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Abstract. Many heuristics, such as simulated annealing, genetic algorithms, greedy randomized
adaptive search procedures are stochastic. In this paper, we propose a deterministic heuristic algo-
rithm, which is applied to the quadratic assignment problem. We refer this algorithm to as intensive
search algorithm (or briefly intensive search). We tested our algorithm on the various instances from
the library of the QAP instances – QAPLIB. The results obtained from the experiments show that
the proposed algorithm appears superior, in many cases, to the well-known algorithm – simulated
annealing.
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1. Introduction

The quadratic assignment problem (QAP) is formulated as follows. Given matrices F =

(fij)n×n and D = (dkl)n×n and the set Π of all permutations of 1, 2, . . . , n. Find a
permutation p ∈ Π that minimizes

z(p) =
n∑
i=1

n∑
j=1

fijdp(i)p(j). (1)

One of the applications of the quadratic assignment problem is computer aided de-
sign of electronic devices, namely, placement of the components (Steinberg, 1961). In
this context, n denotes the number of components (blocks), which are to be placed into
positions (slots) on a board (chip). Each placement corresponds to a certain permutation
(p(1), p(2), . . . , p(n)), where p(i) denotes the index of the position that component i is
placed into (i = 1, 2, . . . , n). The matrix F = (fij) can be interpreted as a matrix of con-
nections between components, where fij is the sum of the nets connecting component i
and component j. The matrix D = (dkl) is the distance matrix, where dkl represents the
distance from position k to position l. Thus, z can be treated as a total estimated wire
length (sum of the half-perimeters of the nets) obtained when n components are placed
into n positions. The goal is to find a placement of all components into all positions, such
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that the total estimated wire length is minimized. Further, we will consider the quadratic
assignment problem to model the placement of components.

The quadratic assignment problem is one of the most complex combinatorial opti-
mization problems. It has been proved that the quadratic assignment problem is NP-hard.
There exists no polynomial-time algorithm to find an exact solution. Problems of size
n > 20 are not, to this date, practically solvable to optimality (Mautor and Roucairol,
1994; Clausen and Perregaard, 1997). Therefore, heuristic algorithms have been widely
used for the quadratic assignment problem, first of all, simulated annealing (Burkard
and Rendl, 1984; Wilhelm and Ward, 1987; Thonemann and Boelte, 1994), tabu search
(Skorin-Kapov, 1990; Taillard, 1991), genetic algorithms (Fleurent and Ferland, 1994), as
well as the algorithms based on the greedy randomized adaptive search (Li et al., 1993),
and other algorithms (Armour and Buffa, 1963; Bazaraa and Sherali, 1980; Sherali and
Rajgopal, 1986; Murthy et al., 1992).

In this paper, we introduce a new heuristic algorithm entitled as an intensive search
(IS) algorithm. We describe the details of this algorithm in Section 2. The results of
the computational experiments, as well as a comparison of the proposed algorithm with
simulated annealing algorithm, are presented in Section 3.

2. An Intensive Search Algorithm for the Quadratic Assignment Problem

Our heuristic algorithm works in combination with an algorithm for the initial solution
generation; i.e., we use two-phase strategy for the quadratic assignment problem:

• INITIAL SOLUTION CONSTRUCTION
• SOLUTION IMPROVEMENT.

At the first phase, an initial solution (placement of the components) is generated us-
ing one of the constructive algorithms (see below). Then at the second phase the initial
solution is improved by the intensive search algorithm.

2.1. Construction of the Initial Solution

Many constructive algorithms use a consecutive scheme of handling of the components
(e.g., Gilmore, 1962; Hanan and Kurtzberg, 1972; Murthy and Pardalos, 1990). The com-
ponents are considered successively: at each step, an unplaced component is selected, one
at a time, and assigned to one of the unoccupied (free) positions. A position for the se-
lected component, once occupied, remains in this state throughout the whole assignment
process. The process is continued until all the components are assigned to the positions.
The detailed template of the algorithm (in PASCAL-like form) is presented in Appendix 1
(Fig. A1).

