
INFORMATICA, 2000, Vol. 11, No. 1, 3–14 3
 2000 Institute of Mathematics and Informatics, Vilnius

Theoretical Foundations of an Environment-Based
Multiparadigm Language

Mario BLAŽEVIĆ, Zoran BUDIMAC, Mirjana IVANOVIĆ
Institute of Mathematics, Faculty of Science, University of Novi Sad
Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia
e-mail: bmario@eunet.yu, zjb@unsim.ns.ac.yu, mira@unsim.ns.ac.yu

Received: January 2000

Abstract. The paper presents a simple programming language and rewriting system called GENS.
It is based on an extension of the λ-calculus called λE-calculus. GENS is a multiparadigm lan-
guage: it has been used for definition of semantics and for implementation of functional, logi-
cal, procedural, and object-oriented languages. It also allows combining different programming
paradigm styles in a single programming language.

The purpose of this paper is to define and to introduce the λE-calculus – theoretical foundation of
GENS. It will also be shown how the most important langauge constructs of different programming
paradigms can be defined in GENS.

Key words: λ-calculus, programming languages, rewriting systems, lambda calculus, programming
paradigms, multi-paradigm.

1. Introduction and Related Work

GENS is a new programming language based on the λE-calculus, an extension of the
λ-calculus. It is a relatively simple language, as it contains few constructs. Yet, it can eas-
ily represent semantics of programming languages belonging to different programming
paradigms and their combinations.

GENS is currently implemented in programming language Oberon-2 under the
Oberon operating system. It has been used for implementation of interpreters for the
functional language ISWIM, for a declarative subset of Prolog (a logical language), for
Pascal- (a subset of a procedural language), and for an object-oriented language Sol.

GENS was originally conceived as a generalization of the graph rewriting systems.
The original “Graph reduction ENvironment System” is still a part of the GENS project,
but now it’s implemented on top of a simpler language that retained the old name for
now, though it has little in common with graph reduction. Some other languages based on
graph rewriting are Clean (Eekelen et al., 1988), LEAN (Clean’s predecessor (Barendregt
et al., 1988)), and Dactl (Glauert et al., 1987; Papadopoulos, 1996).

The first version of GENS has been introduced in (Blažević and Budimac, 1997),
where its compatibility with the classical graph rewriting systems has been stressed. In

4 M. Blažević et al.

(Blažević, 1998) GENS was extended with constructs similar to those presented in this
paper.

A nice overview of the functional-logic multiparadigm languages and the motivations
behind them can be found in (Moreno Navarro, 1995). A more ambitious language Leda,
combining functional, logic and procedural paradigm, is presented in (Budd, 1995).

Other recent attempts in the field of multi-paradigm languages include combining
functional languages with a kind of record-like structures. Some of them are low-level,
extending λ-calculus to make it suitable for dealing with record fields. The resulting
extensions have some similarities with the λE-calculus. Two of such extensions are the
λN -calculus, presented in (Dami, 1998) and the label-selective λ-calculus, presented in
(Aït-Kaci and Garrigue, 1993). The work (Dami, 1997) presents an overview of various
record-calculi and compares it to the λN approach.

There have also been many attempts to use imperative input/output and other con-
structs in a pure functional setting. One approach, applied in functional language Haskell,
can be found in (Peyton Jones and Wadler, 1993).

The next section of the paper introduces GENS. The Section 3 shortly illustrates the
GENS programming. The conclusion shortly discusses GENS as the programming envi-
ronment.

2. A Description of GENS

2.1. λE , the Calculus Underlying GENS

The λE-calculus described here is an extension of λ-calculus. Beside the names, applica-
tions and λ-abstractions, inherited from λ-calculus, this new calculus includes environ-
ment as a new kind of term.

As usual in programming, environment is a set of pairs (name, value), also called
attributes, and represents a mapping from the set of names (labels) to the set of their
possible values (all terms). This mapping can be partial. If the environment σ contains
the pair (l, t) we say that σ defines label l, and that it assigns value t to l.

EXAMPLE 1. An example of environment is {(a, b), (b, (a b)), (c, {(a, c)})}. This en-
vironment defines three labels: a, b and c. It assigns to label a another label b, to b the
application a b, and to c another environment {(a, c)}.

