' I L. Denote 

H-)· = {w E R+ 13v E RI, lw, v] E Y}, 

l~" = {v E R11[w, v] E Y}. 
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The set Wy is the projection Y onto R+ ' the set ~v is the 
section of Y. We impose the following condition 

(30) 

If w ... =1= 0 and Wy = W ... = {O ~ w ~ w ... Jw€ < w~ if w~ > O}, 
then the inequality (30) holds. 

Instead of a); b) we introduce the following conditions: 
c) A(L, v) - A(L ... , v) ~ (L - L*)/ BO( tu* - wJg(P» VL E 

RI, Vw E W y , Vv E Vw , where L* = L(x*, w*) = f*; 
d) for any point y E Y the solution set of the system 
A(L(x, w), v) + B(g(x» = A(L(x*, w*), v), x E P coin­

cides with X*. 

Theorem 6. Let conditions (30), c), d) hold. Assume 
that the function B(g( x» is a strict exterior or interior penalty 
function ( in later case P = X) and 0 < BO(w* - wJg(P» < 
+00 for any w E Wy. Then the function (29) is EAF on P x Y. 

The proof is basically the same as the proof of Theorems 1 
and 2. 

If B(g(x» is an exterior penalty function,then the con­
di tion c) can be sitp.plified and instead of c) we can use the 
following inequality 

VL E RI, Vw E W y , Vv E Vw ' 

The simplest examples of the EAF, which satisfy Theo­
rem 6 ,can be obtained from the second section. Let us sub­
stitute L(x,w) for f(x) in H I ,H2 ,H3 ,H4 • Such functions are 
EAF on Rn X Y,where Y = {[w, v]: w E l-V*, v E ~L1}' If 
B(g(;1:» is a strict exterior penalty function,then we have 

Hg(x, y) = v-I Lex, w) + B(g(x», 
Vw = {vlv > BO(w* - wJRm)}, 
H lO (x, y) = v-IeL(x,w) + B(g(;1:», 
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H11 C-c, y) = (v - L(x, w)+. + B(g(;r)), 

VU' = {vlv > f* + (-aBo( w* - wlR1n ))l/(l-a)}, 

H12(X, y) = (L(x, w) - y)! + B(g(x», 

Vw = {vlf*.~ V > f* -(f3BO(w* - wIRm))l/(l-~)} 

Now we consider nonlinear functions. Let 

H(x, y) = G(A(L(x, w), v), B(g(x) ), (31) 

where G(t, r) is a continuous nondecreasing function of two 
variables, A( L, v) is a monotonically nondecreasing function 
of L. We assume that the function A and the set Y are such 
that for any w E W y scalars C(w), D(w) exist for which 

0< sup sup e ~ D(w) < +00, (32) 
yEY eEaAdL. ,v) 

0< C(tl') ~ sup sup e < +00. (33) 
yEY eEaAdL. ,v) 

Moreover, we suppose that 

Instead of (24), (f7), we impose on a function G the following 
conditions: for any 'W E liVy there exists such a set T( w) E RI, 
that A(L*, v) E T( w) for all v E VU' and for all t* E T( w) 

G(t,(t*-t)+/D(w)BO(w*-wIRm » > G(t*,O)Vt =/:-t*, (35) 

G(t, (t* - t)/C( to )Bo( w* - wIR~)) > G(t*, 0) Vt > t *. (36) 
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Theorem 7. Let A(L, v) be a convex monotonically in­
creasing function of L and let conditions (30), (34) hold. If 
B(g( x)) is a strict exterior penalty function, if 0 < BO.( w* -
wIRTIl) < +00 for any w E T-Vy and (32), (35) hold, then (31) 
is EAF on P X Y. If B(g( x)) is an interior penalty function, 
if 0 < BO(w* - wIR~) < +00 for all w E W'y and (33), (36) 
hold then (31) is EAF on X x Y. 

If A(L,v) = L - v,then it follows from Theorem 7 that 
Vw • = f* - T(w) for any w E Wy, therefore,we have the 
following EAF 

HI3 (X, y) = (L(x, w) - v)_/[1 - (L(x, w) - v )_B(g(x) )). 

If B(g(x)) is a strict exterior penalty function,then HI3 IS 

EAF on P x Y13 , where 

. l'l3 = {[w, v)lw E W*, v > f* + y'BO(w* - wIRTIl)}. 

If B(g(x)) is an interior penalty function,then HI3 is EAF on 
X x l'13 , where 

It is possible to consider EAF with a strict mixed penalty 
function. Sufficient conditions remain the same except for 
(35), which must be valid only for t < t *. If in the problem 
(1) exists more than one saddle point. of Lagrange function, 
then in the formulae for Y we can substitute w, which has a 
minimum norm in the set of Lagrange multipliers. 

5. Summary and concluding remarks. In this pa­
per we introduced a notion of an exact auxiliary function and 
presented classes of EAF. We believe that the investigation 
of EAF will be extremely useful for numerical methods and 

I 

theoretical studies. Our preliminary computational resuits are 
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encouraging. Of course, an efficient implementation of vari­
ous EAF will require much more work. At present we write a 
book devoted to nonlinear programming. We plan to describe 
the main numerical methods on .the base of EAF notion and 
its extensions. The penalty method, method of center, barrier 
method and some other methods we consider as an investiga­
tion of different auxiliary convolution functions. 
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