2.2. Solution Improvement

The algorithms used for the initial solution improvement are based on the iterative (local)
search methodology. The effectiveness of the iterative search depends on the neighbour-
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hood structure chosen. The neighbourhood N(Π → 2Π) maps the set Π, i.e., the set of
all the solutions, to the set 2Π, i.e., the set of all the subsets of the set Π. A natural way
by solving the quadratic assignment problem is to choose 2-exchange neighbourhood
structure (pairwise interchanges). Given a solution (permutation) p ∈ Π, the 2-exchange
neighbourhoodN2 is defined as follows

N2(p) = {p′|p′ ∈ Π, ρ(p, p′) = 2} , (2)

where ρ(p, p′) is the distance between the solutions p and p′. The distance is calculated
according to the formula

ρ(p, p′) =
n∑
i=1

sign |p(i)− p′(i)| .

The solution p′ in N2(p) can be obtained from the solution p by interchange of the
positions of exactly two components. The size of the neighbour solutions set N2(p) is
equal to n(n− 1)/2, so the search process is quick enough.

The iterative algorithms differ, one from another, depending on how the search of
the better solutions is performed. A large number of iterative algorithms are based on
the greedy descent principle (e.g., Armour and Buffa, 1963; Hanan and Kurtzberg, 1972;
Murtagh et al., 1982). The current solution is replaced by the new one from the neigh-
bourhood (a move to another solution is performed) if only the difference of the objective
function values (∆z = z(p′)− z(p)) is negative. The process is continued until no better
solution exists in the neighbourhood. The last solution obtained is referred to as locally
optimal solution. The greedy descent is a deterministic strategy, i.e., the decision to move
to a new solution or not is predefined unambiguously by the current value of the objec-
tive function. The template of the greedy descent algorithm is presented in Appendix 2
(Fig. A2).

Another group of algorithms is composed of stochastic (non-greedy) algorithms. In
this case, decisions are made according to some probability that depends on the differ-
ence of the objective function values. One of the most frequently used stochastic algo-
rithms is simulated annealing (e.g., Burkard and Rendl, 1984; Wilhelm and Ward, 1987;
Thonemann and Boelte, 1994). The algorithms based on the simulated annealing use the
following decision rule (condition of updating). The probability of moving to the new
solution in case of an increment of the value of the objective function is equal to e−∆z/t,
where ∆z is the difference of the objective function values, and t is a parameter, called
temperature, to be lowered according to some cooling schedule. In case of a decrement
of the objective function value, these algorithms work like the greedy algorithms. The de-
tailed template of the simulated annealing (SA) algorithm (author’s version) is presented
in Appendix 3 (Fig. A3).

Thus, we have two large classes of the iterative search algorithms: greedy determinis-
tic algorithms and non-greedy stochastic algorithms (see Table 1).
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Table 1

Iterative algorithms classification scheme

Algorithms Greedy Non-greedy

Deterministic Greedy descent Intensive search

Stochastic — Simulated annealing

2.3. Intensive Search Algorithm

Our new iterative algorithm, intensive search algorithm, is based on the non-greedy strat-
egy, but it is not a stochastic algorithm. It is a non-greedy deterministic algorithm (see
Table 1). The key idea of the intensive search algorithm is that movies to the solutions,
which increase (deteriorate) objective function value are permissible, in contrast to the
greedy algorithms, where only the movies, which decrease objective function value are
permissible. The intensive search algorithm uses the following decision rule: the current
solution is replaced by the new one in the neighbourhood if the difference of the objec-
tive function values is negative or the difference is positive, but it is not greater than some
range called threshold. Movies to the solutions, for which an increment of the objective
function value is out of the range, are forbidden. The threshold τ is evaluated according
to the formula

τ =

(∑
∆+
z

/
c+
)
α, (3)

where
∑

∆+
z is the sum of all the positive differences of the objective function (the sum

is being accumulated during the search process);
c+ is the total number of the increments of the objective function value;
α is a coefficient (referred to as intensity level) within the interval [0, 1].
(It is easy to observe that τ is the average objective function increment multiplied by

the intensity level.)
Thus, the decision rule, in short, is defined as follows: the solution is to be updated

if the inequality ∆z <
(∑

∆+
z

/
c+
)
α is satisfied (∆z is the current difference of the

objective function values). We avoid random element in the condition of updating in
contrast to the simulated annealing (see Table 2). So, in case of the intensive search, the
initial solution predetermines the final solution.

