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Abstract. The aim of the given paper is a development of the direct approach used for the estima-
tion of parameters of a closed-loop discrete-time dynamic system in the case of additive noise with
outliers contaminated uniformly in it (Fig. 1). To calculate M -estimates of unknown parameters of
such a system by means of processing input and noisy output observations (Fig. 2), the recursive
robust H-technique based on an ordinary recursive least square (RLS) algorithm is applied here.
The results of numerical simulation of closed-loop system (Fig. 3) by computer (Figs. 4–7) are
given.
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1. Introduction

Adaptive control systems act while the properties of controlled processes and signals
are varying in time. The quality of performance of an adaptive control system strongly
depends on the accuracy of a tuned process model and on the closed-loop identification
method to be applied. One can divide these identification methods into three groups (Iser-
mann, 1982): a direct approach, an indirect approach and an joint input-output approach.
The direct approach ignores the feedback and identifies the open-loop system using only
input-output observations. It is known (Forsell and Ljung, 1999) that the direct approach
gives consistency and optimal accuracy in spite of the feedback when the noise and the
model of the dynamic system contain a true description. On the other hand, if the output
is corrupted by an additive noise containing outliers, then the ordinary prediction error
methods used to identify even unknown parameters of an open-loop dynamic system, de-
scribed by the difference equation, could be of little use. Therefore, in such a case there
arise a problem of the closed-loop robust identification by processing input and noisy out-
put observations. It can be solved applying Huber’s robust location parameter estimation
ideas (Huber, 1964) and respective robust techniques based on the ordinary Kalman fil-
ter (Pupeikis and Huber, 1997; Pupeikis, 1998, 1999) used for the state estimation, which
can be easily suited to the parameter estimation of dynamic systems in the case of outliers
in observations to be processed (Novovičova, 1987).
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2. The Statement of the Problem

Assume that the control system to be observed is causal, linear and time-invariant (LTI)
with one output {y(k)}, k = 1, 2, . . . and one input {u(k)}, k = 1, 2, . . . and given by
the equation

y(k) = G0(q, θ)u(k) + v(k),

v(k) = H0(q)ξ(k),
(1)

which consists of two parts: a process model G0(q, θ)and a noise oneH0(q).
Here θ is the unknown parameter vector to be estimated, q is the time-shift opera-

tor (i.e., q−1u(k) = u(k − 1)), the initial signal {ξ(k)} = 1, 2, . . . used to generate
unmeasurable noise is assumed to be statistically independent and stationary with

E{ξ(k)} = 0,

E{ξ(k)ξ(k + τ)} = σ2
ξδ(τ).

(2)

E{·} is a mean value, σ2
ξ is a variance, δ(τ) is the Kronecker delta function, H0(q) is an

inversely stable, monic filter.
The input {u(k)}, k = 1, 2, . . . , N is given by

u(k) = Ψ(k, yk, uk−1, r(k)), (3)

where yk =
[
y(1), . . . , y(k)

]
, uk−1 =

[
u(1), . . . , u(k−1)]. The reference signal {r(k)},

k = 1, 2, . . . is a quasi-stationary signal, independent of the stochastic disturbance
{v(k)}, k = 1, 2, . . . and Ψ is a given deterministic function such that the closed-loop
system (1), (2) with the controller GR(q) (see Fig. 1), which is designed for disturbance
{v(k)}, k = 1, 2, . . . by minimizing a quadratic performance function

J = lim
N→∞

E

{
1

N

N−1∑
k=0

y2(k) + ρ u2(k)

}
, (4)

is exponentially stable (Forsell and Ljung, 1999). Here the factor 0 < ρ 6 1.
The basis of identification is the data set ZN = {u(1), . . . , u(N), y(1), . . . , y(N)}

consisting of measured observations of the input {u(k)} and output {y(k)}, k =

1, 2, . . . , N signals.

