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Abstract. Influence of projection pursuit on classification errors and estimates of a posteriori prob-
abilities from the sample is considered. Observed random variable is supposed to satisfy a multidi-
mensional Gaussian mixture model. Presented computer simulation results show that for compar-
atively small sample size classification using projection pursuit algorithm gives better accuracy of
estimates of a posteriori probabilities and less classification error.
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1. Introduction

The most common method of estimating a posteriori probabilities in classification is to
replace unknown parameters by the maximum likelihood estimates (MLE). One of meth-
ods used to reduce variance of the estimates is to reduce dimension of observations by
projecting them to a subspace of lower dimension and to calculate MLE in the subspace.

Theoretical background of this problem is given, e.g., in (Aivazyan et al., 1989) and
(Friedman and Tukey, 1974). Some computer simulation results are presented in (Jaki-
mauskas and Krikštolaitis, 1999). In this paper we present more computer simulation
results that show that for comparatively small sample size classification using projection
pursuit algorithm gives better accuracy of estimates of a posteriori probabilities and less
classification error. We are thankful to prof. R. Rudzkis who gave the idea of these papers
and many constructive and valuable remarks.

The introduction presents already known methods. Description of projection pursuit
algorithm see, e.g., in (Rudzkis and Radavičius, 1997). Further studies are on the way,
which will help to make practical decision (probably using bootstrap methods) in which
situations use of projection pursuit algorithm is preferable (including computational costs
of finding discriminant subspace).
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Main definitions

Let we have q independent d-dimensional Gaussian random variables Yi with different

distribution densities ϕ(· ;Mi, Ri)
def
= ϕi, where means Mi and covariance matrices Ri,

i = 1, 2, . . . , q, are unknown. Let ν be random variable (r.v.) independent of Yi, i =

1, 2, . . . , q, and taking on values 1, 2, . . . , q with unknown probabilities pi > 0, i =

1, 2, . . . , q, respectively. In this paper we assume that number of classes q is known.
We observe d-dimensional r.v. X = Yν . Each observation belongs to one of q classes
depending on r.v. ν. Distribution density of r.v.X is therefore a Gaussian mixture density

f(x) =

q∑
i=1

piϕi(x)
def
= f(x, θ), x ∈ Rd, (1)

where θ = (pi,Mi, Ri, i = 1, 2, . . . , q) is an unknown multidimensional parameter.
Probabilities pi = P{ν = i} are a priori probabilities for r.v. X to belong to ith class.

We will consider the general classification problem of estimating a posteriori proba-

bilities π(i, x) = P{ν = i|X = x} from the sample {X1, X2, . . . , XN}
def
= XN of i.i.d.

random variables with distribution density (1). Under assumptions above

π(i, x) = πθ(i, x) =
piϕi(x)

f(x, θ)
, i = 1, 2, . . . , q, x ∈ Rd. (2)

The problem is to estimate the unknown multidimensional parameter θ.

The EM algorithm

If number of classes q is known, then the maximum likelihood estimate θ∗ is an efficient
estimate of θ. The most common method for calculating the MLE for Gaussian mixtures
is so-called EM (Expectation Maximization) algorithm. Let π∗(· , · ) = πθ∗(· , · ), i.e., for
given θ∗ corresponding a posteriori probabilities π∗ are obtained using (2). Reversely, θ∗

can be obtained from the given π = π∗ using the following equalities:

pi =
1

N

N∑
j=1

π(i,Xj), i = 1, 2, . . . , q, (3a)

Mi =
1

N

N∑
j=1

π(i,Xj)

pi
Xj, i = 1, 2, . . . , q, (3b)

Ri =
1

N

N∑
j=1

π(i,Xj)

pi
(Xj −Mi)(Xj −Mi)

T, i = 1, 2, . . . , q. (3c)

Let πN = {π(i,X), i = 1, 2, . . . , q, X ∈ XN} be any given a posteriori proba-
bilities for sample data points XN . For given πN , the parameter θ = (pi,Mi, Ri, i =
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1, 2, . . . , q) is obtained using (3). For given θ probabilities πN are calculated using for-
mula (2). The EM algorithm is an iterative procedure which starts either from a given
parameter θ or given probabilities πN applying in turn formulae (3) and (2). The EM al-
gorithm usually ends after some predefined number of iterations. Parameter θ in the EM
algorithm converges to MLE if starting parameter θ0 is sufficiently close to θ∗.