Table 2

Decision rules (conditions of updating)

Algorithms Rules (conditions)

Greedy descent ∆z < 0

Simulated annealing (∆z < 0) OR
(
r < e−∆z/t

)
Intensive search ∆z < α

∑
∆+
z

/
c+
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However, the intensive search possesses some features similar to those of the simu-
lated annealing. Both intensive search and simulated annealing use special parameters to
control optimization process. Namely, simulated annealing deals with the temperature (t),
while the intensive search deals with the intensity level (α). We define intensity level to
be inversely proportional to the number of the trials (permutations) already performed.
Thus, the intensity level is high enough at the beginning of the search (large number
of the increments of the objective function are permissible), it decreases slightly as the
number of steps increases. It becomes 0 at the end of the search (only decrements of the
objective function are available). The detailed template of the intensive search algorithm
is presented in Fig. 1.

procedure intensive_search(p, n, ᾱ,K)

/p – solution for the quadratic assignment problem, n – problem size (n > 2)/
/ᾱ – initial value of the intensity level (ᾱ ∈ [0, 1])/
/K – number of iterations of the intensive search/
p˜ := p/p˜– the best solution found so far/
hα := ᾱ/max (1, 0.5Kn(n− 1)− 1) /intensity quantum/
sum+ := 0 /sum of the positive differences of the objective function values/
c+ := 0 /count of the positive differences of the objective function values/
w := 1 /current trial number/
for k := 1 to K do /the main cycle of the intensive search/

for i := 1 to n− 1 do
for j := i+ 1 to n do begin

p′ := N2(p, i, j) /p′ – new solution in the 2-exchange neighbourhood/
∆z := z(p′)− z(p) /current difference of the objective function values/
if ∆z < 0 then change:=TRUE

else begin
sum+ := sum+ + ∆z, c+ := c+ + 1

α := Θ (ᾱ− (w − 1)hα) /current intensity level/
if ∆z < (sum+

/
c+)α then change:=TRUE

else change:=FALSE
end /else/

if change=TRUE then begin
p := p′ /replace the current solution by the new one/
if z(p) < z(p˜) then p˜ := p /update the best solution/

end /if/
w := w + 1 /next trial number/

end /for/
/end of the main cycle of the intensive search/
return p˜

end intensive_search

Fig. 1. Template of the intensive search algorithm. In this template, Θ is an operator, e.g., Θ(x) = x or
Θ(x) = x2 (we used the second one).
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2.4. Multistart Intensive Search Algorithm

The input to the intensive search algorithm is: the initial intensity level ᾱ, the number of
iterations K, as well as p, and n. Having p and K fixed (K = const), the optimization
results (p̃ ) depend only on the value of the initial intensity level ᾱ. For the distinct ᾱ, we
get distinct final solutions p ,̃ as well as distinct objective function values z(p˜), i.e., z is
a function of ᾱ (z = z(ᾱ)). The problem is that we do not know how exactly the initial
value of the intensity level ᾱ is to be set. In the other words, the goal is to find such a
value ᾱ that function z(ᾱ) is minimized.

Let us denote by zK(ᾱ) the best value of the objective function obtained after K
iterations for a fixed p and ᾱ. Then we get the following problem

min
06ᾱ61

zK(ᾱ). (4)

The function zK(ᾱ) is stochastic, multimodal, as well as expensive (requires a lot
of calculations). A simple technique is used for the optimization of this function. Some
interval [ᾱmin, ᾱmax] ⊆ [0, 1], called ᾱ interval, is divided intoL−1 subintervals using L
points (L > 2). The coordinates of these points (i.e., values of the initial intensity level)
are defined as follows

ᾱ(l) = ᾱmin + (l − 1)δ, (5)

where l = 1, 2, . . . , L; δ = (ᾱmax − ᾱmin)
/

(L − 1) (i.e., δ is the distance between two
neighbouring points).

The values of the objective function are calculated, i.e., calls to the intensive search
procedure are made, at each point. In other words, L restarts of the intensive search
procedure are performed. The solution p∗ corresponding to the minimum value of the
function zK(ᾱ), obtained after L restarts, is regarded as an optimization result for the
problem (1).

We entitled the above technique as a multistart intensive search (MIS) algorithm. The
detailed template of the multistart intensive search algorithm is presented in Fig. 2.