Fig. 1. A closed-loop system to be observed.
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The aim of the given paper is to estimate the parameter vector θ of the closed-loop
LTI system (1), (2) shown in Fig. 1, using the above mentioned data set when assumption
(2) is not satisfied because of occasionally appearing outliers in an unmeasurable noise
signal {v(k)}, k = 1, 2, . . .

3. The Direct Approach for the Closed Loop System

First assume that assumption (2) referring to the unmeasurable noise signal {v(k)}, k =

1, 2, . . . is valid. We choose a model structure of the form

y(k) = G(q, θ)u(k) +H(q, θ)ξ(k) (5)

where G(q, θ) corresponds to the first part of equation (1) and H(q, θ) – to the second
one. The prediction error is

e(k, θ) = y(k)− ŷ(k, θ) = H−1(q, θ)
(
y(k)−G(q, θ)u(k)

)
, (6)

where the one-step-ahead predictor for the model structure (5) according to Ljung (1987)
is

ŷ(k, θ) = H−1(q, θ)G(q, θ)u(k) +
(
1−H−1(q, θ)

)
y(k). (7)

Given the model (5) and measured dataZN we determine the prediction error estimate
using formulas (Forsell and Ljung, 1999):

θ̂N = arg min
θ∈DM

VN (θ, ZN ),

VN (θ, ZN ) =
1

N

N∑
t=1

eTF (k, θ)Λ−1eF (k, θ), (8)

eF (k, θ) = L(q, θ)e(k, θ),

Here Λ is a symmetric, positive definite weighting matrix and L is a monic prefilter that
can be used to enhance certain frequency regions.

It is known (Forsell and Ljung, 1999) that

eF (k, θ) = L(q, θ)H−1(q, θ)
(
y(k)−G(q, θ)u(k)

)
. (9)

The direct approach allows us to apply the well known prediction error techniques
directly to input-output observations, ignoring a possible feedback and using the block
scheme shown in Fig. 2. Thus, the parameter vector θ can be determined by the ordinary
least squares method (LS) by minimizing the sum of the form

N∑
t=1

[
y(t)− zT (t)θ

]2
= min!, (10)
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Fig. 2. Parameter adaptive self-organizing system.

where zT (·) is a vector of observations of the input {u(k)} and and noisy output {y(k)},
k = 1, 2, . . . , N signals.

It is known that the direct approach is the same as the ordinary open-loop prediction
error method based on the RLS

θ(k) = θ(k − 1) +
P (k − 1)z(k − 1)

1 + zT (k)P (k − 1)z(k)

[
y(k)− zT (k)θ(k − 1)

]
, (11)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

1 + zT (k)P (k − 1)z(k)
, (12)

with the vector of observations

zT (k) =
(
u(k − 1), . . . , u(k −m), y (k − 1), . . . , y(k −m)

)
(13)

and some initial values of the vector θ(0) and of the matrix P (0), when G0(q, θ) is the
system transfer function of the form

G0(q, θ) =
B(q, b)

A(q, a)
=
b1q
−1 + b2q

−2 + . . .+ bmq
−m

1 + a1q−1 + . . .+ amq−m
. (14)

Here

θT (k) =
(
b1(k), b2(k), . . . , bm(k), a1(k), a2(k), . . . , am(k)

)
(15)

is an estimate of the parameter vector

θT = (b1, b2, . . . , bm, a1, a2, . . . , am). (16)

It can be mentioned that, in such a case, the respective identifiability conditions should
be satisfied according to Isermann (1982).



