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Abstract. This paper contains measures to describe the matrix impulse response sensitivity of state
space multivariable systems with respect to parameter perturbations.The parameter sensitivity is
defined as an integral measure of the matrix impulse response with respect to the coefficients. A
state space approach is used to find a realization of impulse response that minimizes a sensitivity
measure.
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1. Introduction

One possibility of converting linear systems into mathematical processes consists in the
state space representations. They are characterized by the description of behavior of phys-
ical systems with constant matrices and, therefore, they establish a direct relation to the
methods of linear algebra. The state space representation of a given linear system can
be used in order to perform a pole-zero determination (Dooren, 1981), a stability test
(Bernett and Storey, 1970), and a test concerning the passivity (Anderson and Vongpan-
itlerd, 1973). The solution of these problems using the methods of linear algebra is rec-
ommended from a numerical point of view as powerful software packages are available
(Thiele, 1986).

The state space design of a system consists of finding a set of state space equations
that realize a desired transfer function. The state space equations corresponding to the
transfer function or impulse response are not unique, thus one may select among the real-
izations one that minimizes a suitable sensitivity measure. Also some system properties
are invariant with respect to the realizations, state space realizations do affect certain
properties. One important property is the sensitivity of the system with respect to the
realization parameters. In applications such as digital control and filter design, it is of
practical importance to have a state space realization for which the system sensitivity is
minimal. One of the reasons for this is the existence of the finite word length effect to co-
efficient truncation and arithmetic roundoff in the implementation of a controller or filter.
It is understandable that poor sensitivity may lead to the degradation in performance of
an implementation (Yan and Moore, 1992).
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The definition of sensitivity of a system with respect to its realization coefficients is
by no means unique. One definition is in terms of the use of two different norms L1

and L2 (Thiele, 1986), termed here mixed L2/L1 sensitivity. This mixing allows an ex-
plicit solution. The class of all mixed L2/L1 sensitivity optimal realizations can be easily
characterized. On the other hand, it seems to use the sensitivity defined via L2 norm.

Yan and Moore (1992) explored the properties of the solution of the L2-sensitivity
minimization problem and clarified some issues related to model reduction. Mullis and
Roberts (1976) produced closed-form results concerning minimum roundoff noise digital
filters.

Thiele (86a) derived the conditions to minimize the sensitivity measure. It means that
an optimal design can be found directly. By the use of the equivalence transformation it
is possible to determine realizations that are l2-scaled under a white noise input. These
realizations have the minimal norm of the output noise spectrum (Mullis and Roberts,
1976), and the minimum pole sensitivity (Barnes, 1979). As Kung has shown the mini-
mum norm realizations of arbitrary order satisfy ||F||2 < 1, where F denotes the system
matrix, can be realized to be free of overflow and limit cycles (Mills and Mullis, 1978).
The numerical accuracy depends on the conditions of the chosen state space representa-
tion. Therefore, it is desirable to define appropriate measures that represent the sensitivity
of the realized transfer function or impulse response with respect to parameter variations.

2. Statement of the Problem

Consider a state-space realization {F,G,R,D} of the discrete-time linear multivariable
system described by Zadeh and Desoer (1963)

q(k + 1) = Fq(k) + Gx(k), (1a)

y(k) = Rq(k) + Dx(k), (1b)

where k is the discrete time, q(k) is the n-dimensional state vector, y(k) is the p-
dimensional observation vector, x(k) is the m-dimensional input vector, F,G,R, and
D are constant matrices of dimension n× n, n×m, p× n, and p×m, respectively.

It is assumed that the system matrix F has distinct eigenvalues.
Pole sensitivity of a discrete-time linear multivariable system in the state-space de-

pends only on the system matrix F. However, the impulse response or the transfer func-
tion depends not only on poles but also on zeros (Morgan, 1966). So the impulse response
sensitivity depends not only on changes in the system matrix F, but also in the matrices
G,R and D.