3. Computational Experiments

We have carried out the computational experiments in order to compare the intensive
search algorithm and other well-known algorithm, namely, simulated annealing. All the
experiments were carried out by using the author’s program “OPTIQAP” (OPTImizer for
the QAP), developed to run on IBM PC computers.

We used the well-known problem instances taken from the quadratic assignment prob-
lem library (QAPLIB) compiled by Burkard et al. (1991). Computational results pre-
sented in Figures 3–10 have been obtained by using the instance NUG30.

In all the experiments, we used the initial solution generated by the initial solution
construction procedure (see Fig. A1).

We made an emphasis on the following topics by carrying out the experiments.
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procedure multistart_intensive_search(p, n,K)
/p – solution for the quadratic assignment problem, n – problem size/
/K – number of iterations of the intensive search (K > 1)/
L =number of restarts

(i.e., number of division points of the interval [ᾱmin, ᾱmax]) /L > 2/
p∗ := p/p∗ – the best solution found so far/
zmin := z(p)/zmin – the minimum value of the objective function/
δ := (ᾱmax − ᾱmin) / (L− 1) /difference of the initial intensity level/
for l := 1 to L do begin /the global cycle of the intensive search/

p′ := p /initial solution is restored/
ᾱ := ᾱmin + (l − 1)δ /current initial intensity level/
intensive_search(p′, n, ᾱ,K) /call to the intensive search procedure/
if z(p′) < zmin then begin

p∗ := p′ /update the best solution/
zmin := z(p′) /update the minimum value of the objective function/

end /if/
end /for/
return p∗

end multistart_intensive_search

Fig. 2. Template of the multistart intensive search algorithm.

3.1. Choosing the Number of Iterations K

The choice of the number of iterations can influence the quality of the results consid-
erably. Firstly, if the number of iterations K is small, then no guarantee exists that the
quality of the results is good enough (see Figs. 3, 4). Secondly, for large values of K, the
results are better in many cases, but the number of trials as well as the computing time
grows rapidly. In addition, sometimes the value of the objective function becomes worse
even if the number of iterations increases (see Fig. 5), especially, with the small number
of the restarts L. So, it is quite difficult to find right number of the iterations K (in fact,
one more optimization problem arises, as an object of the further investigations).

We can fix K, for example, K = 2b log2 nc+a (a is an integer number between 0 and
10), or let it vary, suppose, between Kmin = 1 and Kmax = 2b log2 nc+a. In the second
case, the numbers of iterations K are chosen according to some choice rule. The choice
rules are as follows: a) K(m) = (m− 1)b+ 1 (arithmetical progression), b)K(m) = m2,
c) K(m) = 2m−1 (geometrical progression), where m = 1, 2, . . ., and b is a positive
integer number.

3.2. Choosing the Number of Restarts L

Let us denote by zK(L) the best value of the objective function obtained after L restarts
(calls to the intensive search procedure) for a fixed p and K. Then the obvious fact
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Fig. 3. The value of the objective function (z) versus current intensity level (α) and the number of iterations (K):
a) K = 9 (minimum value of the objective function – 6350); b)K = 27 (6208); c) K = 54 (6124).

Fig. 4. The value of the objective function (z) versus initial intensity level (ᾱ) and the number of iterations (K):
a) K = 1 (minimum value of the objective function – 6436); b)K = 8 (6162); c) K = 59 (6124).

Fig. 5. The value of the objective function (z) versus the number of iterations (K). ᾱ = 0.5.
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Fig. 6. Minimum of the values of the objective function (zmin) versus the number of restarts (L).
zmin = min

16l6L
zK(ᾱ(l)), where ᾱ(l) is calculated according to (5) formula (ᾱmin = 0, ᾱmax = 1).K = 32.

Fig. 7. Minimum of the values of the objective function (zmin) versus the number of restarts (L) and the number
of iterations (K). The overall minimum value of the objective function – 6124 (L = 65, K = 32).

holds. zK(2L − 1) 6 zK(L), where L > 2. The following simple strategy could be
recommended: start with L(1) = 2, then continue with L(u+1) = 2L(u) − 1, where
u = 1, 2, . . . , umax. We can choose umax heuristically, for example, umax = b2 log2 nc.