Closed-loop Robust Identification Using the Direct Approach 167

4. The Direct Approach in a Presence of Outliers in Observations

Assume now that the white noise {ξ(k)}, k = 1, 2, . . . really is a sequence of independent
identically distributed variables with an ε-contaminated distribution of the form

p(ξ(k)) = (1− ε)N(0, σ2
µ) + εN(0, σ2

ς ), (17)

and the variance

σ2
ξ = (1− ε)σ2

µ + εσ2
ς ; (18)

p(ξ(k)) is the probability density distribution of the sequence {ξ(k)}, k = 1, 2, . . .;

ξ(k) = (1− γk)µk + γkςk (19)

is the value of the sequence {ξ(k)}, k = 1, 2, . . . at a time moment k; γ is a random
variable, taking values 0 or 1 with probabilities p(γk = 0) = 1−ε, p(γk = 1) = ε; µk, ςk
are sequences of independent Gaussian variables with zero means and variances σ2

µ, σ
2
ς ,

respectively; besides, σµ < σς ; 0 6 ε 6 1 is the unknown fraction of contamination.
Given the model (5) and measured data ZN = {u(1), . . . , u(N), y(1), . . . , y(N)}

and assuming that {ξ(k)} is a process of the form (17)–(19), we determine the predic-
tion error estimate of the parameter vector θT = (b1, b2, . . . , bm, a1, a2, . . . , am) by
minimizing

θ̂N = arg min
θ∈DM

V̂N (θ, ZN ),

V̂N (θ, ZN ) =
N∑
k=1

ρ
(
eF (k, θ)/σ

)
,

(20)

or by solving the equation

N∑
t=1

z(t)
[
ψ(y(t)− zT (t)θ

]
= 0, (21)

in the vector form.
Here θ̂N is the robust estimate of the parameter vector θ, determined by processing

N pairs of input-output samples, σ is the scale of residual (examples of the scale are
the standard deviation, the median absolute deviation from the median, etc.,), ρ(·) is a
real-valued function that is even and nondecreasing for positive residuals, and ρ(0) = 0,
ψ = ρ′.

For the Huber M -estimator, the ρ-function is given by

ρ(r) =

{
r2/2, |r| 6 b
b|r| − b2/2 |r| > b

, (22)
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where b is the cutoff value.
It is known (Huber, 1981) that the ρ-function is not strictly convex. Therefore, by

minimizing this objective function, multiple solutions can be obtained which are close to
one another. The score function

ψ
(
r(θ, ZN )

)
= ∂ρ

(
r(θ, ZN )

)
/∂r (23)

is an odd one. The various ψ functions give us various M estimates. Therefore, there
always arises a question how to choose the proper ψ-function. The mostly used function
ψ is (Huber, 1964):

ψ(x) =

{
x if |x| 6 cH ,
cHsignx, if |x| > cH ,

(24)

with given cH > 0. To get a better performance of θ̂N in a case of very long-tailed
distributions, a function (20) satisfying

ψ(x) = 0, if |x| > c, (25)

for some c > 0 could be selected. M -estimates are generally not scale equivariant. It
means that instead of solving (21) we solve

n∑
t=1

ztψ

(
yt − zTt θ

s

)
= 0, (26)

where s is the robust estimate of the residuals scale, which according to Huber, 1972
could be determined simultaneously with θ.

5. Recursive Calculation of M -estimates

It is known (Novovičova, 1987) that in both such cases, i.e., ε 6= 0 and

H0(q, a) =
1

A(q, a)
=

1

1 + a1q−1 + . . .+ amq−m
, (27)

currentM -estimates of unknown parameters of linear dynamic systems can be calculated
using even three techniques:

1) the S-algorithm

θ(k) = θ(k − 1)

+
P (k − 1)z(k − 1){

ψ′
([
y(k)− zT (k)θ(k − 1)

]
/s
)}−1

+ zT (k)P (k − 1)z(k)

× sψ
{[
y(k)− zT (k)θ(k − 1)

]
/s
}
, (28)
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P (k) = P (k − 1)

− P (k − 1)z(k)zT (k)P (k − 1){
ψ′
([
y(k)− zT (k)θ(k − 1)

]
/s
)}−1

+ zT (k)P (k − 1)z(k)
, (29)

2) the H-algorithm

θ(k) = θ(k − 1)

+
P (k − 1)z(k − 1)