In practice, it is not possible to realize the coefficients of {F,G,R,D} exactly. Thus,
for the realization of {F,G,R,D} we define the sensitivity of impulse response hlj(k)

with respect to the elements of F,G,R and D to be a partial derivative of impulse re-
sponse with respect to these elements. The derivative of impulse response hlj(k) with
respect to the matrix F, denoted as ∂hlj(k)/∂F, is an n× n matrix whose (q, r)th entry
is ∂hlj(k)/∂fqr.
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In this paper, we will use a sensitivity measure for discrete-time state space systems.
We will explore the L2-sensitivity problem of multi-input, multi-output systems that re-
alize the matrix impulse response. First we have done the equivalence transform of a
state space realization. Afterwards we have derived the sensitivity of matrix impulse re-
sponse to the eigenvalues. Next we have used the sensitivity of the impulse response to
the eigenvalues as a tool to derive the impulse response sensitivity to the system matrices.

3. Eigenvalues Sensitivity

The system matrix F is assumed such that the equivalence transform matrix exists
(Fadeev and Fadeeva, 1963)

F̄ = T+FV = diag (λ1, . . . , λn), (2)

where λi, i = 1, 2, . . . , n are eigenvalues of F, the symbol "+" denotes the matrix con-
jugate transposition. Let vi be an eigenvector associated with the eigenvalue λi, i.e.,
Fvi = λivi, i = 1, 2, . . . , n; V = [v1, . . . ,vn] = [vij ] is the n × n matrix, where vij
is the (i, j)th element of V. Let T = [V−1]+ = [t1, . . . , tn] = [tij ]n×n be an n × n
matrix, where tij is the (i, j)th element of T, and tj is the jth column of T.

Then eigenvalue λi = t+
i Fvi, i = 1, 2, . . . , n. The perturbation of the eigenvalue

dλi = dt+
i Fvi + t+

i dFvi + t+
i Fdvi = t+

i vidF + λividt
+
i + λit

+
i dvi

= t+
i vidF + λid(t+

i dvi). (3)

Since t+
i vi = 1, we have

dλi = t+
i dFvi =

n∑
l=1

n∑
j=1

t∗livjidflj , (4)

where dflj is the (l, j)th element of dF; ”∗” is a complex conjugate symbol. On the other
hand,

dλi =
n∑
l=1

n∑
j=1

∂λi
∂flj

dflj . (5)

From (4) and (5) we obtain

∂λi
∂flj

= t∗livji. (6)

Define the n× n gradient operator as follows:

∇F =

[
∂

∂flj

]
. (7)
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From (6) and (7) the n× n eigenvalue sensitivity matrix is:

∇Fλi =

[
∂λi
∂flj

]
= t∗i v

T
i . (8)

From (8) it follows the sensitivity invariant condition:

n∑
i=1

∇Fλi =
n∑
i=1

(vit
+
i )T = (VT+)T = I. (9)

Equation (8) is a sensitivity function. The measure of this sensitivity is defined by its
Euclidean norm:

||F|| =

 n∑
l=1

n∑
j=1

|flj |2
 1

2

= Tr (F+F)
1
2 = Tr (FF+)

1
2 . (10)

Thus,∥∥∇Fλi
∥∥2

= Tr
[
(∇Fλi) (∇Fλi)

+
]

= Tr
(
t∗iv

T
i v∗i t

T
i

)
=
∥∥ti∥∥2 ·

∥∥vi∥∥2
, (11)

or

‖∇Fλi‖ = ‖ti‖ ‖vi‖ . (12)

Using the Cauchy-Schwarz inequality, a lower bound is given by∥∥∇Fλi
∥∥ =

∥∥ti∥∥∥∥vi∥∥ > ∥∥t+
i vi

∥∥ = 1, (13)

and

n∑
i=1

∥∥∇Fλi
∥∥ > n. (14)

Equality (13) is valid if vi and ti are linearly dependent. The equality in (14) is valid if
all eigenvectors vi are orthogonal. If the system matrix F has distinct eigenvalues, the
minimum sensitivity is when F is a normal matrix.