Note that starting parameter θ0 can be obtained from starting values of a posteriori
probabilities. In higher dimensions increasing number of parameters leads to unstability
of EM algorithm. Also the problem of finding the starting parameter θ0 becomes more
and more complicated.

For mixture distributions the EM algorithm was proposed independently by Schle-
singer (1965), Hasselblad (1966), and Behboodian (1970). By now the properties of the
EM algorithm have been studied well enough. On the convergence properties of the EM
algorithm see (Wu, 1983). Also see, e.g., monographs (Aivazyan et al., 1989; Everitt
and Hand, 1981; McLacklan and Basford, 1988; Titterington et al., 1985). For further
references see (Rudzkis and Radavičius, 1995). The popularity of the EM algorithm is
explained by computational stability and simplicity of implementation on a computer.

Discriminant space

Let V = cov(X,X) be the covariance matrix of r.v. X and suppose for simplicity
EX = 0. Define the scalar product of arbitrary vectors u, h ∈ Rd as (u, h) = uTV −1h

and denote by uL the projection of arbitrary vector u ∈ Rd to a linear subspace L ⊂ Rd.
Discriminant space H is defined as a linear subspace H ⊂ Rd with the property
P{ν = i|X = x} = P{ν = i|XH = xH}, i = 1, 2, . . . , q, x ∈ Rd, and the min-
imal dimension. It is known that for Gaussian mixture densities (1) with equal covariance
matrices we have dimH 6 q − 1 and for most natural cases dimH = q − 1.

Let k = dimH and vectors u1, u2, . . . , uk be a basis in the discriminant space H .
Denote U = (V −1u1, V

−1u2, . . . , V
−1uk)T. Then π(i, x) = P{ν = i|UX = Ux},

i = 1, 2, . . . , q, x ∈ Rd. This means that projected sample {UX1, UX2, . . . , UXN} is
a sufficient statistics for estimating a posteriori probabilities. The distribution density of
r.v. UX is a Gaussian mixture density

fH(z) =

q∑
i=1

piϕ
H
i (z)

def
= fHq (z, θH), z ∈ Rk, (4)

where ϕHi = ϕ(· ,MH
i , R

H
i ), i = 1, 2, . . . , q, are k-dimensional Gaussian distribution

densities with means MH
i = UMi and covariance matrices RHi = UTRiU , θH =

(pi,M
H
i , R

H
i , i = 1, 2, . . . , q) is the multidimensional parameter.

Projection pursuit algorithm

One of methods to find discriminant space is projection pursuit algorithm. It is step-
by-step procedure to find the basic vectors of discriminant space. Projection pursuit
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method was introduced by Friedman and Tukey (1974). Properties of the projection pur-
suit method also have been studied well enough, see, e.g., (Friedman, 1987). See also
(Aivazyan et al., 1989) and (Rudzkis and Radavičius, 1999). Description below is based
on (Rudzkis and Radavičius, 1997).

Let F be the set of one-dimensional Gaussian mixture distribution functions, ρ =

ρ(G1, G2), G1, G2 ∈ F , be some functional satisfying the following conditions:
ρ(G1, G1) = 0 and ρ(G1, G2) > 0, if G1 6= G2. For arbitrary non-zero u ∈ Rd de-
fine a projection index Q(u) = ρ(Fu,Φ), where Fu is the distribution function of the
standardized r.v. uTX , Φ is the standard Gaussian distribution function.

Let orthonormal vectors u1, u2, . . . , uk be found step-by-step as follows: set U0 =

{0}, for i = 1, 2, . . . , d, calculate ui = arg maxu{Q(u), u ∈ U⊥i−1, ‖u‖ = 1}, Ui =

span{u1, u2, . . . , ui} and stop whenQ(ui) = 0. We set k = min{i : Q(ui+1) = 0} (by
definition Q(ud+1) = 0).

Assume that the covariance matrices of components of X are equal. If the functional
ρ is shift- and scale-invariant and ρ(G1 ∗ Φ, G2 ∗ Φ) < ρ(G1, G2) for any Gaussian G2

and G1 6= G2, G2 ∈ F , then the vectors u1, u2, . . . , uk form a basis of the discriminant
space. Note that if covariance matrices Ri are non-equal (see (Rudzkis and Radavičius,
1997)) then more complicated algorithm must be used.