The illustrative examples of the correlation between number of restarts and the value
of the objective function are presented in Figs. 6, 7.

3.3. Dividing the ᾱ Interval

So far, we used the uniform dividing of the interval [0, 1] (ᾱ interval). Instead of the uni-
form dividing non-uniform dividing should be considered. The reason of such a strategy
is that the “good” values of the objective function are, probably, not uniformly distributed
along the interval [0, 1] (see Fig. 8). For example, for the instance NUG30, we observed
that, under certain conditions, the average of the objective function values in the interval
[0.5, 1] is less than that in the interval [0, 0.5] (see Fig. 9).
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Fig. 8. The value of the objective function (z) versus initial intensity level (ᾱ).

Fig. 9. Average of the values of the objective function (zavg) versus the number of iterations (K).

zavg =
∑L

l=1
zK(ᾱ(l))

/
L, where ᾱ(l) is calculated according to (5) formula. a) ᾱmin = 0, ᾱmax = 0.5;

b) ᾱmin = 0.5, ᾱmax = 1. L = 9.

3.4. Reducing the ᾱ Interval

Preliminary results show that reducing of the ᾱ interval is very promising idea (see
Fig. 10). The concrete techniques for the reducing of the interval are the objects of the
future investigations.

3.5. Comparison of the Algorithms

We compared intensive search and simulated annealing algorithms on several instances
from QAPLIB, namely, NUG30, SKO42-90, STE36A, WIL50, and WIL100. We used to
run the MIS procedure several times, with different numbers of restarts, each time. The
number of restarts at uth runL(u) is given by 2u−1+1, where u is the current run number,
u = 1, 2, . . . Really, we carry out only 2u−2 restarts at uth run (u = 2, 3, . . . (L(1) = 2))
because we eliminate all the points previously processed. The number of iterations (K)



An Intensive Search Algorithm for the Quadratic Assignment Problem 155

Fig. 10. Average of the values of the objective function (zavg) versus the number of iterations (K): a) ᾱ ∈ [0, 1]
(interval length – 1); b) ᾱ ∈ [0.5, 0.9] (length – 0.4). L = 9.

and the ᾱ interval were chosen heuristically: K = 2b log2 nc+3; ᾱ ∈ [0.4, 0.72] (interval
length – 0.32), except the instance WIL100, for which ᾱ ∈ [0.4, 0.56] (length – 0.16).

With the simulated annealing, we deal in the similar way, i.e., we perform many runs
(restarts) of the SA procedure (see Fig. A3), except that initial temperature, t0, is con-
cerned. In fact, a temperature factor, τ , is varied. The number of iterations S is equal to
10K , and the τ interval is [0.1, 0.18] (except STE36A, for which τ ∈ [0.6, 0.68]). In both
cases, the runs are continued until the best known value of the objective function is found.

The comparison results are summarized in Table 3. In this table, we present values,
at which the best known values (BKV) of the objective function have been obtained. The
algorithms were tested on the 200MHz PENTIUM computer.

We also note that the IS procedure makes fewer computations per iteration, in com-
parison with the SA procedure, because expensive functions (exp and log) are not used.

4. Concluding Remarks

The quadratic assignment problem is very difficult optimization problem. In order to
obtain satisfactory results in a reasonable time, heuristic algorithms are to be applied.
One of them, the intensive search algorithm, is proposed in this paper.

Intensive search is a deterministic algorithm, in contrast to the most of the well-known
algorithms (simulated annealing, genetic algorithms, greedy randomized adaptive search
procedures). We regard this feature as main advantage of the proposed algorithm. Other
advantages are:

– simple decision rule,
– easy programming and implementation,
– one initial solution is enough.
We also have to mention some shortages of the intensive search algorithm:
– the stopping criteria of the algorithm are difficult to determine,
– many input (control) parameters.
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Table 3