4. Impulse Response Sensitivity

In a state space realization of a multivariable system, the pole sensitivity is a measure
of the effects of the perturbation only on the system matrix F. As transfer function or
impulse response are determined by both poles and zeros, the zero sensitivity as well as
the pole sensitivity has to be determined to see the effects of the perturbation of the system
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parameters. Our purpose is the effects of the perturbation of the system parameters on the
impulse response. Then it is desired to obtain the impulse response sensitivity instead
of the pole and zero sensitivities. The aim is to define the impulse response sensitivity
measure of a multivariable system with respect to the system parameters.

Consider the state space realization {F,G,R,D} of the system described by (1).
We assume that the system matrix F has distinct eigenvalues. Let {F̄, Ḡ, R̄,D} be the
equivalence transformation of {F,G,R,D} by means of V:

F̄ = T+FV = diag {λi, . . . , λn},
Ḡ = T+G = [ḡlj ] = [ḡ1, . . . , ḡm] = [α1, . . . ,αn]

T
, (15)

R̄ = RV = [r̄lj ] = [r̄1, . . . , r̄p]
T

= [β1, . . . ,βn] , (16)

where ḡlj and r̄lj are the (l, j)th element of Ḡ and R̄, respectively; ḡi and αi are the ith
column and row of Ḡ, respectively; r̄i and βi are ith row and column of R̄, respectively.

The matrix impulse response h(k) of the system is given by

h(k) =

{
D, if k = 0,
RFk−1G = R̄F̄k−1Ḡ, if k > 1.

(17)

We measure the sensitivity of the matrix impulse response h(k) to the eigenvalues λi
and the impulse response sensitivity to the matrices F,G,R,D.

4.1. Impulse Response Sensitivity to the Perturbation of Eigenvalues

Substituting (2), (15), and (16) into (17), we obtain the (l, j)th element of the matrix
impulse response as follows:

hlj(k) =
n∑
i=1

r̄liλ
k−1
i ḡij , k > 2, l = 1, 2, . . . , p, j = 1, 2, . . . ,m. (18)

By differentiating the (l, j)th impulse response with respect to λi we obtain

∂hlj(k)

∂λi
= (k − 1)r̄liλ

k−2
i ḡij , k > 2. (19)

Let us define the vector∇λ as follows:

∇λ =

[
∂

∂λ1
, . . . ,

∂

∂λn

]T
.

Thus,

∇λhlj(k) = (k − 1)
[
r̄l1λ

k−2
1 ḡ1j , . . . , r̄lnλ

k−2
n ḡnj

]T
, k > 2. (20)
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The Euclidean norm of (20)

∥∥∇λhlj(k)
∥∥ = (k − 1)

(
n∑
i=1

|r̄li|2 |λi|2(k−2) |ḡij |2
) 1

2

, k > 2. (21)

The sensitivity of the (l, j)th impulse response to eigenvalues λi is an infinite summation
of (21):

J2
λ(hlj) =

∞∑
k=2

∥∥∇λhlj(k)
∥∥2

=
n∑
i=1

|r̄li|2 |ḡij |2
∞∑
k=2

(k − 1)2 |λi|2(k−2)
. (22)

Using the expression (Korn and Korn, 1961)

∞∑
k=2

(k − 1)2xk−2 =
1 + x

(1− x)3
, |x| < 1, (23)

we obtain the sensitivity of the (l, j)th impulse response to the eigenvalues as follows:

Jλ(hlj) =

 n∑
i=1

|r̄li|2 |ḡij |2
1 + |λi|2(
1− |λi|2

)3


1
2

. (24)

We define the total sensitivity of the matrix impulse response as a summation of (24), i.e.,

Jλ(h) =

 p∑
l=1

m∑
j=1

J2
λ(hlj)

 1
2

. (25)

Substituting (24) into (25), and keeping in mind, that
∑m
j=1 |ḡij |

2
= ‖αi‖2 and∑p

l=1 |r̄li|
2

= ‖βi‖
2, we obtain

Jλ(h) =

 p∑
l=1

m∑
j=1

n∑
i=1

|r̄li|2 |ḡij |2
1 + |λi|2(
1− |λi|2

)3


1
2

=

 n∑
i=1

‖βi‖
2 ‖αi‖2

1 + |λi|2(
1− |λi|2

)3


1
2

, (26)

where βi is the ith column of the matrix R̄ and αi is the ith row of the matrix Ḡ.
In the subsequent analysis on the impulse response sensitivity to the system matrices