Practical problems

In real calculations we use projection index estimate Q̂(u) = Q̂(u,XN) based on the
sample XN and use stopping condition Q̂(ui) < εi, where ε1, ε2, . . . , εd is some se-
quence of small positive numbers satisfying certain conditions. In this paper we do not
analyse the problem when to stop estimation of the discriminant space (we assume that
dimH is known).

We can mention two other practical problems:
1. How much better estimates of a posteriori probabilities can be obtained when

projection pursuit is used in the case dimH < d;
2. Will we get better estimates (if so, how much better estimates) of a posteriori

probabilities applying projection pursuit but intentionally projecting data to the
lower dimension subspace (supposing that we do not lose many information
about cluster structure).

Analysis of these problems can be done using computer simulation. In this paper we
used computer simulation trying to get answers to the problems mentioned above.

2. Computer Simulation Results

We performed four tests intended to determine the dependency of the estimates of a pos-
teriori probabilities and number of classification errors on the dimension d, sample size
N , number of classes q, projection to discriminant subspace versus projection to lower
dimension subspace. We intentionally selected simple mixture models in order to achieve
maximum available differences in estimation.
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We assume that we have sufficiently good starting parameters for the EM algorithm –
we start from parameters that were used for simulation of the sample XN . For projected
sample we use corresponding theoretical density (4). Also we use theoretical basic vectors
of the discriminant space. So presented results do not contain errors due to selection of
starting parameters for the EM algorithm and errors due to finding basic vectors of the
discriminant space. We performed additional test projecting data to direction estimated
from the sample (using the projection pursuit algorithm based on generalized Ω2 metrics
for finding the basic vectors of the discriminant space). This test showed that for the
selected mixture models the errors due to finding discriminant space are very small and
insignificant.

In all performed tests we have studied dimensions d in the range 5..10. Dimension of
the discriminant space was in the range 1..2. The sample size N varied from 100 to 400.
Number of classes q was in the range 2..5. Covariance matrices of all partial distribution
densities were unit.

We studied accuracy of estimation of a posteriori probabilities, number of Bayesian
classification errors (i.e., classification using estimated parameters vs. classification using
theoretical parameters) and true classification errors (i.e., Bayesian classification using
estimated or theoretical parameters vs. known true class numbers of the sample). Ac-
curacy of estimation of a posteriori probabilities is measured as mean absolute distance
l(π̂N , πN ) between the estimated a posteriori probabilities π̂N and the theoretical a pos-
teriori probabilities πN , i.e.,

l(π̂N , πN ) =
1

Nq

q∑
i=1

N∑
j=1

|π̂(i,Xj)− π(i,Xj)| . (5)

We compare distance l(π̂N , πN ) and l(π̂NH , π
N ) where π̂N are obtained from MLE in the

initial space and π̂NH are obtained from MLE in the discriminant subspace H . Number of
Bayesian classification errors is measured as percentage of differences in Bayesian classi-
fication comparing classification using known theoretical parameter versus classification
using estimated parameter. Recall, that Bayes rule of classification assigns an observation
X ∈ XN to the ith class if i = arg maxk=1,2,...,q pkϕk(X).

Test 1 – dependence on dimension d

For the first test we selected Gaussian mixture model with five clusters with means
(−2r,−2r, 0, 0, . . .), (−r,−r, 0, 0, . . .), (0, 0, 0, 0, . . .), (r, r, 0, 0, . . .), (2r, 2r, 0, 0, . . .).
Calculations were done for three sample sizes: N = 100, 200, 400, varying distance
between neighbour clusters, separately for d = 5, 6, 7, 8, 9, 10. Note that in this test r
corresponds to distance r

√
2.

Here we present results forN = 400, comparing the case d = 5 with the case d = 10.
In Figs. 1–3 on x axis we have parameter r. We observe weak dependence on dimension
d, despite that number of parameters in case d = 10 is about 4 times bigger that in
case d = 5. This is true also for all calculations in this test. This allows us to select
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Fig. 1. Mean absolute error (average of 10 realizations).

Fig. 2. Number of classification errors (average of 10 realizations).