The mathematical set notation is not very appropriate for environments, so this nota-
tion is shortened in GENS. Pairs are written as l= t instead of (l, t) and the {} brack-
ets are replaced with (). So this environment would be written as (a = b, b = (a b),
c = (a = c)).

If two environments σ1 and σ2 are given, we can define the operation of asymmetric
union upon them, written as σ1 .σ2. This operation is similar to set union, but it preserves
the uniqueness of the attribute labels making the result a new partial mapping. The first

Environment-Based Multiparadigm Language 5

environment σ1 has a greater priority, so all the attributes from the second environment
σ2 in collision with the first get discarded from result:

σ1 . σ2 = σ1 ∪ (σ2|D(σ2)\D(σ1)).

D(σ) denotes the domain set of environment σ, which is the set of all names σ defines.

EXAMPLE 2. If we are given the environments σ1 = (a= 1, b= 2) and σ2 = (b= 3, c=
4) then their asymmetric union is σ1 . σ2 = (a = 1, b = 2, c = 4). In this case there
was no collision for the attributes a= 1 and c= 4, while the attribute b= 3 was taken
from σ1.

The set of λE-calculus terms consists of names, applications, abstractions, and envi-
ronments. The set of names is split into labels and variables, L and V . Only labels can
be defined by any environment. Labels are free names, and variables are always bound
in some enclosing lambda-abstraction. Application is associative: the terms (t1 t2)t3 and
t1(t2 t3) are equivalent.

T = L ∪ V ∪ {t1 t2| t1, t2 ∈ T} ∪ {σ| σ : L 7→ T}∪

∪{λl/v.t| l ∈ L, v ∈ V, t ∈ T} ∪ {λ∗/v.t| v ∈ V, t ∈ T}.

The λE-calculus reduction rules take place only when a term gets applied to an envi-
ronment, which means that the redex must be in form t σ. Reduction depends on the type
of the first term t. In the rules presented below l always denotes a label, v a variable, σ,
σ1, and σ2 are environments, and t is any term.

σ1 σ2 → σ1 . σ2, (1)

l σ → σ(l) σ, if l ∈ D(σ), (2)

λ l/v.t σ → t[σ(l)/v] σ, if l ∈ D(σ), (3)

λ∗/v.t σ → t[σ/v] σ, if D(σ) = L. (4)

The demandD(σ) = L in (4) could be relaxed, at the price of either complicating the
semantics or destroying its confluence. It should also be noted that the rewriting rule (2)
is not really necessary, because we can always replace an application l σ with the similar
term λl/v.v σ that also reduces to σ(l) σ. However, the former application seems to be
very convenient and natural, and it appears so often that it deserves its special treatment.

The meaning of the replacement t[t′/v] is similar to its meaning in λ-calculus. Only
the variables ever get renamed by the α-conversion, the labels are immutable:

l[t/v] = l,

v[t/v] = t,

v′[t/v] = v′, if v 6= v′,

(t1 t2)[t/v] = t1[t/v] t2[t/v],

σ[t/v] = {(l, t′[t/v])| (l, t′) ∈ σ} ,

6 M. Blažević et al.

λl/v.t′ [t/v] = λl/v.t′,

λl/v′.t′ [t/v] = λl/v′. (t′ [t/v]) , where v 6= v′ and v′ 6∈ FV (t),

λ∗/v.t′ [t/v] = λ∗/v.t′,
λ∗/v′.t′ [t/v] = λ∗/v′. (t′ [t/v]) , where v 6= v′ and v′ 6∈ FV (t).

Theorem 1. The λE-calculus has the Church-Rosser property.

The proof is similar to the classical proof for the λ-calculus, but considerably longer
because of four different reduction rules compared to one rule in λ-calculus.

Now we can show some examples of reduction. The symbol→∗ denotes the reduction
to the normal form:

EXAMPLE 3.

a(b= c) →∗ a(b= c),

a(a= c) →∗ c(a= c),

λa/v.v (b= c) →∗ λa/v.v (b= c),

λa/v.v (a= c) →∗ c(a= c),

(a= 1, b= 2) (b= 3, c= 4) →∗ (a= 1, b= 2, c= 4),

a(a= b, b= c) →∗ c(a= b, b= c),

a(a= b(b= c)) →∗ c(a= b(b= c), b= c),

λa/v.(b(d= v)) (a= c) →∗ b(a= c, d= c).