1 + zT (k)P (k − 1)z(k)
sψ
{[
y(k)− zT (k)θ(k − 1)

]
/s
}
, (30)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

1 + zT (k)P (k − 1)z(k)
, (31)

3) the W -algorithm

θ(k) = θ(k − 1) +
P (k − 1)z(k − 1)

[w(k)]
−1

+ zT (k)P (k − 1)z(k)

× sψ
{[
y(k)− zT (k)θ(k − 1)

]
/s
}
, (32)

P (k) = P (k − 1)− P (k − 1)z(k)zT (k)P (k − 1)

[w(k)]
−1

+ zT (k)P (k − 1)z(k)
, (33)

w(k) =

{
sψ {α(k)/s}α(k) for α(k) 6= 0

ρ′′0 for α(k) = 0
, (34)

α(k) = y(k)− zT (k)θ(k − 1). (35)

The S-algorithm represents a version of the algorithm proposed by Polyak and Cypkin
(1980) for an on-line robust identification of parameters of the linear dynamic model. The
robusting of the ordinary RLS (11), (12) (13) follows by substituting the “winsorization”
step of the residuals in equation (11) and by modifying equation (12). The recursive H-
algorithm is obtained only by inserting the “winsorization” step into equation (11). By
comparing (32)–(35) to (11),(12) one can see, that the W -algorithm is obtained by in-
serting different weights in respect to the function ψ{·} into the already existing ordinary
RLS.

The various robust recursive techniques used for the parameter estimation of open-
loop dynamic systems when the noise filter H(q, θ) is of different form than that of (27),
are proposed in (Pupeikis, 1994).
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6. The Covariance Matrix for the Robust Estimates

The covariance matrix is

cov {θLS(N)} = [1/(N − 2m)]
( N∑
i=p

r2
i

) (
XTX

)−1
, (36)

when the estimate θLS(N)of the form (15) by the ordinary RLS (11)–(13) is determined.
Here N is the whole number of the pairs of observations of the input {u(k)} and

noisy output {y(k)}, p > m,

ri = y(i)− zT (i)θ(N), (37)

zT (i) =
(
u(i− 1), . . . , u(i−m),−y(i− 1), . . . ,−y(i−m)

)
, (38)

θTLS(N) =
(
b1(N), b2(N), . . . , bm(N), a1(N), a2(N), . . . , am(N)

)
, (39)

X=


u(p−1)u(p−2). . .u(p−m)−y(p−1)−y(p−2). . .−y(p−m)

u(p)u(p−1). . . u(p−m+1)−y(p)−y(p−1). . .−y(p−m+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(N−1)u(N−2). . .u(N−m)−y(N−1)−y(N−2). . .−y(N−m)

 . (40)

The expression (36) in a case of robust estimates according to Huber, (1981) can be
rewritten as

cov
{
θ̂N
}

=
{
E
[
ψ2(x)

]
/
(
E[ψ′(x)]

)2}(
XTX

)−1
, (41)

or in such a form

cov
{
θ̂N
}
≈

(1/N)
N∑
i=p

ψ2(ri)[
(1/N)

N∑
i=p

ψ′(ri)
]2 (XTX)−1, (42)

for a limited N .
It is known (Huber, 1981) that there exist even three formulas for the unbiased esti-

mates of cov
{
θ̂N
}

:

K2

[
1/(N − p)

] N∑
i=p

ψ2(ri)[
(1/N)

N∑
i=p

ψ′(ri)
]2 (

XTX
)−1

, (43)
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K

[
1/(N − p)

] N∑
i=p

ψ2(ri)

(1/N)
N∑
i=p

ψ′(ri)

W−1, (44)

K−1 1

N − p

N∑
i=p

ψ2(ri)W
−1
(
XTX

)
W−1, (45)

where W is the matrix of weights,

K = 1 +
p

N

D(ψ′)[
E(ψ′)

]2 , (46)

E(ψ′) ≈ φ = (1/N)
N∑
i=p

ψ′(ri), (47)

D(ψ′) ≈ (1/N)
N∑
i=p

(
ψ′(ri)− φ)2. (48)

The expression (46) can be simplified, if ψ(x) = min
[
c,max(−c, x)

]
. Thus,

K = 1 +
p

N

1− φ
φ

, (49)

where φ is the relative frequency of the residuals ri, −c < ri < c.