F,G,R,D we assume that every matrix is perturbed.
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4.2. Impulse Response Sensitivity to the System Matrix F Perturbation

We differentiate the (l, j)th element of the matrix impulse response with respect to the
(q, r)th element of the system matrix F as follows:

∂hlj(k)

∂fqr
=

n∑
i=1

∂hlj(k)

∂λi
· ∂λi
∂fqr

, k > 2. (27)

Substituting (6) and (19) into (27), we obtain

∂hlj(k)

∂fqr
=

n∑
i=1

(k − 1)r̄liλ
k−2
i ḡijt

∗
qivri, k > 2. (28)

Thus,

∇Fhlj(k) = (k − 1)T∗diag
{
r̄liλ

k−2
i ḡij

}
VT , i = 1, 2, . . . , n. (29)

Applying the Cauchy inequality to (29), we get

‖∇Fhlj(k)‖ = Tr
{

(∇Fhlj(k))+(∇Fhlj(k))
}

> (k − 1)2
n∑
i=1

|r̄li|2 |λi|2(k−2) |ḡij |2 . (30)

From (21) and (30), we obtain that

‖∇Fhlj(k)‖ >
∥∥∇λhlj(k)

∥∥ , k > 2. (31)

In case the system matrix F is normal, the equality in (31) holds and the term on the
left hand-side in (31) has the minimum. The normal matrix has a set of orthonormal
eigenvectors associated with distinct eigenvalues.

The sensitivity measure of the (l, j)th impulse response and the matrix impulse re-
sponse is defined as follows:

JF(hlj) =

( ∞∑
k=2

∥∥∇Fhlj(k)
∥∥2

) 1
2

, (32)

and

JF(h) =

 p∑
l=1

m∑
j=1

J2
F(hlj)

 1
2

. (33)

For the normal system matrix with distinct eigenvalues, we obtain

JF(hlj) = Jλ(hlj), (34)
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and

JF(h) = Jλ(h). (35)

4.3. Impulse Response Sensitivity to the Matrix G Perturbation

According to (17) the (l, j)th element of the matrix impulse response is given by

hlj(k) = rlF
k−1gj , k > 1, (36)

where rl is the lth row of R and gj is the jth column of G.
Let us define the vector∇gj and matrix∇G as follows:

∇gj =

[
∂

∂g1j
, . . . ,

∂

∂gnj

]T
, j = 1, 2, . . . ,m, (37)

∇G = [∇g1 , . . . ,∇gm ] . (38)

Then the gradient of hlj(k) with respect to the vector gj is:

∇gjhlj(k) = (FT )k−1rTl = T∗diag
{
λk−1
i

}
r̄Tl , i = 1, 2, . . . , n, (39)

where r̄l is the lth row of the matrix R̄. In case the matrix T is orthonormal, we obtain
the Euclidean norm of (39):

∥∥∇gjhlj(k)
∥∥2

=
n∑
i=1

|r̄li|2 |λi|2(k−1)
, k > 1. (40)

But ∇gjhlj(k) = 0 if i 6= j, then
∥∥∇Ghlj(k)

∥∥ =
∥∥∇gjhlj(k)

∥∥.
We obtain the following sensitivity of the (l, j)th impulse response to the matrix G:

JG(hlj) =

( ∞∑
k=1

∥∥∇Ghlj(k)
∥∥2

) 1
2

=

(
n∑
i=1

|r̄li|2

1− |λi|2

) 1
2

. (41)

The matrix impulse response sensitivity to the matrix G is the summation of JG(hlj):

JG(h) =

 p∑
l=1

m∑
j=1

J2
G(hlj)

 1
2

=

(
m

n∑
i=1

‖βi‖
2

1− |λi|2

) 1
2

. (42)

4.4. Impulse Response Sensitivity to the Matrix R Perturbation

Define the vector∇rl and matrix∇R as follows:

∇rl =

[
∂

∂rl1
, . . . ,

∂

∂rln

]
, (43)