2.2. Initial Environment

The environment can be seen as a library of named functions. This feature makes it pos-
sible to define recursive functions without the Y-combinator trick. Besides, extending
λE-calculus with predefined functions is quite easy. If we need to use some functions in
a term t, we simply apply this term to the environment σ which defines these functions
and then we reduce the application t σ instead of t itself.

The language GENS is just the λE-calculus where all terms are applied to a special
initial environment we shall call σGens. Its definition follows.

σGens = (

Cont= (),

Let= Cont,

LastLabel= Let,

Fail= (LastLabel= Fail),

Seq= λCont/c. λRight/r. Left(Cont= r(Cont= c)),

F ield= λ∗/env0. λRight/r. Seq(Right= λ∗/env1.

Seq(Left= r,Right= λ∗/env2.

Fold(E0= env0, E1= env1, E2= env2))),

Environment-Based Multiparadigm Language 7

Fold= [Fold],

Dis= λ∗/env. λRight/r.Left(Fail= r env)

) .
⋃
l∈L

(l= Cont (LastLabel= l)) .

The σGens environment defines all the labels in L. Most of them are assigned the
default value of Cont(LastLabel= l), which means they reduce to the label Cont after
assigning itself to the label LastLabel. All these labels with default value from now on
will be called “undefined”, since there are no undefined labels by the old meaning of the
word.

The σGens environment also defines several more labels that have a more important
role. There are many other useful functions introduced in σGens, but the ones shown are
essential for extension of the calculus to a practical programming language:

– Label Cont is assigned the current continuation.
– Seq contains the sequencing function, expecting its two arguments in labels Left

and Right. This function reduces to the left term (the one assigned to the label
Left), putting the right term on top of the continuation. The effect is that the right
term gets applied to the environment resulting from the reduction of the left term.
In other words, Seq could also be defined simply as
Seq= λLeft/l. λRight/r. (r l).

– Field is similar to Seq, except that the environment resulting from the left term is
discarded from the final result. To produce this result, this function calls the
primitive function Fold. Fold expects three environments σ0, σ1 and σ2 in labels
E0, E1 and E2, respectively, and reduces to σ0|D(σ1∩σ2).

– The function assigned to Dis represents disjunction of its two arguments expected
in labels Left and Right. It reduces to the left argument, assigning the right one
to the label Fail.

– Label Fail is the failure label. If any disjunctions have been reduced, it contains
the alternatives that are to be tried if the current reduction fails.

– LastLabel contains the last reduced undefined label.
– Let behaves as an undefined label, except that it doesn’t change the value of
LastLabel.

2.3. Syntax Extensions

The language GENS is based on λE-calculus extended with the initial environmentσGens
defined above and some syntax sugar to ease its use. The EBNF syntax of GENS, ab-
stracted from some details such as primitive data type and priority, is presented below:

Term = Name | Application | Abstraction |
Sequence | Field | Disjunction.

Application = Term Environment.

8 M. Blažević et al.

Environment = ’(’ Attributes] ’)’.
Attributes = Attribute {’,’ Attribute}.
Attribute = [Name ’=’] Term.
Abstraction = ’\’ Abstracted {’,’ Abstracted} ’->’ Term.
Abstracted = Name [’/’ Name].

Sequence = Term ’;’ Term.
Field = Term ’.’ Term.
Disjunction = Term ’|’ Term.

Though it is larger, GENS syntax is actually more restrictive than the λE syntax. The
changes from the λE syntax are the following:

– The environment attributes can now be written in a shorter form, without the
left-hand side ”Label=”. In that case their label is assumed to be equal to the
ordinal position of the attribute in the environment. The first attribute has default
label 1st, the second 2nd etc. For example, the environment (3, b, a= 9) is a
shorter form for (1st= 3, 2nd= b, a= 9).

– An environment can appear only at the right-hand side of an application. This
restriction was necessary to ensure that all valid GENS terms reduce the
continuation. Instead of an environment σ we can use the application Let σ,
which behaves much the same but also reduces the continuation.

