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Abstract. A system of two nonlinear difference-differential equations which is a mathematical
model of self-regulation of glucose level in blood with time delay into consideration of insulin
"age structure" is presented. The analysis carried out by qualitative and numerical methods allows
us to conclude, that the mathematical model explains the functioning of the physiological system
"insulin-blood glucose" in normal and pathological cases.
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1. Introduction

The self-regulation of glucose level in blood can be interpreted (Švitra, 1989; Basov
and Švitra, 1998) as “predator-prey” type interaction, where the “predator” is insulin,
and the “prey” is glucose. In the paper (Basov et.al, 1999) was proposed the system of
two nonlinear difference-differential equations which is a mathematical model of self-
regulation of glucose level in blood:

İ(t) = rI

{
G(t)

KG
+ a
[
1− G(t)

KG

]
− I(t− h)

KI

}
I(t), (1)

Ġ(t) = rG

{
1 + b

[
1− I(t)

KI

]
− G(t)

KG

}
G(t). (2)

Here I(t) is the level of insulin in the blood plasma at the time moment t and KI is its
mean; G(t) is the level of blood glucose and KG is its mean; h is the time necessary for
the production of insulin in β-cells of the pancreas; rI > 0 chracterizes the linear rate
of production of insulin; rG > 0 shows the linear growth of the level of glucose in the
blood; with the help of parameters a and b a feedback is realized. Parameter a controls
the rate of insulin production and parameter b regulated the level of glucose in blood.

The research shows a sufficiently good agreement between the results obtained inves-
tigating model (1)–(2) and the experimental date (Basov et. al., 1999).
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From the general scheme of the blood glucose regulation (Švitra, 1989), it follows that
there exists a certain “age structure” of insulin, where “younger” proinsulin by its activity
yields considerably to “older” insulin. It is possible to calculate insulin “age structure”
in mathematical model (1)–(2), replacing differential equation (1) by the following equa-
tion:

İ(t) = rI

{
G(t)

KG
+ a
[
1− G(t)

KG

]
− pI(t− hp) + (1− p)I(t− h)

KI

}
I(t). (3)

In (3) hp is the time necessary for proinsulin biosynthesis and the parameter p > 0 reflects
a contribution of proinsulin fractions into a total amount of insulin produced in β-cells.

Investigating system (2)–(3), we assume that

rI
KI

= c1,
rG
KG

= c2, (4)

where the c1 and c2 are positive constant. Equations (4) mean that the resistance of the
exterior of the medium is a biological constant of the organism (Kolesov, 1985).

2. Stability of Equilibrium States

2.1. Linear Analysis

The system of nonlinear differential equations (2)–(3) has the following states of equilib-
rium with nonnegative coordinates:

I(t) ≡ 0, G(t) ≡ 0; (5)

I(t) ≡ 0, G(t) ≡ KG(1 + b); (6)

I(t) ≡ KIa, G(t) ≡ 0; (7)

I(t) ≡ KI , G(t) ≡ KG. (8)

The states of equilibrium (5)–(6) are always unstable. Below we study the stability of
interior state of equilibrium (8). In the original system of differential equations (2)–(3)
we make the change of variables

I(t) = KI

[
1 + x(t)

]
, G(t) = KG

[
1 + y(t)

]
. (9)

As a result we get the system of differential equations

ẋ(t) = −
[
rIpx(t− hp) + rI(1− p)x(t− h) + rI(1− a)y(t)

][
1 + x(t)

]
, (10)

ẏ(t) = rG
[
− bx(t)− y(t)

][
1 + y(t)

]
. (11)

The characteristic quasipolinomial of the linear part of system (10)–(11) is the function

P (λ) =
{
λ+ rI

[
pe−λhp + (1− p)e−λh

]}
(λ+ rG) + rIrGb(1− a). (12)
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The disposition of roots of (12) in the complex plane depends on values of the parame-
ters hp, h, rI , rG, a, b and p. All they are positive according to their biological meanings
(Švitra, 1989).

We study by the method of D-partitions (Neimark, 1948) the disposition in the com-
plex plane of roots of the equation

P (λ; rI , a) = 0, (13)

where P (λ; rI , a) is quasipolynomial (12) for the some fixed values of the parameters
hp, h, rG, b and p.

For λ = 0 from (13) we get lines a = 1 + 1
b and rI = 0. Further, for λ = iσ (σ > 0)

we get equations in the parametric form of remaining curves of the D-partition on the
plane rIa:

rI =
rGσ

rGϕ1(σ)− σϕ2(σ)
, (14)

a =
rGϕ2(σ) + σϕ1(σ)

rGb
+ 1− 1

rI

σ2

rGb
, (15)

where

ϕ1(σ) = p sinσhp + (1− p) sinσh, (16)

ϕ2(σ) = p cosσhp + (1− p) cosσh. (17)

As σ → 0 from (14)–(15) we determine the so-called cups M(rMI , a
M), whose coordi-

nates are

rMI =
rG

rG
[
php + (1− p)h

]
− 1

, aM = 1 +
1

b
. (18)

In the case of diabetes mellitus, for the values of parameters (Švitra, 1989)

hp = 3, h = 4, rG = 6.6, b = 0.34, p = 0.8, (19)

the interesting to us part of the D-partition on the plane rIa is constructed on Fig. 1.

