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Abstract. Two models for an age-structured nonlimited population dynamics with maternal care
of offspring are presented. One of them deals with a bisexual population and includes a harmonic
mean type mating of sexes and females’ pregnancy. The other one describes dynamics of an asexual
population. Migration is not taken into account. The existence and uniqueness theorem for the
general case of vital rates is proved, the extinction and growth of the population are considered,
and a class of the product (separable) solutions is obtained for these two models. The long-time
behavior of the asexual population is obtained in the stationary case of vital rates.
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1. Introduction

In recent paper (Skakauskas, 1999) we analyzed an age-sex-structured population dy-
namics model without spatial dispersal and took into account coupling of sexes, females’
pregnancy, and their sterility period following delivery. For the mating law we used a
harmonic mean type mating function.

In the present paper we consider two nondispersing age-structured population dy-
namics models taking into account maternal care of offspring. According to the maternal
care law offspring under maternal care die if dies his/her mother. One of the models
describes dynamics of a bisexual population and generalizes the model in (Skakauskas,
1999) including, in addition, maternal care of offsping. In this model, each sex has three
age grades: pre-reproductive, reproductive, and post-reproductive. Individuals of the pre-
reproductive grade are divided into two classes: young (under maternal care) and juvenile.
Young dies if dies his/her mother. Females of the reproductive age grade are divided into
two classes (single (nonfertilized) and fertilized). We assume that pairs of sexes exist only
for period of mating, which is not taken into account. Hence all males can be treated as
singles in this model. It is also assumed that for each sex the commencement of each
age grade and subgrade as well as the duration of the gestating period are independent of
individuals or time.

The other model presented in this paper describes dynamics of an asexual population.
As in the bisexual population model, all individuals have three age grades and individuals
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of the pre-reproductive grade are divided into young and juvenile, too. We assume that
all individuals of the reproductive grade are being fertilized at the fixed ages and, for the
simplicity, gestating period is not taken into account.

We prove the existence and uniqueness theorem for these two models and construct
their product (separable) solutions. We also construct the long-time behavior of the asex-
ual population in the stationary case of vital rates.

The paper is organized as follows. In Section 3 we present the models. Section 4
lists main hypotheses and results. Justification of results is given in Section 5. The proof
of existence and uniqueness theorem of the general solution, a majorant for densities
of single males and females, and a class of separable solutions for bisexual population
model are given in 5.1, 5.2, and 5.3, respectively. In 5.4, 5.5, and 5.6 we construct a
class of separable solutions for the asexual population model, prove the existence and
uniqueness theorem of general solution for this model, and find its large time behavior in
the case of stationary vital rates, respectively.

2. Notation

The following notation is used for the analysis of the bisexual population model:

t: time;

τ1, τ2, τ3, τ4: the age of male, female, embryo, and offspring under maternal care, re-
spectively;

σ4 = (0, T24]: the age-interval of offspring under maternal care;

u1(t, τ1): the age-density of males aged τ1 > T24 at time t;

u2(t, τ2): the age-density of single (nonfertilized) females aged τ2 > T24 at time t;

u3(t, τ1, τ2, τ3): the age-density of fertilized females aged τ2 at time t whose embryo is
at age τ3 and that were fertilized by males aged τ1 at the mating moment;

u4(t, τ1, τ2, τ4): the age-density of females aged τ2 at time t who take care of their
progeny aged τ4 (at the same time t) whose fathers were aged τ1 at the mating
moment;

u4k(t, τ1, τ2, τ4): the age-density of progeny being under maternal care and aged τ4 at
time t whose mothers are aged τ2 (at the same time t) and whose fathers were aged
τ1 at the mating moment; k = 1 (resp. k = 2) for the male (resp. female) offspring;

ν1(t, τ1) (resp. ν2(t, τ2)): the death rate of males aged τ1 (resp. single females aged τ2)
at time t;

ν3(t, τ1, τ2, τ3): the death rate of fertilized females aged τ2 at time t whose embryo is at
age τ3 and who were fertilized by males aged τ1 at the mating moment;

ν4(t, τ1, τ2, τ4): the death rate of females aged τ2 at time twho take care of their progeny
aged τ4 (at the same time t) whose fathers were aged τ1 at the mating moment;

ν4k(t, τ1, τ2, τ4): the death rate of progeny aged τ4 at time t whose mothers are aged τ2
(at the same time t) and whose fathers were aged τ1 at the mating moment;
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h1(t, τ1) (resp. h2(t, τ2)): the probability that a male aged τ1 (resp. female aged τ2) at
time t wishes to marry;

p̃(t, τ1, τ2): the fertilization rate of females from a pair formed of a female aged τ2 and
a male aged τ1 at time t; p(t, τ1, τ2) = h1(t, τ1)h2(t, τ1)p̃(t, τ1, τ2);

Xg(t, τ2): the single female gain density by the females aged τ2 at time t whose off-
springs are aged T24 at the same time t;

Xl(t, τ2): the loss density of single females due to conception who are aged τ2 at time
t;

σ1 = [τ11, τ12], T24 < τ11 < τ12 <∞: the male sexual activity age-interval;

σ3 = (0, T23], 0 < T23 <∞: the female gestating period, σ3 = [0, T23];

σ23(τ3) = [τ21 + τ3, τ22 + τ3], T24 < τ21 < τ22 <∞;

σ23(0) and σ23(T23): the female fertilization and delivery age-intervals;

σ24(τ4) = [τ21 + T23 + τ4, τ22 + T23 + τ4];

b1(t, τ1, τ2) and b2(t, τ1, τ2): the average numbers of the male and female progeny pro-
duced by a female aged τ2 at time t who was fertilized by a male aged τ1 at the
mating moment;

u0
1(τ1), u0

2(τ2), u0
3(τ1, τ2, τ3), u0

4(τ1, τ2, τ4), u0
4k(τ1, τ2, τ4): the initial distributions;

τ1
2 = τ21, τ

2
2 = min(τ21 + T̃ , τ22), τ3

2 = max(τ21 + T̃ , τ22), τ4
2 = τ22 + T̃ , T̃ =

T23 + T24;

Q1 = (T24,∞), Q1 = [T24,∞), Q2 = (T24,∞) \
4⋃
s=1
{τs2}, Q2 = [T24,∞);

D: a domain not necessarily bounded,D: closure of D;

S23 =
{

(τ2, τ3): τ2 ∈ σ23(τ3), τ3 ∈ σ3

}
, Q3 = σ1 × S23, Q3 = σ1 × S23;

S24 =
{

(τ2, τ4) : τ2 ∈ σ24(τ4), τ4 ∈ σ4

}
, Q4 = σ1 × S24, Q4 = σ1 × S24;

[u2(t, τ j2 )]: a jump discontinuity of u2 at the plane τ2 = τ j2 ,

C0(D) (resp. C0(D)): a class of bounded continuous functions in D (resp. D);

C1(D): a class of bounded continuous in D functions f(x1, . . . , xm) with ∂f/∂xi ∈
C0(D), i = 1,m,

C0,1,0,...,0(D): a class of bounded continuous in D functions f(x1, . . . , xm) with
∂f/∂x2 ∈ C0(D).