Comparison of the algorithms

IS SA

Instance # of runs Total # of Total # of runs Total # of Total

name BKV iterations1 search iterations1 search

time, time,

min:sec min:sec

NUG30 61243 7 8320 0:40 5 21760 2:30

SKO42 158124 5 4352 0:45 4 23040 5:40

SKO49 233864 9 65792 25 6 84480 43

SKO56 344584 11 262400 130 9 657920 320

SKO64 484984 9 131584 100 2 15360 12

SKO72 662564 9 131584 150 9 1315840 1660

SKO81 909985 11 524800 700 11 5248000 >7000

SKO90 1155344 10 262656 650 ∞7 ∞ ∞
STE36A 95264 7 16640 2:40 4 23040 4:00

WIL50 488166 8 33024 13 7 166400 70

WIL100 2730385 12 1049088 >3000 — — —

Remarks:
1 the total number of iterations is given by K(2M−1 + 1), where M is the number of runs;
2 the total number of iterations is given by S(2M−1 + 1);
3 (Skorin-Kapov, 1990);
4 (Taillard, 1991);
5 (Fleurent and Ferland, 1994);
6 (Thonemann and Boelte, 1994);
7 BKV not found.

Nevertheless, the experiments carried out show that the intensive search algorithm
gains advantage in most cases over other well-known algorithm, namely, simulated an-
nealing (see Table 3).

The best known solutions were produced for all of the instances we tested. We expect
to achieve even better results by applying new techniques of determination of the param-
eters ᾱ and K. Effective algorithms for the solving optimization problem (4) should be
applied, as well. All these things are subjects of the future papers.
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Appendix 1

procedure initial_solution_construction(p, n)
/p – initial solution for the quadratic assignment problem, n – problem size/
p := (0, 0, . . . , 0) /solution initialization/

i1 := arg max
16i6n

n∑
k=1

fik /i
1 – index of the firstly selected component/

j1 := arg min
16j6n

n∑
k=1

djk /j
1 – index of the position for the first component/

p(i1) := j1 /assignment of the first component to the position/
I1 := {i1}, Ī1 := {1, 2, . . . , n}\I1, J1 := {j1}, J̄1 := {1, 2, . . . , n}\J1

for q := 2 to n do begin
iq := arg max

i∈Īq−1

∑
k∈Iq−1

fik /i
q – index of the currently selected component/

jq := arg min
j∈J̄q−1

∑
k∈Iq−1

fiqkdjp(k) /j
q – index of the position for

the current component/
p(iq) := jq /assignment of the component to the position/
Iq := Iq−1 ∪ {iq}, Īq := Īq−1\{iq}
Jq := Jq−1 ∪ {jq}, J̄q := J̄q−1\{jq}

end /for/
return p

end initial_solution_construction

Fig. A1. Template of the algorithm for the initial solution construction.
The following notations are used:

iq – the index of the selected component at step q;
jq – the index of the position the component is assigned to at step q;
Iq – the set of indices of the components already placed after step q;
Īq – the set of indices of the unplaced components after step q;
Jq – the set of indices of the occupied positions after step q;
J̄q – the set of indices of the unoccupied positions after step q.
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Appendix 2

procedure greedy_descent(p, n)
/p – current solution for the quadratic assignment problem, n – problem size/
locally_optimal:=FALSE
while locally_optimal6=TRUE do begin

better_solution:=FALSE
for i := 1 to n− 1 do

for j := i+ 1 to n do begin
p′ := N2(p, i, j) /p′ – new solution in the 2-exchange neighbourhood/
if z(p′) < z(p) then begin

p := p′ /replace the current solution by the new one/
better_solution:=TRUE

end /if/
end /for/

if better_solution=FALSE then locally_optimal:=TRUE
end /while/
return p

end greedy_descent

Fig. A2. Template of the greedy descent algorithm.
In this algorithm, we denote by N2(p, i, j)
the solution, which is obtained from the solution p
by interchanging the positions of components i and j.
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Appendix 3

procedure simulated_annealing(p, n, τ )
/p – solution for the quadratic assignment problem, n – problem size/
/τ – temperature factor (τ ∈ [0, 1])/
S :=number of iterations of the simulated annealing /S > 1/
p˜ := p /p˜– the best solution found so far/
t0 := τz(p)/n+ 1 /initial temperature of the cooling schedule/
t := t0 /current temperature/
w := 3 /trial index/
for s := 1 to S do /the main cycle of the simulated annealing/

for i := 1 to n− 1 do
for j := i+ 1 to n do begin

p′ := N2(p, i, j)/p′ – new solution in the 2-exchange neighbourhood/
∆z := z(p′)− z(p) /current difference of the objective function values/
if ∆z < 0 then change:=TRUE