Fig. 1. The D-partition on the plane of the parameters rI and a in the case of diabetes mellitus.
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Fig. 2. The D-partition on the plane of the parameters rI and a in the normal case.

In the case where the normal regulation rG is sufficiently small, the parameter b is
sufficiently large and the values of parameters are taken as follows

hp = 3, h = 5, rG = 2.8, b = 1.5, p = 0.2, (20)

the corresponding D-partition on the plane rIa is presented on Fig. 2. In both the cases
it is simple to show that in the domain D0 all the roots of (13) have negative real parts,
and passing from D0 to D2 acquire two complex conjugate roots of (13) with positive
real parts. Thus, if the point (rI , a) is located in D0, the inner equilibrium state (8) is
asymptotically stable, while if the point (rI , a) goes into the domain D2, in circles (8)
there may appear stable periodic behavior of system (2)–(3).

2.2. Nonlinear Analysis

The general investigation of the nonlinear problem is rather complicated. Thus, in order
to simplify the problem, we use some biological assumption. In case of diabetes mellitus
rG is large, i.e., rG � rI . From (2) and the well known theorem of Tikhonov (Tikhonov,
1948) one gets the approximate equation

G(t)

KG
= 1 + b

[
1− I(t)

KI

]
. (21)

Then from (21) and (3) it follows

İ(t) = rI

{
1 + b(1− a)

[
1− I(t)

KI

]
− pI(t− hp) + (1− p)I(t− h)

KI

}
I(t). (22)

After the substitution

I(t) = KI

[
1 + x(t)

]
(23)

we get the differential equation

ẋ(t) = −rI
[
αx(t) + px(t− hp) + (1− p)x(t− h)

][
1 + x(t)

]
, (24)
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where α = b(1− a).
If α = p = 0 and r1 = π

2h + ε, the characteristic quasipolinomial of the linear part
of (24) has two simple roots τ(ε) ± iσ(ε), satisfying the conditions τ(0) = 0, σ(0) =

σ0 = π
2h , (0 6 ε� 1) and (Švitra, 1989)

τ ′0 =
2π

π2 + 4
, σ′0 =

4

π2 + 4
. (25)

All other roots of it have negative real parts. Further, let rIα = α0ε, rIp = β0ε. Then
the characteristic quasipolinomial

P (λ; ε) = λ+ α0ε+ β0εe
−λhp + [σ0 + ε(1− β0)]e−λh (26)

of the linear part of (24) has the simple roots η(ε) ± iω(ε), satisfying the conditions
η(0) = 0, ω(0) = σ0,

η′0 = −(τ ′0ImP ′0ε + σ′0ReP ′0ε), (27)

ω′0 = τ ′0ReP ′0ε − σ′0ImP ′0ε), (28)

where η′0 = η′(ε), ω′0 = ω′(ε) at ε = 0, P ′0ε = P ′ε(λ; ε) at ε = 0, λ = iσ0, and τ ′0 and
σ′0 are determined by (25). From (26) it follows, that

ReP ′0ε = α0 + β0 cosσ0hp, ImP ′0ε = −
[
1− β0(1− sinσh0)

]
. (29)

From the above consideration and the results of Švitra (Švitra, 1989) we conclude the
following

Theorem 1. Let 0 < rI − σ0 = ε� 1 and let the positive variable η′0 is determined by
formula (27). Then in a sufficiently small neighborhood of zero the difference-differential
equation (22) at rIα = α0ε, rIp = β0ε has a unique (up to translation of time) sta-
ble periodic solution I(t), for which on any segment of time of order ε−1 one has the
asymptotic representation

I(t) = KI

[
1 + ξ cosσ0τ + ξ2x2(τ) + O (ξ3)

]
, (30)

ξ =

√
ε

b2
, τ =

t

1 + cξ2
, (31)

where

x2(t) =
1

10
sin 2σ0τ +

1

5
cos 2σ0τ, (32)

c2 = c0 +
ω′0d0

η′0σ0
, b2 = −d0

η′0
, (33)
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ω0 is determined by formula (28) and

d0 = −σ0(3π − 2)

10(π2 + 4)
, c0 =

π + 6

10(π2 + 4)
, (34)

with σ0 = π
2h (Švitra,1989).