For the analysis of the asexual population model we use the following notation:

t: time,

τ : the age of an individual,

(0, T0]: the young age-interval,

T1 + kh, T1 > T0, h > T0, k = 0, 1, 2, . . . , n: the reproductive ages of individuals,

u(t, τ): the age-density of individuals aged τ at time t;
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vk(t, τ): the age-density of progeny aged τ at time t, who were born to mothers aged
T1 + kh,

νk(t, τ): the death rate of progeny aged τ at time t, who were born to mothers aged
T1 + kh,

ν(t, τ): the death rate of individuals aged τ at time t,

bk(t): the average number of progeny born to a mother aged T1 + kh at time t.

3. The Models

Using the balance law together with the harmonic mean type mating function and the fact
that the offspring under maternal care dies if dies his/her mother, we derive the nondis-
persing bisexual population dynamics model which consists of the following system of
integro-differential equations for u1, u2, u3, u4, u41, u42,

∂u1/∂t+ ∂u1/∂τ1 = −ν1u1, t > 0, τ1 ∈ Q1,

∂u2/∂t+ ∂u2/∂τ2 = −ν2u2 −Xl +Xg, t > 0, τ2 ∈ Q2,

∂u3/∂t+ ∂u3/∂τ2 + ∂u3/∂τ3 = −ν3u3, t > 0, (τ1, τ2, τ3) ∈ Q3, (3.1)

∂u4/∂t+ ∂u4/∂τ2 + ∂u4/∂τ4 = −ν4u4, t > 0, (τ1, τ2, τ4) ∈ Q4,

∂u4k/∂t+ ∂u4k/∂τ2 + ∂u4k/∂τ4 = −(ν4 + ν4k)u4k,

k = 1, 2, t > 0, (τ1, τ2, τ4) ∈ Q4,

Xl =


0, τ2 6∈ σ23(0),∫
σ1

u3

∣∣
τ3=0

dτ1, τ2 ∈ σ23(0),

Xg =


0, τ2 6∈ σ24(T24),∫
σ1

u4

∣∣
τ4=T24

dτ1, τ2 ∈ σ24(T24),

which supplemented with the conditions

uk|τk=T24 =

∫
σ1

dτ1

∫
σ24(T24)

u4k

∣∣
τ4=T24

dτ2, t > 0, k = 1, 2,

u3

∣∣
τ3=0

= pu1u2/
(∫
σ1

h1u1dτ ′1 +

∫
σ23(0)

h2u2dτ ′2

)
,

t > 0, (τ1, τ2) ∈ σ1 × σ23(0),

u4

∣∣
τ4=0

= u3

∣∣
τ3=T23

, t > 0, (τ1, τ2) ∈ σ1 × σ24(0),
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u4k

∣∣
τ4=0

= bku3

∣∣
τ3=T23

, t > 0, (τ1, τ2) ∈ σ1 × σ24(0), (3.2)[
u2

∣∣
τ2=τs2

]
= 0, t > 0, s = 1, 4,

uk
∣∣
t=0

= u0
k in Qk, k = 1, 2, 3, 4,

u4k

∣∣
t=0

= u0
4k in Q4

describes dynamics of the population. In addition to (3.2) we assume that the initial dis-
tributions u0

1, u
0
2, u

0
3, u

0
4, u

0
4k satisfy the following compatibility conditions

u0
k

∣∣
τk=T24

=

∫
σ1

dτ1

∫
σ24(T24)

u0
4k

∣∣
τ4=T24

dτ2, k = 1, 2, (3.3)

u0
3

∣∣
τ3=0

= p
∣∣
t=0

u0
1u

0
2/
(∫
σ1

u0
1h1

∣∣
t=0

dτ ′1 +

∫
σ23(0)

u0
2h2

∣∣
t=0

dτ ′2

)
,

(τ1, τ2) ∈ σ1 × σ23(0),

u0
4

∣∣
τ4=0

= u0
3

∣∣
τ3=T23

, (τ1, τ2) ∈ σ1 × σ24(0),

u0
4k

∣∣
τ4=0

= bk
∣∣
t=0

u0
3

∣∣
τ3=T23

, (τ1, τ2) ∈ σ1 × σ24(0),[
u20(τs2 )

]
= 0, s = 1, 4.

As follows from the foregoing, given functions ν1, ν2, ν3, ν4, ν41, ν42, p, h1, h2, b1, b2,

u0
1, u

0
2, u

0
3, u

0
4, u

0
41, u

0
42 and the unknown ones u1, u2, u3, u4, u41, u42 must be positive

valued, otherwise they have no biological significance. Because of the mating law model
(3.1)–(3.3) is nonlinear.

To derive the asexual population dynamics simple model we neglect the individual
gestating period and assume that all individuals are being fertilized at the ages T1 + kh

with k = 0, 1, . . . , n < ∞ and T0, T1, h do not depend on individual or time. Using
the balance law, we derive the following nondispersing nonlimited asexual population
dynamics model


∂vk/∂t+ ∂vk/∂τ = −(νk(t, τ) + ν(t, T1 + kh+ τ))vk(t, τ),

t > 0, τ ∈ (0, T0),

vk(t, 0) = bk(t)u(t, T1 + kh), t > 0,

vk(0, τ) = vk0(τ), τ ∈ [0, T0],

(3.4)


∂u/∂t+ ∂u/∂τ = −ν(t, τ)u(t, τ), t > 0, τ ∈ (T0,∞),

u(t, T0) =
n∑
k=0

vk(t, T0), t > 0,

u(0, τ) = u0(τ), τ ∈ [T0,∞).

(3.5)
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In addition to (3.4) and (3.5) we assume that initial distributions vk0 and u0 satisfy the
following compatibility conditions

vk0(0) = bk(0)u0(T1 + kh),

u0(T0) =
n∑
k=0

vk0(T0).
(3.6)

We observe that model (3.4)–(3.6) is linear. Given functions νk, ν, bk, vk0, u0 and un-
known ones vk, u must be positive valued.