7. Numerical Simulation

The closed-loop system to be simulated is shown in Fig. 3 and is described by the linear
difference equation of the form (Åstrőm, 1987; Halwass, 1988)

(1 + aq−1)y(k) = (1 + bq−1)u(k) + (1 + cq−1)ξ(k). (50)

The controller design equation is

u(k) = e(k) + 0.1005u(k− 1)− 0.1016u(k− 2), (51)

where

e(k) = r(k) − y(k). (52)

The output y(k), k = 0, 1, 2, . . . of the closed-loop system is observed under the
additive noise v(k), k = 0, 1, 2, . . . containing outliers according to (17)–(19).
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Fig. 3. Simulated closed-loop system with an additive correlated noise and the reference signal r where
a = −0.985; b = .75; c = −0.7.

Now we rewrite the recursive H-algorithm (30), (31) for the first-order system

y(k) + a1y(k − 1) = b1u(k − 1) + ξ(k), (53)

or the same in the different form

y(k) = ϕT (k)θ(k) + ξ(k), (54)

if instead of unknown parameters a1, b1 their respective estimates a1(k), b1(k) are sub-
stituted in equation (53).

Here

ϕT (k) =
[
− y(k − 1)u(k − 1)

]
, (55)

θ(k) =
[
a1(k)b1(k)]T . (56)

The algorithm for the determination of current estimates a1(k), b1(k) of unknown
parameters a1, b1 by processing the observations y(k) and u(k) will be alike to the one
proposed in (Isermann, 1982):

1. New observations y(k) and u(k) are made at time k.

2. e(k) = y(k)−
[
− y(k − 1)u(k − 1)

] [ a1(k − 1)

b1(k − 1)

]
. (57)

3. New parameter estimates are calculated[
a1(k)

b1(k)

]
=

[
a1(k − 1)

b1(k − 1)

]
+

[
γ1(k − 1)

γ2(k − 1)

]
ψ[e(k)], (58)
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where γ1(k − 1), γ2(k − 1) from Step 7, and ψ[e(k)] is of the form (24).

4. Observations y(k) and u(k) are inserted into

ϕT (k + 1) = [−y(k)u(k)]. (59)

5.

P (k)ϕ(k + 1) =

[
p11(k) p12(k)

p21(k) p22(k)

] [
−y(k)

u(k)

]

=

[
−p11(k) y(k) + p12(k)u(k)

−p21(k) y(k) + p22(k)u(k)

]
=

[
i1

i2

]
, (60)

where P (k)is from Step 8.

6.

ϕT (k + 1)P (k)ϕ(k + 1) = p11(k)y2(k)−
(
p12(k)

+ p21(k)
)
u(k)y(k) + p22(k) · u2(k) = j. (61)

7.

[
γ1(k)

γ2(k)

]
=

1

j + λ

[
i1

i2

]
. (62)

8.

P (k + 1) =
1

λ

[
1 + γ1(k)y(k)− γ1(k)u(k)

γ2(k)y(k)1− γ2(k)u(k)

]

×
[
p11(k)p12(k)

p21(k)p22(k)

]
. (63)

9. Replace (k + 1) by k and start again with Step 1.

To start the recursive algorithms at time k = 0 one uses

θ̂(0) =

[
0

0

]
and P (0) =

[
α 0

0 α

]
,

where α is a large number, 0.95 6 λ 6 0.995.
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Fig. 4. Signals of the closed-loop system (50) in the absence (a, b) and in the presence (c, d) of an additive
correlated noise on the output: x-axis – numbers of observations, y-axis – amplitudes, inputs u – a, c, outputs
y, and the reference signal r (dotted line) – (b, d).