∇R =
[
∇r1 , . . . ,∇rp

]T
. (44)
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The gradient of hlj(k) (36) with respect to the row rl of the matrix R becomes

∇rlhlj(k) = gTj (FT )k−1 = ḡTj diag
{
λk−1
i

}
VT , i = 1, 2, . . . , n, (45)

where ḡj is the jth column of the matrix Ḡ. As V is orthonormal, we obtain the Euclidean
norm of (45):

∥∥∇rlhlj(k)
∥∥2

=
n∑
i=1

|λi|2(k−1) |ḡij |2 , k > 1, (46)

where ḡij is the (i, j)th element of the matrix Ḡ. Since ∇rlhlj(k) = 0, if l 6= i, we
get
∥∥∇Rhlj(k)

∥∥ =
∥∥∇rlhlj(k)

∥∥. The sensitivity of the (l, j)th impulse response to the
matrix R perturbations is defined by

JR(hlj) =

( ∞∑
k=1

∥∥∇Rhlj(k)
∥∥2

) 1
2

=

(
n∑
i=1

|ḡij |2

1− |λi|2

) 1
2

. (47)

The sensitivity of the matrix impulse response to the matrix R perturbations becomes

JR(h) =

 p∑
l=1

m∑
j=1

J2
R(hlj)

 1
2

=

p m∑
j=1

n∑
i=1

|ḡij |2

1− |λi|2

 1
2

=

(
p

n∑
i=1

‖αi‖2

1− |λi|2

) 1
2

, (48)

where αi is the ith row of the matrix Ḡ.

4.5. Impulse Response Sensitivity to the Matrix D Perturbation

Define the p×m matrix∇D as follows:

∇D =

[
∂

∂dlj

]
. (49)

It is clear that∇Dhlj(0) = 1.
The sensitivity of the (l, j)th element of the matrix impulse response to the matrix D
becomes

JD(hlj) =
∥∥∇Dhlj(0)

∥∥ = 1. (50)

The matrix impulse response sensitivity to the matrix D becomes

JD(h) =

 p∑
l=1

m∑
j=1

J2
D(hlj)

 1
2

= (pm)
1
2 . (51)
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4.6. Sensitivity to all System Matrices Perturbations

We define the matrix impulse response sensitivity to all system matrices as follows:

JΣ(h) =
[
J2

F(h) + J2
G(h) + J2

R(h) + J2
D(h)

] 1
2

=


n∑
i=1

‖βi‖2 ‖αi‖2
(

1 + |λi|2
)

(
1− |λi|2

)3 +
m ‖βi‖

2
+ p ‖αi‖2

1− |λi|2

+ pm


1
2

.(52)

For poles near the unit circle, JF(h) dominates JΣ(h).

5. Impulse Response Sensitivity of One-Input One-Output System

We measure the impulse response sensitivity of one-input one-output system {F,g, r, d}
and find the condition on g and r for minimizing the impulse response sensitivity under
the dynamic range constraint in order to control overflow. Consider that the matrix F is
normal.

As a special case of a multivariable system, we obtain the impulse response sensitivity
measure of one-input one-output normal system {F,g, r, d} that has distinct eigenvalues.

From (30) we obtain the sensitivity to the matrix F perturbations:

∥∥∇Fh(k)
∥∥2

= (k − 1)2
n∑
i=1

|γi|
2 |λi|2(k−2)

, k > 2,

and

JF(h) =

( ∞∑
k=2

∥∥∇Fh(k)
∥∥2

) 1
2

=

[ ∞∑
k=2

(k − 1)2
n∑
i=1

|γi|
2 |λi|2(k−2)

] 1
2

.