else begin
generate uniform random number r in [0, 1]

if r < e−∆z/t then change:= TRUE else change:=FALSE
end /else/

if change=TRUE then begin
p := p′ /replace the current solution by the new one/
if z(p) < z(p˜) then p˜ := p /update the best solution/
t := t0/ log2w

end /if/
w := w + 1 /next trial index/

end /for/
/end of the main cycle of the simulated annealing/

return p˜

end simulated_annealing

Fig. A3. Template of the simulated annealing algorithm.
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Intensyviosios paieškos algoritmas kvadratinio paskirstymo
uždaviniui

Alfonsas MISEVIČIUS

Straipsnyje aprašomas euristinis algoritmas, kuris pavadintas intensyviosios paieškos (IP) algo-
ritmu ir išbandytas sprendžiant kvadratinio paskirstymo (KP) uždavin ↪i. Nagrinėjamas taip pat šio
algoritmo patobulinimas – daugkartinio starto intensyviosios paieškos (DSIP) algoritmas.

Siūlomas IP algoritmas priklauso negodži ↪u deterministini ↪u algoritm ↪u klasei. IP algoritmo esmė
slypi tame, kad skirtingai negu godžioje paieškoje, kur leidžiami “perėjimai” tik prie t ↪u sprendini ↪u,
kurie pagerina (sumažina) tikslo funkcijos (TF) reikšm ↪e, – čia leidžiama “pereiti” ir prie t ↪u spren-
dini ↪u, kurie pablogina tikslo funkcijos reikšm ↪e. Intensyviosios paieškos atveju esamas sprendinys
keičiamas nauju tada, kai TF reikšmi ↪u pokytis yra neigiamas arba tas pokytis yra teigiamas, bet
neviršija tam tikro slenksčio. Slenkstis prilyginamas teigiam ↪u TF pokyči ↪u vidurkiui

(∑
∆+
z

/
c+
)

,
padaugintam iš tam tikro koeficiento (α), kuris vadinamas intensyvumo lygiu.

IP algoritmas primena žinom ↪a atkaitinimo modeliavimo algoritm ↪a, tačiau skiriasi nuo pas-
tarojo deterministiniu veikimo pobūdžiu. Panašiai kaip atkaitinimo modeliavime, kur optimizavi-
mo valdymui naudojamas temperatūros parametras, – IP algoritme naudojamas intensyvumo lygio
parametras. Paieškos pradžioje intensyvumo lygis yra pakankamai aukštas, taigi leidžiamas didelis
TF reikšmi ↪u pablogėjim ↪u kiekis (“perėjimai” nuo vien ↪u sprendini ↪u prie kit ↪u vykdomi intensyviai).
Toliau šis lygis palaipsniui mažinamas, kol tampa lygus nuliui (galimi tik TF reikšmi ↪u pagerėjimai).
Pradinė intensyvumo lygio reikšmė (ᾱ) parenkama iš intervalo [0, 1], o intensyvumo lygis maži-
namas tam tikru žingsniu (hα).

Naudojant IP algoritm ↪a, tikslo funkcijos (z) reikšmė priklauso tik nuo pradinės intensyvumo
lygio reikšmės ᾱ, kai kitos s ↪alygos vienodos. Taip KP uždavinys gali būti sprendžiamas minimizuo-
jant realaus argumento funkcij ↪a z(ᾱ) (ᾱ ∈[0, 1]). Šios funkcijos minimizavimui buvo išbandytas
intervalo [0, 1] tolygaus dalijimo algoritmas – DSIP algoritmas.

Tiriant minėtus algoritmus, atlikta didelis kiekis eksperiment ↪u, kuriuose pasinaudota KP už-
davinio testiniais pavyzdžiais iš specialios bibliotekos – QAPLIB. Tyrim ↪u rezultatai leidžia daryti
išvad ↪a, kad intensyvioji paieška, lyginant su godžia paieška, yra žymiai pranašesnė. Dar daugiau,
gauti rezultatai liudija, jog IP algoritmas (kartu su DSIP algoritmu) daugeliu atveju pranoksta
plačiai pripažint ↪a atkaitinimo modeliavimo algoritm ↪a.