Further, let rI = r0
I + ε, rIp = α0ε. Then the characteristic quasipolinomial

P (λ; ε) = λ+ (r0
I + ε)α+ α0εe

−λhp +
[
r0
I + ε(1− α0)

]
e−λh (35)

of the linear part of (24) in the general case has simple roots η(ε)± iω(ε), satisfying the
conditions η(0) = 0, ω(0) = σ0. The following equalities hold

η′0 = − r
0
I

σ0
(τ ′0ImP ′0ε + σ′0ReP ′0ε), (36)

ω′0 =
r0
I

σ0
(τ ′0ReP ′0ε − σ′0ImP ′0ε), (37)

where P ′0ε = P ′ε(λ; ε) at λ = iσ0 and ε = 0, σ0 is the root of the equation

α+ cosσ0h = 0, (38)

belonging to the interval
(
0, π2h

)
, r0
I is determined by the formula

r0
I =

σ0

sinσ0h
, (39)

and τ ′0, σ
′
0 are determined by formulas

τ ′0 =
hσ2

0

r0
I

[
h2σ2

0 + (1 + αhr0
I )2
] , (40)

σ′0 =
σ0(1 + αhr0

I )

r0
I

[
h2σ2

0 + (1 + αhr0
I )2
] (41)

(Švitra, 1989). From (35) it follows that

ReP ′0ε = α0(α+ cosσ0hp), ImP ′0ε = −α0 sinσ0hp − (1− α0) sinσ0h. (42)

There holds the following (Švitra, 1989).

Theorem 2. Let 0 < rI − r0
I = ε � 1 and let the variable η′0 is positive. Then dif-

ferential equation (22) has for rIp = α0ε (up to translations of time), a unique stable
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periodic solution I(t), for which on any segment of time of order ε−1 one has asymptotic
representation (30), where σ0 is determined from equation (38),

x2(τ) = A2s sin 2σ0τ +A2c cos 2σ0τ (43)

with

A2s =
1− 2α

2(5− 4α)

√
1− α
1 + α

, A2c =
1− α
5− 4α

, (44)

ξ =

√
ε

B2
, τ =

t

1 + C2ξ2
, (45)

B2 =
τ ′0
η′0
b2, C2 = c2 +

σ′0
σ0
b2 −

ω′0
σ0
B2, (46)

and

b2 =
3hr0

I + 2α− 1

4h(1 + α)(5− 4α)
, c2 =

1− 2α

4hr0
I (1 + α)(5− 4α)

. (47)

η′0 and ω′0 are determined by (36)–(37).

3. Results of Numerical Investigation

We proceed directly to numerical investigation of the mathematical model (2)–(3) and the
comparison of the obtained results with the experimental data. Here, taking into account
that the resistance of exterior medium is a biological constant of the organism both in the
normal and in the pathological cases, we assume the following experimental data (Švitra,
1989): c1 = 0.04, c2 = 0.03.

Normal case. On Fig. 3 we have constructed a numerical solution of the system (2)–(3)
in case (20) for rI = 0.66 and a = 0.55, reflecting the regulation in the system “insulin-
blood glucose” of a healthy individual. On Fig. 3, also a comparison of the experimental
data (Thum et. al., 1975) of the dynamics of the level of glucose in the blood of a healthy
individual with the graph of the function G(t) is given. It can be seen that the graph of
the functionG(t) passes through the points of the experimental data rather well.

Case of diabetes mellitus. In this case the normal regulation breaks down and the
time of production of insulin also shortens, due to which less potent insulin is made. The
numerical solution of the system (2)–(3) in the case (19) and for rI = 0.6, a = 0.8 is
pictured on Fig. 4. There also, the graph of the functionG(t) is compared with the points
of the experimental data on the dynamics of the blood glucose level of a patient with
diabetes mellitus (Berger and Rodbard, 1991). It is clear, that the coincidence is rather
good.

One should note that in the cases considered above the daily biorhythm of the blood
glucose level is unchanged, i.e., in the course of a day we have expressions of the maxi-
mum blood glucose level.
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Fig. 3. Glusoce and insulin profiles in normal case.

Fig. 4. Glucose and insulin profiles in case of diabetes mellitus.

4. Conclusions

Thus, by a synthesis of the methods of local analysis of nonlinear differential equations
with retarded argument the methods of numerical investigation and as a result of cer-
tain biological considerations, we have succeeded in rather complete investigation of the
mathematical model of self-regulation of glucose level in a blood taking into consider-
ation the insulin “age structure”. The investigation made above allows us to conclude
that the mathematical model (2)–(3) clarifies the functioning of the physiological system
“insulin-blood glucose” rather well both in the normal and in the pathological (diabetes
mellitus) cases.

References

Basov, I., D. Švitra (1998). Glycemia monitoring. In Nonlinear Analysis: Modelling and Control, Vol. 2. IMI,
Vilnius.
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Glikemijos dinamikos modeliavimas atsižvelgiant ↪i insulino „amžiaus
struktūr ↪a“

Igor BASOV, Donatas ŠVITRA

Tiriama dviej ↪u netiesini ↪u diferencialini ↪u lygči ↪u su vėlavimo argumentu sistema, kaip cukraus ly-
gio kraujyje savaiminio reguliavimosi matematinis modelis. Modelyje atsižvelgta ↪i tam tikr ↪a in-
sulino „amžiaus struktūr ↪a“. Kokybiniais metodais, taip pat skaitmeniškai atlikta matematinė analizė
leidžia padaryti išvad ↪a, kad matematinis modelis paaiškina fiziologinės sitemos „insulinas-cukrus
kraujyje“ funkcionavim ↪a, esant jo normai ir esant patologijai – cukriniam diabetui.