– There is no special syntax to distinguish between labels and variables. If a name is
free, then it’s considered a label. If a name appears in the place for variable in an
abstraction (λl/v.t), then it is a bound variable and all its occurrences in the scope
of this abstraction (except on the attribute left-hand side) are variables, not labels.

– Abstraction is written with ’\’ instead of λ and ’−>’ instead of dot, as usual in
functional languages. Several comma-separated names can be abstracted. If only a
single name is written instead of a pair name1/name2, then it’s assumed that
both the label and the variable are written the same. And finally, there is no
equivalent to λ ∗/v.t. Only a single label can be abstracted.

– Three new constructs are added:

• Sequence 〈Term1〉 ; 〈Term2〉 is a shorthand for
Seq(Left= 〈Term1〉 , Right= 〈Term2〉).
• The field construct 〈Term1〉 . 〈Term2〉 is a shorthand for
Field(Left= 〈Term1〉 , Right= 〈Term2〉).
• Disjunction 〈Term1〉 | 〈Term2〉 is a shorthand for
Dis(Left= 〈Term1〉 , Right= 〈Term2〉).

The result of the term reduction is always a large environment. To make the output
simpler, only the difference between the resulting environment and σGens get printed. The
values of the predefined system labels are also excluded from it, and the label assigned to
LastLabel is taken in front:

Output[σ] = σ(LastLabel) (σL\{Cont,Fail,Left,Right,LastLabel} \ σGens).

Environment-Based Multiparadigm Language 9

In this way the reduction is taken “one step back”, because if we apply the output to
σGens we get the same result again.

EXAMPLE 4.

Output
[(
a= 5, b= c, LastLabel= c, Cont= ()

)]
= c(a= 5, b= c).

2.4. The Use of Constructs

The sequence construct is well known from imperative languages. The rewriting of
the sequence Term1;Term2 is done by first reducing Term1 to its root normal
form σ′1. If no failure occurred, then we proceed with rewriting of the application
Term2 σ

′
1. Multiple sequence Term1;Term2; . . . ;TermN is grouped to the right, as

Term1; (Term2; . . . ;TermN). Each subsequent term adds to the environment passed
from left to the right.

Field construct behaves in a similar way. The first term is also reduced to the root
normal form and the resulting environment is passed to the right term before its rewrit-
ing. Contrary to the sequence construct, the passed environment gets discarded from the
final rewriting result. Field can be thought of as analogy of the record field access or the
method call from the object-oriented languages.

The behaviour of these two constructs can be seen from examples. The relation —−→
Gens

∗

shows the actual output of the GENS interpreter on the right hand side for the input given
on the left hand side. It can be defined as

tin —−→
Gens

∗tout
def⇐⇒ tin σGens →∗ σ ∧ Output[σ] = tout.

EXAMPLE 5.

a; b —−→
Gens

∗ b(),

a(c= d); b —−→
Gens

∗ b(c= d),

a(c= d); c —−→
Gens

∗ d(c= d),

a(c= d); b(c= e) —−→
Gens

∗ b(c= e),

a(c= d); b(e= c) —−→
Gens

∗ b(c= d, e= c),

a(c= d); \c− > b(e= c) —−→
Gens

∗ b(c= d, e= d).

10 M. Blažević et al.

EXAMPLE 6.

a.b —−→
Gens

∗ b(),

a(c= d).b —−→
Gens

∗ b(),

a(c= d).c —−→
Gens

∗ d(),

a(c= d).b(c= e) —−→
Gens

∗ b(c= e),

a(c= d).b(e= c) —−→
Gens

∗ b(e= c),

a(c= d).\c− > b(e= c) —−→
Gens

∗ b(e= d).

The elements of GENS described so far suffice to describe not only a simple com-
mand sequence from imperative languages, but also the branching, loops and other con-
trol structures. However, the behaviour of exception is very hard to describe as an instruc-
tion sequence – it is practically impossible to add exceptions to an imperative language
without substantial modification of its semantics.

To raise an exception in GENS, we call the label Fail that has a special treatment by
the control constructs. When a term invokes Fail, we say that the rewriting failed. Now,
if the rewriting of the first term in the sequence Term1;Term2 fails, the rewriting is not
continued to Term2 but stopped. The rewriting of sequence results with Fail. The same
holds for field.

There still remains the problem of ”catching” and correcting the exception, which is
the role of disjunction Term1 | Term2.