Fig. 5. Signals of the closed-loop system (50) in the presence of one outlier (a, b) and in the presence of five
outliers (c, d) in an additive correlated noise on the output. Other values and markings are the same as in Fig. 4.
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Fig. 6. Dependence of current estimates of the parameters of the closed-loop system on the number of recursive
iterations: x-axis – numbers of iterations, y-axis – meanings of estimates. a, c – estimates of the coefficient
of the nominator of the system transfer function, b, d – estimates of the coefficient of the denominator of the
system transfer function. Dotted lines correspond to exact values of estimated parameters. The estimates are
obtained by the odinary RLS: (a, b) using the observations of the input (Fig. 4c) and the output (Fig. 4d), (c, d)
using the respective observations, shown in Fig. 5a, b.

Fig. 7. Dependence of current estimates (solid and dashed lines) of the parameters of the closed loop system
on the number of recursive iterations: a) estimates are calculated using observations of the input (Fig. 5c) and
the output (Fig. 5d) and the ordinary RLS, b) using the robust M -algorithm. Other values and markings are the
same as in Fig. 6.
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We calculate the estimates of parameters a = −0.985; b = .75 of system (50) by
processing observations y(k) and u(k) using the ordinary RLS and theH-technique (57)–
(63), which is suited for the system, described by the difference equation (50). In Figs. 4,
5 simulated input, noisy output and reference signals of the closed-loop system (Fig. 3),
are shown. Fig. 4 corresponds to the case where there are no outliers in the correlated
noise v(k), k = 0, 1, 2, . . . at all. On the other hand, the respective inputs and outputs
in the presence of outliers in observations used for their estimation are shown in Fig. 5.
The parameter estimation results are presented in Figs. 6, 7. It follows that the accuracy
of estimates is lower, when there appears an additive noise even with one isolated outlier
(Fig. 6c, d) as compared to the case where there is no outlier in observations (Fig. 6a,
b). The estimation results for the case of five outliers (Fig. 5c, d) in observations to be
processed are shown in Fig. 7: using the ordinary RLS (7a) and the H-technique (7b).
It should be noted that the accuracy of estimates (solid and dashed lines) obtained by
the H-technique (Fig. 7b) is higher than that of estimates calculated by the ordinary RLS
(Fig. 7a). Such an accuracy can be increased if the generalized RLS and respective robust
analogous techniques could be used.

8. Conclusions

Outliers in observations to be processed strongly influence the quality of the performance
of a closed-loop system. For the estimation of parameters of such a system, the direct
approach that ignores the feedback and identifyies the open-loop system using only input-
output observations, and robust H-technique calculating M -estimates applying Huber’s
ψ{·} function could be used. In such a case the accuracy of estimates is increased in
comparison with the estimates obtained by the ordinary RLS.
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Uždaro ciklo sistem ↪u patvarusis identifikavimas, taikant tiesiogin ↪i
metod ↪a

Rimantas PUPEIKIS

Straipsnyje adityviojo triukšmo su dideliais retais nuokrypiais atveju plėtojamas tiesioginis meto-
das, kuris taikomas uždaro ciklo diskretinio laiko dinamini ↪u sistem ↪u identifikavimui. Nežinom ↪u
parametr ↪u M - ↪iverčiams gauti, apdorojant ↪iėjimo ir užtriukšminto išėjimo stebėjimus, pasiūlytas ir
modeliuojant kompiuteriu ištirtas patvarusis H-algoritmas. Pateiktos patvari ↪uj ↪u ↪iverči ↪u kovariacij ↪u
matric ↪u išraiškos. Gauti dinaminės sistemos parametr ↪u skaičiavim ↪u rezultatai, taikant du rekuren-
tinius algoritmus: mažiausi ↪uj ↪u kvadrat ↪u ir H-algoritm ↪a su Huberio funkcija.