4. Hypotheses and Results

We use the following hypotheses:

0 < h1 ∈ C0
(
[0,∞)× σ1

)
, 0 < h2 ∈ C0

(
[0,∞)× σ23(0)

)
;

0 < νk ∈ C0,1
(
[0,∞)×Qk

)
, k = 1, 2;

0 < ν3 ∈ C0,0,1,1
(
[0,∞)×Q3

)
;

0 < ν4, ν4k ∈ C0,0,1,1
(
[0,∞)×Q4

)
, k = 1, 2;

0 < p ∈ C1,0,1
(
[0,∞)× σ1 × σ23(0)

)
;

0 < bk ∈ C1,0,1
(
[0,∞)× σ1 × σ23(T23)

)
, k = 1, 2; (H1)

0 < u0
k ∈ C1(Qk), k = 1, 2;

0 < u0
3 ∈ C0,1,1(Q3);

0 < u0
4, u

0
4k ∈ C0,1,1(Q4), k = 1, 2;

0 < τij = const <∞, i, j = 1, 2;

0 < T2k = const <∞, k = 3, 4.

0 < νk ∈ C0,1
(
[0,∞)× [0, T0]

)
, k = 0, 1, . . . , n;

0 < ν ∈ C0,1
(
[0,∞)× [T0,∞)

)
;

0 < bk ∈ C1
(
[0,∞)

)
, k = 0, 1, . . . , n; (H2)

0 < v0
k ∈ C1

(
[0, T0]

)
, k = 0, 1, . . . , n;

0 < u0 ∈ C1
(
[T0,∞)

)
.

Theorem 1. Assume that all the hypotheses (H1) and conditions (3.3) hold. Then, for any
finite t∗ > 0, problem (3.1), (3.2) has the unique strictly positive solution u1, u2, u3, u4,

u41, u42 such that:

u1 ∈ C0([0, t∗]×Q1) ∩C1
(
([0, t∗]×Q1) \ {t = τ1 − T24, τ1, τ1 + T23}

)
,
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u2 ∈ C0([0, t∗]×Q2) ∩C1
(

([0, t∗]×Q2) \
( 4⋃
s=1

{τ2 = τs2 , t+ τs2}

∪{τ2 = t+ T24, t, t− T23}
))
,

u3 ∈ C0([0, t∗]×Q3) ∩C1,0,1,1
(

([0, t∗]×Q3) \
( 3⋃
s=1

{t = τ2 − τs2 }

∪{t = τ3, τ3 + τ1 − T24, τ1 + τ3, τ1 + τ3 + T23, τ2, τ2 + T23, τ2 − T24}

∪
4⋃
s=1

{τ2 = τs2}
))
,

u4, u4k ∈ C0([0, t∗]×Q4) ∩ C1,0,1,1
(

([0, t∗]×Q4) \
(
{t = τ4, τ4 + τ1 + T23,

τ4 + τ1 + 2T23, τ4 + T23, τ1 + τ4 + T23 − T24, τ2, τ2 + T23, τ2 − T24}

∪
3⋃
s=1

{t = τ2 − τs2} ∪
4⋃
s=2

{τ2 = τs2}
))
, k = 1, 2,∫

σ1

h1u1dτ1 +

∫
σ23(0)

h2u2dτ2 ∈ C1([0, t∗]).

Theorem 2. Under the hypotheses of Theorem 1 and conditions (5.17), for large time,
u1 and u2 satisfying problem (3.1), (3.2) have majorants (5.18) and (5.19), (5.20), re-
spectively.

Theorem 3. Assume that:
1. all vital functions in problem (3.1), (3.3) do not depend on time t;
2. 0 < νk ∈ C0(Qk), k = 1, 2;

3. 0 < h1 ∈ C0(σ1), 0 < h2 ∈ C0(σ23(0));

4. 0 < νs ∈ C0,1,0(Qs), s = 3, 4; ν4k ∈ C0,1,0(Q4), k = 1, 2;

5. 0 < p ∈ C0,1
(
σ1 × σ23(0)

)
;

6. 0 < bk ∈ C0,1
(
σ1 × σ23(T23)

)
, k = 1, 2;

7. b2(τ1, τ2 − T24) exp
{
−

T24∫
0

ν42(τ1, x+ τ2 − T24, x) dx

= fb1(τ1, τ2 − T24) exp
{
−

T24∫
0

ν41(τ1, x+ τ2 − T24, x) dx, f = const.

Then problem (3.1), (3.2)1−5 has the separable solution represented by (5.21).

Theorem 4. Let ν, νk, and bk be stationary and: 0 < νk(τ) ∈ C0([0, T0]), 0 < ν(τ) ∈
C0([T0,∞)), 0 < bk = const. Then systems (3.4), (3.5) without initial conditions has
the separable solution of form (5.31).

Theorem 5. Under the hypotheses (H2) and conditions (3.6), for any finite t∗, problem
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(3.4), (3.5) has the unique positive solution vk, u such that

vk ∈ C0
(
[0, t∗]× [0, T0]

)
∩ C1

((
[0, t∗]× [0, T0]

)
\
{
t− τ = 0, s(T1 + kh)

−T0, s(T1 + kh); s = 1, 2, . . .
})
, k = 0, 1, . . . , n,

u ∈ C0
(
[0, t∗]× [T0,∞)

)
∩ C1

((
[0, t∗]× [T0,∞)

)
\
{
t− τ = s(T1 + kh)

−T0, s(T1 + kh); s = 0, 1, 2, . . . ; k = 0, 1, . . . , n
})
.

Theorem 6. Let ν, νk and bk be stationary and:

0 < νk ∈ C0([0, T0]), 0 < ν ∈ C0([T0,∞)), 0 < bk = const,

0 < v0
k ∈ C1([0, T0]), 0 < v0 ∈ C1([T0,∞)).

Then functions (5.36) exhibit the large time behavior of the solution of problem (3.4),
(3.5).

5. Justification of Results

5.1. Proof of Theorem 1

We consider the case of multiple deliveries, i.e., τ22− τ21 > T̃ , τ2
2 = τ21 + T̃ , τ3

2 = τ22.
The apposite case can be analyze in the similar way.