If Term1, together with the continuation of disjunction, reduces to anything other
than Fail, that is the result of the whole disjunction. If rewriting of Term1 fails, then the
normal form of disjunction is equal to the normal form of Term2. Disjunction is used to
correct the local failure and to finally reduce the whole expression successfully.

EXAMPLE 7.

Fail; a —−→
Gens

∗ Fail(),

Fail.a —−→
Gens

∗ Fail(),

a | b —−→
Gens

∗ a(),

Fail | b —−→
Gens

∗ b(),

(a(b= Fail) | a(b= c)); b —−→
Gens

∗ c(b= c).

The last example shows that a disjunction remains effective even if a failure happens
outside of its scope. This feature is similar to backtracking in Prolog.

2.5. Primitive Operations and Data Types

Every programming language has some built-in basic data types. In GENS they include
32-bit integers, characters, strings and texts (textual files). This choice proved sufficient
for the basic purpose of the language – playing with the programming languages.

Environment-Based Multiparadigm Language 11

Primitive data types can not be rewritten, which means they are always in normal
form. Contrary to labels, they can’t be assigned a value by any environment. The only
way to handle them is through the built-in functions.

Every built-in operation is assigned to one label in the initial environment. There
are also some reserved labels that are not assigned any special value. They are used in-
stead as the argument-holders for other built-in functions. These are for example V alue,
Property, 1st, etc. The argument names of the predefined operations are fixed.

All built-in operations of GENS can be roughly divided in three groups: low-level
operations, operations on basic data types and parser operations. We shall shortly describe
only the most intresting functions that will be used in the rest of the paper.

Low-level operations are used for elementary changes of the environment:

– Seq, Field and Dis are the root labels of sequence, field and disjunction. They
have been already discussed.

– Reduce reduces the value of the name V alue to its root normal form using the
current environment. It can be defined as:

Reduce σ → (V alue= t′′) σ, where t′′ = Output[t′] ∧ V alue σ →∗ t′.

– Set assigns the value of label V alue to the label assigned to label Property:

Set(Property= p, V alue= v)→ (p= v).

– FreshLabel creates a new label and assigns it to name V alue.
– System holds the initial system environment σGens, which defines all the

operations given here.

The following functions work with primitive data types:

– Add, Sub, Mul, and Div are the functions for adding, subtracting, multiplying
and dividing integers. The expected parameters are the values of names 1st and
2nd. These values are reduced to root normal form before the operation, which
means the functions are strict.

– Equal, Less, Greater, LessEq, GrEq, and Different are predicates which
compare the value of name 1st with the value of name 2nd. In case the relation is
satisfied the result is label True, and otherwise the rewriting fails. These
predicates can all be applied to character, numerical, and string types, and
predicates Equal and Different to all terms.

3. A Short Example

Using a short example it will be shown how GENS can be used in programming. Other
examples are out of the intended scope of this paper and will be published elsewhere.

12 M. Blažević et al.

The let-construct known from functional programming languages can be simulated
with the already mentioned label Let. It can be used in a kind of an imperative program-
ming style:

Let(

a = 3,

b = 5);

Add(a, b)

—−→
Gens

∗8

Let(

a= 3,

b= 5);

\a, b− > Let(

c= Add(a, b))

—−→
Gens

∗

Let(

a= 3,

b= 5,

c= Add(3, 5))

4. Conclusion

To ease the use of GENS, a specialized language G has been developed. G is a language
similar in form to BNF. G is written in GENS and its purpose is to define syntax of a
programming language and the translation of a program to its syntax tree, which is an
equivalent GENS program.

Using G, several programming languages have been implemented as interpreters:
ISWIM, Prolog, Pascal-, and Sol. Beside them, the lambda calculus and the “classical”
graph rewriting system have been implemented as well. All implemented languages can
be used for specification of other languages’ semantics thus forming generations of lan-
guages emerging from GENS.

The translation of a programming language (say P) is fully automated. When a P
program is demanded, it is loaded into the system through the P syntax definition written
in G. Then its translation down the chain of languages is automatically invoked. Once
created, parser for a language P is then preserved so that every following translation is
done directly.