Using expression (23), we get

JF(h) =

 n∑
i=1

|γi|
2
(

1 + |λi|2
)

(
1− |λi|2

)3


1
2

, (53)

where γi = αiβi.
We obtain the impulse response sensitivity to vector g perturbations from (40)

∥∥∇gh(k)
∥∥2

=
n∑
i=1

|βi|
2 |λi|2(k−1)

, k > 1,
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and

Jg(h) =

( ∞∑
k=1

∥∥∇gh(k)
∥∥2

) 1
2

=

(
n∑
i=1

|βi|
2

1− |λi|2

) 1
2

. (54)

The impulse response sensitivity to vector r perturbations is obtained from (46)

∥∥∇rh(k)
∥∥2

=
n∑
i=1

|αi|2 |λi|2(k−1)
, k > 1, (55)

and

Jr(h) =

( ∞∑
k=1

∥∥∇rh(k)
∥∥2

) 1
2

=

(
n∑
i=1

|αi|2

1− |λi|2

) 1
2

. (56)

The impulse response sensitivity to F,g, r, d is obtained from (52)

JΣ(h) =
[
J2

F(h) + J2
g(h) + J2

r (h) + J2
d (h)

] 1
2

=


n∑
i=1

 |γi|2
(

1 + |λi|2
)

(
1− |λi|2

)3 +
|αi|2 + |βi|

2

1− |λi|2

+ 1


1
2

. (57)

6. Minimization of the Impulse Response Sensitivity

We now consider the minimization of JΣ(h) in (57). γi is determined by the scalar im-
pulse response of {F,g, r, d} and is independent of realizations. Therefore we can control
J2

g(h)+J2
r (h) in order to minimize the sensitivity JΣ(h). In minimizing J2

g(h)+J2
r (h),

the dynamic range constraint has to be considered to control overflow. We use the dy-
namic range constraint described by

n∑
i=1

|αi|2

1− |λi|2
= nδ2, (58)

where δ is a dynamic range constraint coefficient.
Thus, the minimization problem is minimizing J2

g(h) + J2
r (h) with respect to the

constraint (58). This minimization is a variational problem. We form the Lagrangian Q:

Q =
n∑
i=1

|αi|2 + |βi|
2

1− |λi|2
+ µ

(
n∑
i=1

|αi|2

1− |λi|2
− nδ2

)
, (59)

where µ is a Lagrange multiplier and βi = γi/αi.
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We take the partial derivative of (59) with respect to |αi|2 and set the result to zero:

∂Q

∂ |αi|2
=
µ+ 1− |γi|

2 |αi|−4

1− |λi|2
= 0. (60)

Thus, using (60), we obtain

|αi|2 =
|γi|

(1 + µ)
1
2

. (61)

We now evaluate µ. By substituting (61) into (58), we obtain

(µ+ 1)
1
2 =

1

nδ2

n∑
i=1

|γi|
1− |λi|2

. (62)

Substituting (62) into (61) we obtain |αi|2 that minimizes J2
g(h) +J2

r (h) subject to (58):

|αi|2 =
nδ2 |γi|
n∑
i=1

γi
1−|λi|2

. (63)

7. Conclusions

The scalar sensitivity measure has been presented for both the multi-input multi-output
discrete-time state space realization of the matrix impulse response and the one-input
one- output discrete-time state space realization of the scalar impulse response. Formulas
that can be computed on a computer have been derived for the analysis of the effects of
parameter changes. The impulse response sensitivity of the one-input one-output normal
system that has distinct poles has been determined. We have minimized this impulse
response sensitivity under a dynamic range constraint in order to control overflow. The
condition that minimizes the impulse response sensitivity is the same as the condition
that minimizes the roundoff noise variance in the output. The eigenvalue sensitivity is
minimized if and only if the system matrix is normal.
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Daugiamači ↪u sistem ↪u jautrumo analizė būsen ↪u erdvėje

Kazys KAZLAUSKAS

Straipsnyje nagrinėjame daugiamatės diskretinės sistemos, aprašytos būsen ↪u lygtimis, matricinės
impulsinės charakteristikos jautrum ↪a parametr ↪u pokyčiams. Integralinė matricinės impulsinės
charakteristikos jautrumo funkcija priklauso nuo būsen ↪u lygči ↪u vis ↪u koeficient ↪u pokyči ↪u. Anali-
zuojame vienmatės diskretinės sistemos impulsinės charakteristikos jautrum ↪a. Suradome s ↪alyg ↪a,
kai vienmatės sistemos impulsinė charakterisitka yra mažiausiai jautri parametr ↪u pokyčiams.