Define

n(t) =

∫
σ1

h1u1dτ1 +

∫
σ23(0)

h2u2dτ2, (5.1)

q(t, τ2) =

∫
σ1

pu1dτ1, (5.2)

Bk(t) = uk(t, T24), k = 1, 2. (5.3)

We first obtain the formal integral representations for u1, u2, u3, u4, u4k. Integrating
Eqs. 3.1 over characteristics together with conditions (3.2), we obtain:

u3 =



u0
3(τ1, τ2 − t, τ3 − t)

× exp
{
−

t∫
0

ν3(x, τ1, x+ τ2 − t, x+ τ3 − t) dx
}
, 0 6 t6τ3,

(pu1u2/n)|(t−τ3,τ1,τ2−τ3)

× exp
{
−

t∫
t−τ3

ν3(x, τ1, x+ τ2 − t, x+ τ3 − t) dx
}
, 06τ3 6 t,

(5.4)
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u4 =



u0
4(τ1, τ2 − t, τ4 − t)

× exp
{
−

t∫
0

ν4(x, τ1, x+ τ2 − t, x+ τ4 − t) dx
}
, 0 6 t6τ4,

u0
3(τ1, τ2 − t, T23 + τ4 − t)

× exp
{
−
t−τ4∫
0

ν3(x, τ1, x+ τ2 − t, x+ T23 + τ4 − t) dx

−
t∫

t−τ4
ν4(x, τ1, x+ τ2 − t, x+ τ4 − t) dx

}
, τ4 6 t 6 T23 + τ4,

(pu1u2/n)|(t−τ4−T23,τ1,τ2−τ4−T23)

× exp
{
−

t−τ4∫
t−τ4−T23

ν3(x, τ1, x+ τ2 − t, x+ τ4 + T23 − t) dx

−
t∫

t−τ4
ν4(x, τ1, x+ τ2 − t, x+ τ4 − t) dx

}
, t>τ4 + T23,

(5.5)

u4k =



u0
4k(τ1, τ2 − t, τ4 − t)

× exp
{
−

t∫
0

(ν4 + ν4k)
∣∣
(x,τ1,x+τ2−t,x+τ4−t)dx

}
, 0 6 t 6 τ4,

bk(t− τ4, τ1, τ2 − τ4)u0
3(τ1, τ2 − t, T23 + τ4 − t)

× exp
{
−
t−τ4∫
0

ν3(x, τ1, x+ τ2 − t, x+ T23 + τ4 − t) dx

−
t∫

t−τ4
(ν4 + ν4k)

∣∣
(x,τ1,x+τ2−t,x+τ4−t)dx

}
, τ4 6 t6T23 + τ4,

bk(t− τ4, τ1, τ2 − τ4)(pu1u2/n)|(t−τ4−T23,τ1,τ2−τ4−T23)

× exp
{
−

t−τ4∫
t−τ4−T23

ν3(x, τ1, x+ τ2 − t, x+ τ4 + T23 − t) dx

−
t∫

t−τ4
(ν4 + ν4k)

∣∣
(x,τ1,x+τ2−t,x+τ4−t)dx

}
, t>τ4 + T23,

(5.6)

u1 =


u0

1(τ1 − t) exp
{
−

t∫
0

ν1(x, x+ τ1 − t) dx
}
, 0 6 t 6 τ1 − T24,

B1(T24 + t− τ1) exp
{
−

t∫
T24+t−τ1

ν1(x, x+ τ1 − t) dx
}
,

0 6 τ1 − T24 6 t,

(5.7)

u2 =


u0

2(τ2 − t) exp
{
−

t∫
0

ν2(x, x+ τ2 − t) dx
}
, 0 6 t 6 τ2 − T24,

B2(T24 + t− τ2) exp
{
−

t∫
T24+t−τ2

ν2(x, x+ τ2 − t) dx
}
,

0 6 τ2 − T24 6 t,

(5.8)
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for τ2 ∈ [T24, τ
1
2 ],

u2 =



u21 := u0
2(τ2 − t) exp

{
−

t∫
0

(ν2 + q
n )|(x,x+τ2−t) dx

}
,

0 6 t 6 τ2 − τ1
2 ,

u22 := u2(τ1
2 + t− τ2, τ1

2 − 0)

× exp
{
−

t∫
τ1
2 +t−τ2

(ν2 + q
n )|(x,x+τ2−t) dx

}
, t > τ2 − τ1

2 ,

(5.9)

for τ2 ∈ [τ1
2 , τ

2
2 ],

u2 =



u23 := u0
2(τ2 − t) exp

{
−

t∫
0

(ν2 + q
n )|(x,x+τ2−t) dx

}
+

t∫
0

Xg(y, y + τ2 − t) exp
{
−

t∫
y

(ν2 + q
n )|(x,x+τ2−t) dx

}
dy,

0 6 t 6 τ2 − τ2
2 ,

u24 := u0
2(τ2 − t) exp

{
−

t∫
0

(ν2 + q
n )|(x,x+τ2−t) dx

}
+

t∫
τ2
2 +t−τ2

Xg(y, y +τ2−t) exp
{
−

t∫
y

(ν2 + q
n )|(x,x+τ2−t)dx

}
dy,

τ2 − τ2
2 6 t 6 τ2 − τ1

2 ,

u25 := u2(τ1
2 + t− τ2, τ1

2 − 0)

×exp
{
−

t∫
τ1
2+t−τ2

(ν2+ q
n )|(x,x+τ2−t)dx

}
+

t∫
τ2
2+t−τ2

Xg(y, y+τ2−t)

× exp
{
−

t∫
y

(ν2 + q
n )|(x,x+τ2−t) dx

}
dy, t > τ2 − τ1

2 > T̃ ,

(5.10)

for τ2 ∈ [τ2
2 , τ

3
2 ],

u2 =



u0
2(τ2 − t) exp

{
−

t∫
0

ν2(x, x+ τ2 − t) dx
}

+
t∫

0

Xg(y, y + τ2 − t) exp
{
−

t∫
y

ν2(x, x+ τ2 − t) dx
}

dy,

0 6 t 6 τ2 − τ3
2 ,

u2(τ3
2 + t− τ2, τ3

2 − 0) exp
{
−

t∫
τ3
2 +t−τ2

ν2(x, x+ τ2 − t) dx
}

+
t∫

τ3
2 +t−τ2

Xg(y, y + τ2 − t) exp
{
−

t∫
y

ν2(x, x+τ2−t) dx
}

dy,

t > τ2 − τ3
2 ,

(5.11)
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for τ2 ∈ [τ3
2 , τ

4
2 ],

u2 =


u20(τ2 − t) exp

{
−

t∫
0

ν2(x, x+ τ2 − t) dx
}
, 0 6 t 6 τ2 − τ4

2 ,

u2(τ4
2 + t− τ2, τ4

2 ) exp
{
−

t∫
τ4
2 +t−τ2

ν2(x, x+ τ2 − t) dx
}
,

t > τ2 − τ4
2 ,

(5.12)

for τ2 ∈ [τ4
2 ,∞).