In this way GENS was extended to an integrated programming environment for pro-
gramming language development. Further research will be concentrated onto support for
persistence, compiling, and other issues necessary for development of practical program-
ming languages.

References

Aït-Kaci, H., J. Garrigue (1993). Label-selective lambda-calculus. In Proceedings of the 13th International
Conference on Foundations of Software Technology and Theoretical Computer Science, Bombay.

Barendregt, H., M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, M. Sleep (1988). LEAN – an interme-
diate language based on graph rewriting. Parallel Computing, 9, 163–177.

Environment-Based Multiparadigm Language 13

Blažević, M., Z. Budimac (1997). Attributed graph rewriting system. In Proc. of XII Conference on Applied
Mathematics, Subotica, Yugoslavia, in print.

Blažević, M. (1998). Reduction of attributed graphs. In Proc. of ETRAN Conference, Zlatibor, Yugoslavia, in
print (in Serbian).

Blažević, M. (1998). Implementing Prolog using Attributed Graph Reduction. Seminar paper, Inst. of Mathe-
matics, Faculty of Science, Univ. of Novi Sad (in Serbian).

Budd, T. A. (1995). Multiparadigm Programming in Leda. Addison-Wesley.
Dami, L. (1998). A lambda-calculus for dynamic binding. Theoretical Computer Science, Special Issue on

Coordination, Feb.
Dami, L. (1997). A comparison of record- and name-calculi. In D. Tsichritzis (Ed.), Objects at Large, Centre

Universitaire d’Informatique, University of Geneva, July.
Eekelen, M. van, H. Huitema, E. Nöcker, M. Plasmeijer, J. Smetsers (1988). Concurrent clean – an intermediate

language based on graph rewriting, Parallel Computing, 9, 163–177.
Glauert, J., J. Kennaway, M. Sleep (1987). DACTL: a computational model and compiler target language based

on graph reduction. ICL Technical J., 5, 509–537.
Moreno Navarro, J., J. (1995). Expressivity of functional – logic languages and their implementation
Papadopoulos, G. (1996). Concurrent Object-Oriented Programming Using Term Graph Rewriting Techniques.

Information and Software Technology.
Peyton Jones, S., P. Wadler (1993). Imperative functional programming. In Proc. of 20th ACM Symposium on

Principles of Programming Languages, Charleston, South Carolina, January.

M. Blažević received MSc degree in Computer Science from Novi Sad University in
1999. Now he is PhD student at the same university. His scientific interests include, pro-
gramming languages, especially functional programming languages, multi-paradigm en-
vironments, databases and information systems.
Z. Budimac received MSc degree in Computer Science from Novi Sad University in
1991 and PhD degree in Computer Science from the same university in 1994. Presently
he is associate professor at Institute of Mathematics, Faculty of Science, University of
Novi Sad. His scientific interests include, programming languages, especially agent ori-
ented and distributed programming, mobile technology, software engineering, functional
programming languages, operating systems.
M. Ivanović received MSc degree in Computer Science from Novi Sad University in
1988 and PhD degree in Computer Science from the same university in 1992. Presently
she is associate professor at Institute of Mathematics, Faculty of Science University of
Novi Sad. Her scientific interests include, programming languages, especially agent ori-
ented programming with application in workflow and education processes, software en-
gineering, object oriented systems, compilers.

14 M. Blažević et al.

Teoriniai aplinkos savybėmis grindžiamos daugiaparadigmės kalbos
pagrindai

Mario BLAŽEVIĆ, Zoran BUDIMAC, Mirjana IVANOVIĆ

Straipsnyje aprašyta paprasta perrašymo sistemos tipo programavimo kalba GENS. Teorinis kal-
bos pagrindas yra specialius λ skaičiuotės plėtinys λE . Pagrindinė straipsnio paskirtis – apibrėžti š ↪i
plėtin ↪i ir parodyti, kaip skirting ↪u paradigm ↪u kalb ↪u konstrukcijas aprašyti GENS kalba. GENS tin-
kama funkcini ↪u, logini ↪u, procedūrini ↪u ir objektini ↪u kalb ↪u bei kalb ↪u, sudaryt ↪u derinant šias paradig-
mas, semantikai aprašyti. Ji gali būti vartojama ir kaip išvardinto tipo kalb ↪u ↪igyvendinimo kalba.