Fig. 3. True classification errors (average of 10 realizations).

one particular dimension for the next tests, thus saving much time for calculations. It is
interesting to note that behaviour of number of classification errors (or true classification
errors) is similar to that of mean absolute error.

Test 2 – dependence on sample size N

For this test we selected 5-dimensional Gaussian mixture model with five clusters with
means(−2r, 0, 0, 0, . . .), (−r, 0, 0, 0, . . .), (0, 0, 0, 0, . . .), (r, 0, 0, 0, . . .),(2r, 0, 0, 0, . . .).
Calculations were done for sample sizes: N = 100, 110, 120, . . . , 400, varying distance
between neighbour clusters.

Here we present results for r = 3.0, 4.0, 5.0 for mean absolute error (behaviour of
number of classification errors is very similar). In Fig. 4 on x axis we have sample size
N . We observe weak dependence on sample size N over all considered interval. This is
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Fig. 4. Mean absolute error (average of 100 realizations, values for r = 6 are multiplied by 100).

Fig. 5. Number of classification errors (N = 300, avg. of 100 realizations).

Fig. 6. True classification errors (average of 100 realizations).

true also for all calculations in this test. This also allows us to select one particular sample
size for the next tests.

Test 3 – dependence on number of clusters q

For this test we selected 5-dimensional and 10-dimensional Gaussian mixture models
with q = 2, 3, 4, 5 clusters with means placed in line with distance r = 4.0 in similar way
as in previous test. Calculations were done for sample sizes:N = 100, 110, 120, . . . , 400.

We present results for d = 10 and N = 300 for number of classification errors and
true classification errors which show most advantage of using projection. In Figs. 5, 6 on
x axis we have number of clusters q. Dependence on number of clusters is evident and
for all values of q we observe advantage of using projection to discriminant subspace.
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Fig. 7. Mean absolute error (average of 100 realizations).

Fig. 8. Number of classification errors (average of 100 realizations).

Fig. 9. True classification errors (average of 100 realizations).

Test 4 – projecting to discriminant subspace versus projection to lower dimension
subspace

For this test we selected 5-dimensional Gaussian mixture model with three clusters with
means (−r,−a, 0, 0, . . .), (0, 2a, 0, 0, . . .), (r, a, 0, 0, . . .), where r = 3 and a is a param-
eter. Calculations were done for sample sizes: N = 100, 110, 120, . . . , 400.

We present results for N = 400. In Figs. 7–9 on x axis we have parameter a. Depen-
dence on parameter a is evident and for all values of a we observe advantage of using
projection to discriminant subspace. For bigger a starting from a > 0.25 projection to
one-dimensional subspace gives worse results.
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Conclusions

Performed tests show that the projection to the discriminant subspace is definitely recom-
mended if possible. Much better estimates of a posteriori probabilities can be obtained
when projection pursuit is used in the case dimH < d. In some cases we get better esti-
mates of a posteriori probabilities applying projection pursuit but intentionally projecting
data to the lower dimension subspace. The advantages do not depend much on the sam-
ple size. Note that for Gaussian mixture models presented in the examples finding the
discriminant subspace is quite simple. In general, finding the discriminant subspace in
the higher dimensions is a very time consuming procedure and can significantly reduce
advantages of using projection pursuit.
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Rudzkis, R., and M. Radavičius (1995). Statistical estimation of a mixture of Gaussian distributions. Acta

Applicandae Mathematicae, 38, 37–54.
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Tikslinio projektavimo ↪itaka klasifikavimo paklaidoms:
kompiuterinio modeliavimo rezultatai

Gintautas JAKIMAUSKAS, Ričardas KRIKŠTOLAITIS

Nagrinėjama tikslinio projektavimo ↪itaka klasifikavimo paklaidoms ir aposteriorini ↪u tikimybi ↪u

↪iverčiams, gautiems iš imties. Laikoma, kad stebimas atsitiktinis dydis tenkina daugiamačio Gauso
mišinio model ↪i. Pateikti kompiuterinio modeliavimo rezultatai rodo, kad, esant palyginti ne-
dideliam imties tūriui, klasifikavimas, panaudojant tikslinio projektavimo algoritm ↪a, duoda didesn ↪i
aposteriorini ↪u tikimybi ↪u ↪iverči ↪u tikslum ↪a ir mažesn ↪e klasifikavimo paklaid ↪a.