Now by (5.1), (5.9) and (5.10) we obtain the following integral equation:

n =

∫
σ1

u1h1 dτ1 +

τ1
2 +t∫
τ1
2

u22h2 dτ2 +

τ2
2∫

τ1
2 +t

u21h2 dτ2

+

τ2
2 +t∫
τ2
2

u24h2 dτ2 +

τ3
2∫

τ2
2 +t

u23h2 dτ2, 0 6 t 6 T̃ ,

n =

∫
σ1

u1h1 dτ1 +

τ2
2∫

τ1
2

u22h2 dτ2 +

t+τ1
2∫

τ2
2

u25h2 dτ2

+

t+τ2
2∫

t+τ1
2

u24h2 dτ2 +

τ3
2∫

t+τ2
2

u23h2 dτ2, T̃ 6 t 6 τ3
2 − τ2

2 , (5.13)

n =

∫
σ1

u1h1 dτ1 +

τ2
2∫

τ1
2

u22h2 dτ2 +

t+τ1
2∫

τ2
2

u25h2 dτ2

+

τ3
2∫

t+τ1
2

u24h2 dτ2, τ3
2 − τ2

2 6 t 6 τ3
2 − τ1

2 ,

n =

∫
σ1

u1h1 dτ1 +

τ2
2∫

τ1
2

u22h2 dτ2 +

τ3
2∫

τ2
2

u25h2 dτ2, t > τ3
2 − τ1

2 ,

if τ22 − τ21 > 2T̃ , and

n =

∫
σ1

u1h1 dτ1 +

t+τ1
2∫

τ1
2

u22h2 dτ2 +

τ2
2∫

t+τ1
2

u21h2 dτ2
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+

t+τ2
2∫

τ2
2

u24h2 dτ2 +

τ3
2∫

t+τ2
2

u23h2 dτ2, 0 6 t 6 τ3
2 − τ2

2 ,

n =

∫
σ1

u1h1 dτ1 +

t+τ1
2∫

τ1
2

u22h2 dτ2 +

τ2
2∫

t+τ1
2

u21h2 dτ2

+

τ3
2∫

τ2
2

u24h2 dτ2, τ3
2 − τ2

2 6 t 6 T23, (5.14)

n =

∫
σ1

u1h1 dτ1 +

τ2
2∫

τ1
2

u22h2 dτ2 +

t+τ1
2∫

τ2
2

u25h2 dτ2

+

τ3
2∫

t+τ1
2

u24h2 dτ2, T23 6 t 6 τ3
2 − τ1

2 ,

n =

∫
σ1

u1h1 dτ1 +

τ2
2∫

τ1
2

u22h2 dτ2 +

τ3
2∫

τ2
2

u25h2 dτ2, t > τ3
2 − τ1

2 ,

if T̃ < τ22 − τ21 < 2T̃ .

For the sake of brevity we write this integral equation as follows

n = K(n; t,Xg, B1, B2, q), (5.15)

where:
Xg(t, τ2) is defined by (3.1)7 provided that u4|τ4 = T24 is known,
Bk(t) is defined by (5.3), (3.2)1 provided that u4|τ4=T24 is known,
and q is defined by (5.2), (5.7) provided that B1 is known.

Now we examine (5.15) going along the t axis by a step of size T̃ .
Let t ∈ (0, T̃ ]. From (5.4) we find u3 for t 6 τ3 (and hence u3|τ3=T23 for t 6 T23).

From (5.5) and (5.6) we find u4 and u4k for 0 6 t 6 τ4 + T23 (and hence u4|τ4=T24 and
u4k|τ4=T24 for 0 6 t 6 T̃ ). This allows us, by (3.1)7 and (5.3), (3.2)1 to construct Xg

and Bk for t 6 T̃ . Then we find, by (5.7) and (5.8), uk for 0 < t 6 τk + T23, k = 1, 2,

τ1 ∈ (T24,∞), τ2 ∈ (T24, τ21]. Thus we know uk(t, τk1) for 0 6 t 6 T23 + τk1, k =

1, 2. Hence q, by (5.2), and
∫
σ1
u1dτ1 are also known for t ∈ [0, τ11 + T23]. Thus (5.15)

is an integral equation for n(t), t ∈ [0, T̃ ].

From (5.13) and (5.14) it is easy to see, by definition of u2i, i = 1, 5, that K(n′′, ·) >
K(n′, ·), if n′′ > n′, and 0 < K(

∫
σ1
u1dτ1, ·) < K(n, ·) < K(∞, ·). This allows

us to solve (5.15) by the iteration method starting with n0 =
∫
σ1
u1dτ1 and to obtain
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the monotonically increasing sequence K(nm, ·), which converges, since it is bounded.
Moreover, from (5.13) and (5.14) it follows that

|nm+1 − nm| 6 κ
t∫

0

|nm − nm−1|dx, m = 1, 2, . . . , (5.16)

where κ is a positive constant. Hence

|nm+1 − nm| 6 κmtm

m!
c, c = sup

t∈[0,T̃ ]

(
K(∞, ·)−

∫
σ1

u1 dτ1
)
, m = 1, 2, . . . ,

and the sequence {nm} converges uniformly to a strictly positive function n ∈ C0([0, T̃ ])

because of the hypotheses (H1). Uniqueness of solution of (5.15) follows from the in-
equality analogous to (5.16) for two solutions n′′ and n′. Knowing n,B1, B2, q we find,
by (5.9)–(5.12), the function u2 for (t, τ2) ∈ [0, T̃ ]× [τ1

2 ,∞).
Let t ∈ (T̃ , 2T̃ ]. From (5.4) we find u3 for τ3 6 t 6 T̃ + τ3 (and hence u3|τ3=T23 for

T23 6 t 6 T23 + T̃ ). Then, by (5.5) and (5.6), we construct u4 and u4k for τ4 + T23 <

t 6 τ4 +T23 + T̃ (and hence u4

∣∣
τ4=T24

and u4k

∣∣
τ4=T24

for τ4 +T23 < t 6 τ4 +T23 + T̃ ).

This allows us, by (3.1)7 and (5.3), (3.2)1 to constructXg andBk for T̃ < t 6 2T̃ . Then
by (5.7) and (5.8), we find uk for τk+T23 < t 6 τk+T23 + T̃ , k = 1, 2, τ1 ∈ (T24,∞),

τ2 ∈ (T24, τ21]. Thus, we know uk(t, τk1) for τk1 + T23 6 t 6 τk1 + T23 + T̃ . Hence
q, by (5.2), and

∫
σ1
u1dτ1 are also known for t ∈ [τ11 + T23, τ11 + T23 + T̃ ]. Thus

we again have an integral equation for n(t), t ∈ (T̃ , 2T̃ ]. Using the same method, as
above, we construct its solution n ∈ C0([T̃ , 2T̃ ]), and then by (5.9)–(5.12), find u2 for
(t, τ2) ∈ [T̃ , 2T̃ ]× [τ1

2 ,∞).

Repeating our argument, we can construct u1, u2, u3, u4, u4k and (hence B1, B2, q)
for any finite t∗ > 0. Direct calculation together with hypotheses (H1) show that n ∈
C1([0, t∗]). Observe that conditions (3.3) ensure only the continuity of solution but not
its differentiability at the respective planes (see Theorem 1). This completes the proof of
Theorem 1.

5.2. Proof of Theorem 2

In this subsection, we consider the case where

ν2(t, τ2) > ν∗(τ2) > 0, 0 < bk(t, τ1, τ2) 6 b∗(τ2),

0 < p(t, τ1, τ2) 6 p∗(τ2),

ν∗ ∈ C0([T24,∞)), b∗ ∈ C0(σ23(T23)), p∗ ∈ C0(σ23(0)).

(5.17)
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It is easy to see that u1 and u2 constructed in Subs. 5.1 have the following majorants ũ1

and ũ2, respectively, where

ũ1 =


u10(τ1 − t) exp

{
−

t∫
0

ν1(x, x+ τ1 − t) dx
}
, 0 6 t 6 τ1 − T24,

ũ2(T24 + t− τ1, T24) exp
{
−

τ1∫
T24

ν1(x+ t− τ1, x) dx
}
,

0 6 τ1 − T24 6 t,

(5.18)

and ũ2 is the unique strictly positive solution of the system

∂ũ2/∂t+ ∂ũ2/∂τ2 = −ν∗ũ2

+


0, τ2 ∈ (T24,∞) \ σ24(T24), t > 0,∫
σ1

u4|τ4=T24 dτ1, τ2 ∈ σ24(T24), 0 < t 6 T̃ ,

(h∗)
−1p∗(τ2 − T̃ )ũ2(t− T̃ , τ2 − T̃ ), τ24 ∈ σ24(T24), t > T̃ ,

[ũ2(t, τs2 )] = 0, s = 2, 4, t > 0,

ũ2(0, τ2) = u20(τ2), τ2 ∈ [T24,∞),

ũ2(t, T24)

=


∫

σ24(T24)

dτ2
∫
σ1

u42|τ4=T24 dτ1, t 6 T̃ ,∫
σ24(T24)

dτ2p
∗(τ2−T̃ )(h1∗)−1b∗(τ2−T24)ũ2(t−T̃ , τ2−T̃ ), t > T̃ ,

where u42|τ4=T24 for 0 6 t 6 T̃ is defined by (5.6), and h1∗ = min h1 > 0. Because
of the delayed argument t − T̃ , function ũ2 can be constructed by using the argument
similar to that used in 5.1 for construction of u2. Moreover, for t > τ2 − T24, we have

ũ2 = ũ2(T24 + t− τ2, T24)v(τ2), (5.19)

dv/dτ2 = −ν∗v +

{
0, τ2 ∈ (T24,∞) \ σ24(T24),

(h1∗)−1p∗(τ2 − T̃ )v(τ2 − T̃ ), σ2 ∈ σ24(T24),

v(T24) = 1, [v(τs2 )] = 0, s = 2, 4.

Clearly, v(τ2) ∈ C0([T24,∞)) ∩ C1
(
[T24,∞) \ {τ2

2 , τ
4
2 }
)
. Now we find the upper

estimate for ũ2(t, T24). Let t > τ22 + T23. Then

ũ2(t, T24) =

∫
σ23(0)

(h1∗)
−1p∗(x)b∗(x+ T23)ũ2(t− T̃ , x) dx

=

∫
σ23(0)

(h1∗)
−1p∗(x)b∗(x+ T23)ũ2(t− T23 − x, T24)v(x) dx
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=

t−b∫
t−a

ũ2(y, T24)p∗(t− T23 − y)b∗(t− y)v(t− T23 − y)(h1∗)
−1 dy,

b = T23 + τ21, a = T23 + τ22,

and hence

ũ2(t, T24) 6 ξ
t−b∫
t−a

ũ2(y, T24) dy, ξ = sup
τ2

p∗b∗vh−1
1∗ .

From this inequality we derive, by induction, the following estimate

ũ2(t, T24) 6 ξη(1 + ξb)j , η =

a∫
0

ũ2(x, T24) dx

for a+ jb 6 t 6 a+ (j + 1)b, j = 0, 1, . . . ,

or

ũ2(t, T24) 6 ξη(1 + ξb)
t−a
b , t > a. (5.20)

Thus there exists the Laplace transform f(λ) of ũ2(t, T24). Letting ρ(τ2) = p∗(τ2 −
T23)b∗(τ2)h−1

1∗ , we obtain

f(λ) =

∞∫
0

exp{−λt}ũ2(t, T24) dt

=

b∫
0

exp{−λt}ũ2(t, T24) dt+

∞∫
b

exp{−λt}ũ2(t, T24) dt

=

b∫
0

exp{−λt}ũ2(t, T24) dt+

∞∫
b

exp{−λt}

×
( min(t,a)∫

b

ρ(τ2)ũ2(t− τ2, T24)v(τ2 − T23) dτ2

+

a∫
min(t,a)

ρ(τ2)ũ2(t− τ2, T24)v(τ2 − T23) dτ2
)

dt

=

b∫
0

exp{−λt}ũ2(t, T24) dt+

a∫
b

exp{−λt} dt
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×
a∫
t

ρ(τ2)ũ2(t− τ2, T24)v(τ2 − T23) dτ2

+

a∫
b

dτ2ρ(τ2)v(τ2 − T23)

∞∫
τ2

exp{−λt}ũ2(t− τ2, T24) dt

= I(λ) +R(λ)f(λ),

where

R(λ) =

a∫
b

ρ(τ2)v(τ2 − T23) exp{−λτ2} dτ2,

I(λ) =

b∫
0

exp{−λt}ũ2(t, T24) dt

+

a∫
b

exp{−λt} dt

a∫
t

ρ(τ2)ũ2(t− τ2, T24)v(τ2 − T23) dτ2.

Hence

f(λ) = I(λ)/{1−R(λ)}.

It is well known that equation R(λ) = 1 has a unique real root λ0 and conjugate pairs
of single complex roots λi, i = 1, 2, . . . such that Reλi < λ0. I(λ) is an analytic func-
tion, thus, using the method of rectangle contour integral (Bellman and Cooke), we can
evaluate the inverse Laplace transform obtaining

ũ2(t, T24) ∼ ũas2 (t, T24) = κ exp{λ0t}, κ = I(λ0)/{−dR/dλ}|λ=λ0 ,

and, by (5.19),

ũ2(t, τ2) ∼ κv(τ2) exp{λ0(T24 + t− τ2)}

for large t. If λ0 < 0, then solution of problem (3.1)–(3.3) decreases provided that (5.17)
and hypotheses (H1) hold.
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5.3. Proof of Theorem 3

In this subsection we consider the case of stationary vital functions b1, b2, h1, h2, p, ν1,

ν2, ν3, ν4, ν4k and examine solution of system (3.1), (3.2)1,2,3,4 of the form:

u1 = exp{λ(t− τ1)}U∗1U1(τ1), U1(T24) = 1,

u2 = exp{λ(t− τ2)}U∗2U2(τ2), U2(T24) = 1,

u3 = exp{λ(t− τ2)}U∗2U3(τ1, τ2, τ3),

u4 = exp{λ(t− τ2)}U∗2U4(τ1, τ2, τ4),

u4k = exp{λ(t− τ2)}U∗2U4k(τ1, τ2, τ4),

(5.21)

where λ, U∗1 , U
∗
2 are constants. Substituting of (5.21) into (3.1), (3.2)1,2,3,4 leads to the

following equations:

U ′1 = −ν1U1, U1(T24) = 1, (5.22)

U2
′ = −ν2U2 − U2

 0, τ2 6∈ σ23(0)∫
σ1

pn−1U1(τ1) exp{−λτ1} dτ1, τ2 ∈ σ23(0)

+

 0, τ2 6∈ σ24(T24)∫
σ1

U4|τ4=T24 dτ1, τ2 ∈ σ24(T24),

U2(T24) = 1, [U2(τs2 )] = 0, s = 1, 4, (5.23)

∂U3/∂τ2 + ∂U3/∂τ3 = −ν3U3, U3|τ3=0 = pn−1U1U2 exp{−λτ1}, (5.24)

∂U4/∂τ2 + ∂U4/∂τ4 = −ν4U4, U4|τ4=0 = U3|τ3=T23 , (5.25)

∂U4k/∂τ2 + ∂U4k/∂τ4 = −ν4U4k, U4k|τ4=0 = bkU3|τ3=T23 , (5.26)

1 =

∫
σ1

dτ1

∫
σ24(T24)

U41|τ4=T24 exp{λ(T24 − τ2)} dτ2U
∗
2 /U

∗
1 , (5.27)

1 =

∫
σ1

dτ1

∫
σ24(T24)

U42|τ4=T24 exp{λ(T24 − τ2)} dτ2, (5.28)

where

n =

∫
σ1

h1(τ1)U1(τ1) exp{−λτ1} dτ1

+

∫
σ23(0)

h2(τ2)U2(τ2) exp{−λτ2} dτ2U
∗
2 /U

∗
1 , (5.29)

and the prime denotes differentiation.
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Equations (5.22), (5.24), (5.25), and (5.26) have the following solution

U1 = exp
{
−

τ1∫
T24

ν1(x) dx
}
,

U3 = n−1p(τ1, τ2 − τ3) exp{−λτ1}U1(τ1)U2(τ2 − τ3)

× exp
{
−

τ3∫
0

ν3(τ1, x+ τ2 − τ3, x) dx
}
,

U4 = n−1p(τ1, τ2 − τ4 − T23) exp{−λτ1}U1(τ1)U2(τ2 − τ4 − T23) (5.30)

× exp
{
−

τ4∫
0

ν4(τ1, x+ τ2 − τ4, x) dx−
T23∫
0

ν3(τ1, x+ τ2 − τ4 − T23, x) dx
}
,

U4k = U4(τ1, τ2, τ4)bk(τ1, τ2−τ4) exp
{
−

τ4∫
0

ν4k(τ1, x+ τ2−τ4, x) dx
}
.

Hence,

U4(τ1, τ2, T24) = n−1p(τ1, τ2 − T̃ ) exp{−λτ1}U1(τ1)U2(τ2 − T̃ )

× exp
{
−

T24∫
0

ν4(τ1, x+ τ2 − T24, x) dx−
T23∫
0

ν3(τ1, x+ τ2 − T̃ , x) dx
}
,

U4k(τ1, τ2, T24) = U4(τ1, τ2, T24)bk(τ1, τ2 − T24)

× exp
{
−

T24∫
0

ν4k(τ1, x+ τ2 − T24, x) dx
}
.

This together with (5.23) determines U2 depending on τ2, λ, n. (5.27), (5.28) and the
seventh condition of Theorem 3 show that U∗2 /U

∗
1 = f. Since Ũ2∗(τ2) 6 U2 6 Ũ∗2 (τ2),

where Ũ∗2 (τ2) and Ũ2∗(τ2) are solutions of equations

dŨ∗2 /dτ2 = −ν2Ũ
∗
2 − Ũ∗2

{
0, τ2 6∈ σ23(0),

p∗h−1
1∗ Ũ

∗
2 (τ2 − T̃ ), τ2 ∈ σ24(T24),

Ũ∗2 (T24) = 1, [Ũ∗2 (τs2 )] = 0, s = 1, 4,

Ũ ′2∗ = −ν2Ũ2∗ − Ũ2∗

{
0, τ2 6∈ σ23(0),

p∗h−1
1∗ , τ2 ∈ σ23(0),

Ũ2∗(T24) = 1, [Ũ2∗(τ
s
2 )] = 0, s = 1, 3,
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where p∗ = max p, h1∗ = minh1, the right-hand side of (5.29) has the following mino-
rant ∫

σ1

h1U1(τ1) exp{−λτ1} dτ1 + f

∫
σ23(0)

h2Ũ2∗(τ2) exp{−λτ2} dτ2,

and majorant∫
σ1

h1U1(τ1) exp{−λτ1} dτ1 + f

∫
σ23(0)

h2Ũ
∗
2 (τ2) exp{−λτ2} dτ2,

and thus (5.29) has at least one solution n = N(λ).

Then the right-hand side of (5.28) has the following majorant

f−1b∗2p
∗h−1

2∗ exp{−λT23}
∫
σ1

exp{−λτ1}U1(τ1) dτ1 → 0 as λ→∞,

and minorant

b2∗p∗ exp{−λT23} exp{−T24(ν∗4k + ν∗4 )− T23ν
∗
3}

/
(
h∗1/

∫
σ23(0)

Ũ2∗ exp{−λτ2} dτ + h∗2f/

∫
σ1

U1 exp{−λτ1} dτ1
)
→∞

as λ→ −∞,

where h2∗ = minh2, p∗ = min p, h∗2 = maxh2, b
∗
2 = max b2, b2∗ = min b2. Hence

(5.28) with n = N(λ) has at least one real root λ0. (5.21) show that population dies if
λ < 0 and increases if λ > 0.

5.4. Proof of Theorem 4

In this subsection we consider the case of stationary vital functions bk, ν, νk and examine
solutions of system (3.4), (3.5) without initial conditions of the form:

vk = Vk(τ) exp{λ(t− τ)},
u = U(τ) exp{λ(t− τ)},

(5.31)

with λ a constant. Substituting (5.31) into (3.4), (3.5) leads to the following equations:

U ′ = −νU, U(T0) =
n∑
k=0

Vk(T0);

V ′k = −(νk(τ) + ν(T1 + kh+ τ))Vk(τ),

Vk(0) = bkU(T1 + kh) exp{−λ(T1 + kh)}.
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Hence

U = U(T0) exp

{
−

τ∫
T0

ν(x) dx

}
,

Vk = Vk(0) exp

{
−

τ∫
0

(νk(x) + ν(T1 + kh+ x)) dx

}
,

(5.32)

where U(T0) is an arbitrary constant,

Vk(0) = U(T0)bk exp

{
− λ(T1 + kh)−

T1+kh∫
T0

ν(x) dx

}
,

and

1 =
n∑
k=0

γk(λ),

γk(λ) = bk exp

{
− λ(T1 + kh)−

T0∫
0

νk(x) dx−
T0+T1+kh∫
T0

ν(x) dx

}
.

(5.33)

It is well known that (5.33) has a unique real root λ0 and conjugate pairs of single roots
λi, i = 1, 2, . . . , such that Reλi < λ0. From (5.33) it is easy to see that ∂λ0/∂T0 < 0 if
ν(τ) increases with τ increasing, and ∂λ0/∂bk > 0, ∂λ0/∂T1 < 0, ∂λ0/∂h < 0. This
completes the proof.

5.5. Proof of Theorem 5

Taking into account hypotheses (H2) and integrating (3.4), (3.5) over characteristics we
obtain

u =


u0(τ − t) exp

{
−

t∫
0

ν(x, x+ τ − t) dx
}
, 0 6 t 6 τ − T0,

n∑
k=0

vk(T0 + t− τ, T0) exp
{
−

t∫
T0+t−τ

ν(x, x+ τ − t) dx
}
, t > τ − T0,

vk =



vk0(τ − t) exp
{
−

t∫
0

(
νk(x, x+ τ − t)

+ν(x, x+ T1 + kh+ τ − t)
)

dx
}
, 0 6 t 6 τ

bk(t− τ)u(t− τ, T1 + kh) exp
{
−

t∫
t−τ

(
νk(x, x+ τ − t)

+ν(x, x+ T1 + kh+ τ − t)
)

dx
}
, t > τ.

(5.34)



Two Population Dynamics Models with Child Care 215

Hence

u =



u0(τ − t) exp
{
−

t∫
0

ν(x, x+ τ − t) dx
}
, 0 6 t 6 τ − T0,

n∑
k=0

vk0(τ − t) exp
{
−

T0+t−τ∫
0

(
νk(x, x+ τ − t) + ν(x, x+ T1

+kh+ τ−t)
)

dx−
t∫

T0+t−τ
ν(x, x+τ−t) dx

}
, τ − T0 6 t 6 τ,

n∑
k=0

bk(t− τ)u(t− τ, T1 + kh)

× exp
{
−
T0+t−τ∫
t−τ

(
νk(x, x+ τ−t)+ ν(x, x+T1 + kh+ τ−t)

)
dx

−
t∫

T0+t−τ
ν(x, x+ τ − t) dx

}
, t > τ.

(5.35)

Equation (5.35) includes delayed argument t− τ. Therefore going along t axis by the
step τ we can construct u for any finite t. Then (5.34) determines vk. Observe that con-
ditions (3.6) ensure the continuity of u and vk (but not their continuous differentiability)
in [0, t∗]× [T0,∞) and [0, t∗]× [0, T0], respectively. The proof is complete.

5.6. Proof of Theorem 6

In this subsection, we analyze the case where bk, ν, and νk are stationary. It is easy to see,

from (5.35), that u 6 A exp{(t lnB)/τ}, where B =
n∑
k=0

bk and A = max
t6τ

u. Therefore

there exists the Laplace transform û of u. From (5.35) we obtain

u(t, T1 + sh) =
n∑
k=0

u(t− T1 − sh, T1 + kh)κk

× exp

{
−

T1+sh∫
T0

ν(x) dx

}
, t > T1 + sh,

with

κk = bk exp

{
−

T0∫
0

νk(x) dx−
T0+T1+kh∫
T1+kh

ν(x) dx

}
,

then

n∑
s=0

κs

∞∫
0

u(t, T1 + sh) exp{−tλ} dt
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=
n∑
k=0

n∑
s=0

κk

∞∫
T1+sh

u(t− T1 − sh, , T1 + kh) exp{−tλ} dtκs

× exp
{
−

T1+sh∫
T0

ν(x) dx
}

+
n∑
s=0

T1+sh∫
0

κsu(t, T1 + sh) exp{−tλ} dt,

and finally

n∑
s=0

κs

∞∫
0

u(t, T1 + sh) exp{−tλ} dt

=
n∑
s=0

T1+sh∫
0

κsu(t, T1 + sh) exp{−tλ} dt
/{

1−
n∑
0

γs
}
,

with γs defined in (5.33). The numerator of the right-hand side of this equation is analytic
function. Thus, using the method of rectangle contour integral [1] for large time, we
evaluate the inverse Laplace transform obtaining

n∑
s=0

κsu(t, T1 + sh) ∼ η exp{tλ0},

where η is a positive constant and λ0 is the unique real root of (5.33). Then, from (5.35)
and (5.34) for large time, it follows that

u(t, τ) ∼ uas = η exp
{

(t− τ)λ0 −
τ∫

T0

ν(x) dx
}
,

vk(t, τ) ∼ vask = ηbk exp
{

(t− τ − T1 − kh)λ0 (5.36)

−
T1+kh+τ∫
T0

ν(x) dx−
τ∫

0

νk(x) dx
}
.

(5.31), (5.32) show that functions uas, vask are the separable solution of problem (3.4),
(3.5) without initial conditions.
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Du globojančios savo vaikus populiacijos dinamikos modeliai

Vladas SKAKAUSKAS

Pateikti du nelimituotos globojančios savo vaikus populiacijos amžiaus struktūros dinamikos mo-
deliai. Vienas iš j ↪u yra populiacijos modelis, ↪iskaitantis harmoninio tipo kryžminimosi dėsn ↪i ir
pateli ↪u nėštum ↪a. Kita aprašo aseksualios populiacijos dinamik ↪a. Abiejuose modeliuose nepaisoma
individ ↪u migracijos. Abiems modeliams bendruoju gyvybini ↪u funkcij ↪u atveju ↪irodyta sprendinio
egzistencijos ir vienaties teorema, ištirtas populiacijos augimas ir jos išnykimas bei rasta separa-
belini ↪u sprendini ↪u klasė. Stacionariuoju gyvybini ↪u funkcij ↪u atveju dideliems laikams gauta asek-
sualios populiacijos modelio sprendinio asimptotika.


